Math 322 : Midterm 1

Instructor: Gerardo Hernández

March 1st, 2013

YOUR NAME:

PLEASE WRITE YOUR NAME ON EVERY PAGE.

Prob 1	
/25	
Prob 2	
/20	
Prob 3	
/20	
Prob 4	
/20	
Prob 5	
/20	
TOTAL	
/100	

Problem 1. Solve Laplace's equation inside a semicircle of radius a ($0 < r < a, 0 < \theta < \pi$) subject to the boundary conditions (see figure above).

$$\left\{ \begin{array}{l} \mbox{the diameter is insulated, and} \\ \\ u(a,\theta)=f(\theta). \end{array} \right.$$

Hint: $\frac{\partial u}{\partial y} = \sin(\theta) \frac{\partial u}{\partial r} + \frac{\cos(\theta)}{r} \frac{\partial u}{\partial \theta}$. You can assume that the solution remains finite at the origin. Math 322 Midterm1

Problem 2. Find the steady-state solution of the heat equation

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2}$$

with the boundary conditions

$$-\frac{\partial u}{\partial x}(0,t) = h(T_0 - u(0,t)),$$

$$\frac{\partial u}{\partial x}(L,t) = h(T_1 - u(L,t)),$$

where T_0, T_1, h are constants with h > 0.

Problem 3. This problem shows that not every linear PDE has non-trivial separated solutions. Suppose that u(x, y) = a(x)b(y) is a solution of the equation

$$\frac{\partial u}{\partial x} + (x+y) \ \frac{\partial u}{\partial y} = 0.$$

Show that a(x) and b(y) are both constant.

Problem 4. Consider the heat equation

$$\frac{\partial u}{\partial t} = k \frac{\partial^2 u}{\partial x^2},$$

subject to the boundary condition

$$u(0,t) = 0, \ u(L,t) = 0.$$

Solve the initial value problem if the temperature is initially

$$u(x,0) = \begin{cases} -1, & 0 < x \le \frac{L}{2} \\ 1, & \frac{L}{2} < x < L \end{cases}$$

Problem 5. Suppose $\frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} + x$, u(x,0) = f(x), $\frac{\partial u}{\partial x}(0,t) = \beta$, $\frac{\partial u}{\partial x}(L,t) = 1$.

(a) Calculate the total thermal energy in the one-dimensional rod as a function of time

(b) From part (a), determine a value of β for which an equilibrium exists. For this value of β , determine $\lim_{t\to\infty} u(x,t)$.

Math 322 Midterm1