Math 319: Techniques in Ordinary Differential Equations Quiz 1 Time: 10 minutes

Name:_____

- 1. Find the general solution of the following differential equation: $y' + 2y = 5e^{-t}$. Also describe how the solutions behave as $t \to \infty$. [6 Points]
- 2. The acceleration of a rocket travelling upward as a function of its height from the ground is given by a(h) = 10 + h meter/sec². Find the *velocity* of the rocket when it is 100 meters above the ground. [4 Points]

()
$$\mu(t) = e^{\int 2dt} = e^{2t}$$
.
 $Hult.$ by e^{2t} to gdt
 $e^{2t}y' + 2e^{2t}y = 5e^{t}$
 $\frac{d}{dt}(e^{2t}y) = 5e^{t}$
 $e^{2t}y = 5e^{t} + Ce^{2t}$
 $\boxed{y = 5e^{t} + Ce^{2t}}$
 $\boxed{As \ t \rightarrow \infty, \ y(t) \rightarrow 0.}$
(2) $a(h) = 10 + h$, By chain such, $a = \frac{dv}{dt} = \frac{dv}{dh} \cdot \frac{dh}{dt} = \frac{v \ dv}{dh}$
 $8_0 \ v \ dv = 10 + h$. Let $v_0 = velocity$ at height 100 metros.
 $8_0 \ v \ dv = 10 + h$. Let $v_0 = velocity$ at height 100 metros.
 $\int_{v_0}^{v} v \ dv = \int 10 + h \ dh$
 $\int_{v_0}^{v} v \ dv = \int 10 + h \ dh$
 $\int_{v_0}^{v} v \ dv = \int 10 + h \ dh$