MATH 322 , SPRING 2013
PRACTICE PROBLEMS FOR CHAPTERS 5 AND 6

INSTRUCTOR: GERARDO HERNANDEZ

Problem (Textbook problem 5.3.4)
Consider heat flow with convection
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(a) Show that the spatial ordinary differential equation obtained by separation of variables is
not in Sturm-Liouville form.

(b) Solve the initial value problem
U(O,t) = O,U(L,t) = O,’U,(Qj, 0) = f(‘r)

(¢) Solve the initial value problem
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Problem (Textbook problem 5.5.9)

COnsider the eigenvalue problem
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with
#(1) =0, ¢(b) = 0.

Show that multiplying by 1/z puts this in the Sturm-Liouville form
Show that A > 0
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) Since (5.3.10) is an equidimensional equation, determine all positive eigenvalues. Is A = 0
an eigenvalue? Show that there is an infinite number of eigenvalues with a smallest, but no
largest.

(d) The eigenfunctions are orthogonal with what weight according to Sturm-Liouville theory?

Verify the orthogonality using properties of integrals.

(e) Show that the nth eigenfunction has n — 1 zeros.

Problem (Textbook problem 5.4.2) Consider
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where ¢, p, Ky are functions of x, subject to
%(O,t) =0, %(L,t) =0,u(z,0) = f(x).
Assume that the appropriate eigenfunctions are known. Solve the initial value problem, briefly
discuss limy_, oo u(z, t).
Problem (Textbook problem 5.4.6) Consider the vibrations of a nonuniform string of mass den-
sity po(z). Suppose that the left end at « = 0 is fixed and the right end obeys the elastic boundary

condition: du/0x = —(k/Tp)u at x = L. Suppose that the string is initially at rest with a known
1



2 INSTRUCTOR: GERARDO HERNANDEZ

initial position f(z). Solve the initial value problem. (Hints: Assume that the appropriate eigenval-
ues and corresponding eigenfunctions are known. What differential equations with what boundary
conditions do they satisfy? The eigenfunctions are orthogonal with what weighting function?)

Problem (Textbook problem 5.5.1) A Sturm-Liouville eigenvalue problem is called self-adjoint if

u@— d—u |b—0
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since then f(f [uL(v)—vL(u)]dz = 0 for any two functions u and v satisfying the boundary conditions.

Show that the following yield self-adjoint problems:
(a) (0) =0 and $(L) =

(b) 22(0) =0 and ¢(L) =
(c) 92(0) — hé(0) = 0 and 22(L) = 0
(d) ¢(a) = ¢(b) and p(a) 32 (a) = p(b) 32 (b)
(e) p(a) = p(b) and %2 (a) = 22(b) [self adjoint only if p(a) = p(b)]
(f) ¢(L) =0 and [in the situation which p(0) = 0] ¢(0) bounded and lim,_, p(x)% =0
(¢) Under what conditions is the following self-adjoint (if p is constant)?
do .

H(L) + a0 (0) + 122 0) =

do do

90(0) +0(0) +552(0) = 0

Problem (Textbook problem 5.5.4) Give an example of an eigenvalue with more than one eigen-
function corresponding to an eigenvalue.

Problem (Textbook problem 5.5.9) For the eigenvalue problem

d*¢
F + )\ewgf) =0
subject to the boundary conditions
¢(0) =0, ¢(1) =

dé 26,
Lwy=0, S50 =0,

show that the eigenvalues are less than or equal to zero (A < 0). (Don’t worry; in a physical contact
that is exactly what is expected.) Is A = 0 an eigenvalue?
Problem (Textbook problem 5.6.1) Use the Rayleigh quotient to obtain a (reasonably accrue)

upper bound for the lowest eigenvalue of
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T (-6 =0, L0)=0, 6(1)=0
" d? d d

0 =mo=0, 20)=0, 21) +-20(1) = 0
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0+ 26=0, 6(0)=0, 22(1) +6(1) =0

Problem (Textbook problem 5.7.2) Consider heat flow in a one-dimensional rod without sources
with nonconstant thermal properties. Assume that the temperature is zero at * = 0 and z = L.
Suppose that cpmin < ¢p < CPmax, and Kpin < Ko(x) < Kpax. Obtain an upper and (nonzero)
lower bound on the lowest exponential rate of decay of the product solution.

Problem (Textbook problem 5.8.9) Counsider the eigenvalue problem

22 do dé
TS+ A =0, 6(0) = 2(0), 6(1) = B2 ()
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For what values (if any) of 8 is A = 0 an eigenvalue?

Problem (Textbook problem 5.9.2) Consider
2

% +AX1+x)p=0
subject to ¢(0) = 0 and ¢(1) = 0. Roughly sketch the eigenfunctions for A large. Take into account
amplitude and period variations.

Problem (Textbook problem 6.2.6) Derive an approximation for 9%u/dxdy whose truncation
error is O(Ax?). (Hint: Twice apply the centered difference approximations for first-order partial
derivatives.)

Problem (Textbook problem 6.2.7) How well does 3[f(x)+ f(x + Ax)] approximate f(z+Axz/2)
(i.e. what s the truncation error)?

Problem (Textbook problem 6.3.5) Show that at each successive mesh point the sign go the
solution alternates for the most unstable mode (of our numerical scheme for the heat equation,
s>1/2).

Problem ( Textbook problem 6.3.8) Under what conditions will an initial positive solution [u(z,0) >
0] remain positive [u(z, ) > 0] for our numerical scheme (6.3.9) for the heat equation?

Problem (Textbook problem 6.3.9) Consider

2
371; = f(x), u(0) =0, u(L) =0.

(a) Using the centered difference approximation for the second-derivative and dividing the length
L into three equal mesh lengths derive a system of linear equations for an approximation to
u(x). USe the notation z; = iAx, f; = f(x;) and u; = u(x;). (Note: z9 =0, x1 = %L,l‘g =
2L,x3=1L.)

(b) Write the system as a matrix system Au = f. What is A?

(¢) Solve for u; and us.

(d) Show that a “Green’s function” matrix G can be defined:
ui =~; Gijfj (u=Gf).
What is G? Show that it is symmetric, G;; = Gj;.
Problem (Textbook problem 6.3.16) Using forward differences in time and centered differences

in space, analyze carefully the stability of the difference scheme if the boundary condition for the

heat equation is

ou ou
%(0) =0, %(L) =0.

(Hint: See sec 6.3.9) Compare your result to the one for the boundary conditions u(0) = 0 and
u(L) =0.



