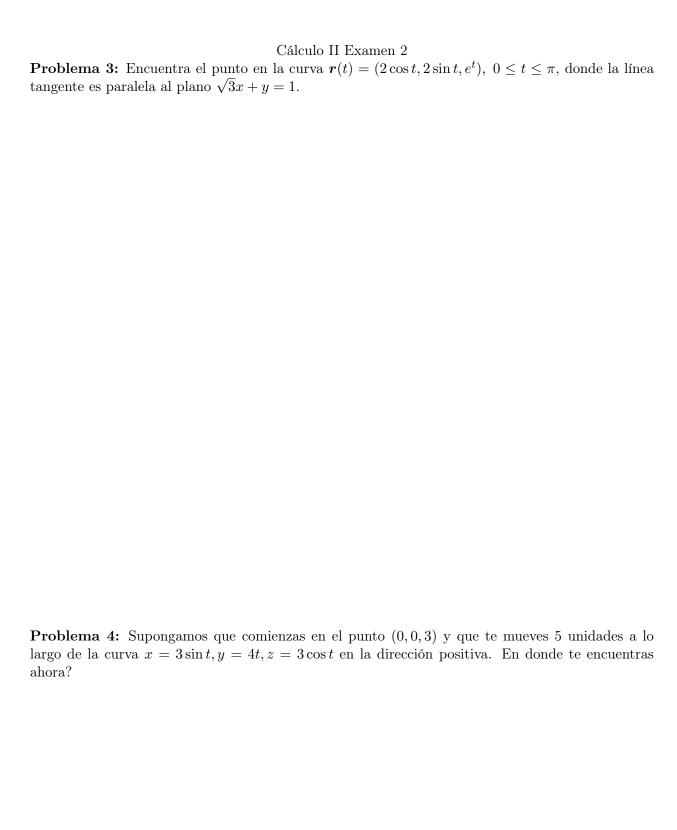
Cálculo II - ENES: Examen 2

Profesor: Gerardo Hernández Dueñas Abril 10, 2019

- * POR FAVOR ESCRIBE TU NOMBRE EN CADA HOJA
- * EXPLICA TU RESPUESTA E INCLUYE LOS DETALLES


NUMERO TOTAL DE PAGINAS: 5

TU NOMBRE:

Mucho éxito en su examen!

Cálculo II Examen 2 **Problema 1:** Muestra que la curva de intersección de las superficies $x^2+2y^2-z^2+3x=1$ y $2x^2+4y^2-2z^2-5y=0$ está contenida en un plano.

Problema 2: En que puntos la hélice $r(t) = (\sin t, \cos t, t)$ intersecta la esfera $x^2 + y^2 + z^2 = 5$?

Cálculo II Examen 2

Problema 5: Para cada una de las siguientes funciones f(x,y), encuentra el límite cuando $(x,y) \rightarrow (0,0)$ si éste existe o argumenta por qué no existe.

(a)
$$f(x,y) = \frac{xy}{x^2 + y^2}$$

(b)
$$f(x,y) = e^{-x^2} \frac{x^4 - y^4}{x^2 + y^2}$$

Cálculo II Examen 2

Problema 6: Reparametriza la curva

$$r(t) = \left(\frac{2}{t^2+1} - 1, \frac{2t}{t^2+1}\right)$$

con respecto a la longitud de arco, medida desde el punto (1,0) en la dirección t creciente. Expresa la reparametrización en su forma mas simple. Que puedes concluir acerca de la curva?

Sugerencia: La antiderivada de $\frac{1}{1+t^2}$ es $\arctan(t).$