ECUACIONES DIFERENCIALES ORDINARIAS - 2018-1. TAREA 2

PROFESOR: GERARDO HERNÁNDEZ DUEÑAS

Para entregar: Lunes, 3 de septiembre

Antes de las 11:40 AM 100%

Después de las $11:40~\mathrm{AM}$ y antes de las $5~\mathrm{PM}$ 80%

No se aceptarán tareas después de las 5 PM

Se darán solo créditos parciales a respuestas que no incluyan detalles

Problema 1: Considera el yeorema de Kneser y la notación vista en clase. Supongamos que y es un escalar. Entonces el teorema tiene una demostración muy sencilla aún sin la suposición de que $t_o \le t \le t_o + \alpha$. La conclusión es que S_c es el vacío, un punto, o un intervalo cerrado. Demuestra el teorema de Kneser en este caso mostrando que si $y_1, y_2 \in S_c$ son tales que el problema

$$\begin{cases} y' = f(t,y) \\ y(t_o) = y_o \end{cases}$$

tiene soluciones $y_j(t)$ en $[t_o, c]$, $y_j(c) = y_j$ para j = 1, 2, y $y_1 < y_o < y_2$, entonces $y_o \in S_c$.

Problema 2: Muestra mediante un ejemplo que S_c no es necesariamente convexo si d > 1, donde y es un vector de dimensión d. e.g., si d = 2, S_c puede ser la frontera de un círculo.

Problema 3:

- (a) Sea f = f(t, y) continua en $t_o \le t \le t_o + a$ y todo y. Sea $t_o < c \le t_o + a$ y supongamos que todas las soluciones del problema (0.0.1) existen en $t_o \le t \le c$. Entonces S_c es un continuo.
- (b) Muestra mediante que ejemplo que S_c no es necesariamente conexo si d=2 y no todas las soluciones del problema (0.0.1) existen para $t_o \le t \le t_o + c$.