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CAPITULO 1

Introducciéon

1. Definiciones y clasificacion basica de procesos estocasticos

Un proceso estocdstico es una coleccién de variables aleatorias (X¢),., in-
dexadas por un conjunto Ty definidas en algin espacio de probabilidad (£2,.%,P).
Interpretamos al conjunto de indices T como un parametro temporal; para nosotros
T serd {0,...,n}, N, algiin intervalo [0,¢] 6 [0, 00). Interpretamos a un proceso es-
tocastico como la evolucién en el tiempo de algiin fenémeno cuya dindmica se rige
por el azar. Un ejemplo sencillo de esto es la cantidad de soles que vamos acu-
mulando al participar en un juego de volados. Otro ejemplo es la evolucion en el
tiempo de la reserva de una compania de seguros. En el primer ejemplo, se puede
indexar al proceso por algin intervalo de naturales, en cuyo caso hablaremos de
un proceso estocdstico a tiempo discreto. Ademads, dicho proceso toma valores
en los naturales, por lo que también se trata de un proceso con espacio de esta-
dos discreto. En el segundo caso, se puede pensar en un modelo indexado por un
subintervalo de [0, 00) y hablaremos de un proceso estocdstico a tiempo continuo.
Ademas, en principio el valor de la reserva podria ser cualquier real no-negativo y
por lo tanto hablamos de un proceso con espacio de estados continuo

Uno de los primeros resultados generales dentro de la teoria de los procesos
estocasticos es el teorema de consistencia de Kolmogorov que nos permite construir
procesos estocdsticos a partir de colecciones vectores aleatorios (que satisfacen la
condicién técnica de ser consistentes). La prueba de este teorema se puede hacer
baséndose en la existencia de una sucesién de variables aleatorias uniformes. Antes
de analizar por qué existe una sucesion de variables uniformes independientes,
ejemplificaremos céomo se pueden construir algunos de los procesos estocdsticos
que analizaremos en este curso.

EJEMPLO 1.1 (Caminatas aleatorias simples y el problema de la ruina). Imag-
inemos la siguiente situacién: tengo un capital de 20 pesos al tiempo cero y cada
instante de tiempo apuesto un peso en un volado, gandndo si cae aguila. ;cémo
puedo estudiar matemé&ticamente a la evolucién de mi capital en el tiempo? De par-
ticular interés es la variable aleatoria que nos indica el instante en que me arruino
por primera vez, misma que a priori podria ser infinita si jamas me arruino.
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El modelo matemaético es el siguiente: consideremos variables aleatorias
Uy, U,...

uniformes en (0, 1) e independientes. A la variable aleatoria 1y,<1 /2, que toma los
valores cero y uno, la interpretaremos como indicandonos si el resultado del i-ésimo
volado es dguila (cuando toma el valor uno) y por lo tanto, la variable 21y, <1/ —1
toma los valores 1 si cae aguila y —1 si cae sol.

EJercicio 1.1. Con el objeto de verificar que comprendemos la nocién de
independencia, probar que las variables aleatorias 1y, <12, 1ly,<1/2;--- son inde-
pendientes y con distribucién Bernoulli de pardmetro 1/2.

Finalmente, podemos definir

XO = 20 y Xn—‘,—l - XTL + 21Un+1§1/2 - 1

El siguiente cédigo en R simula la evolucion de mi fortuna.

C<-20 #C es un vector cuya entrada i serd mi capital al tiempo i
aux<-C #Esta variable me dice cudl es el tdltimo valor de mi capital
while (aux>0) { #Mientras no me haya arruinado
aux<-aux+2* (runif (1)<1/2) -1 #actualizo mi capital al sumarle una variable
que toma valores -1 y 1 con probabilidad 1/2
C<-c(C,aux) #Agrego el tultimo valor de mi fortuna al vector C

¥
plot (C)

LisTinG 1.1. Ruina.R

En la Figura 1 podemos apreciar un ejemplo del resultado de correr el cédigo
anterior.

EJEMPLO 1.2 (Apostando con prisa). Modificaremos el ejemplo anterior como
sigue: tengo un capital de 20 pesos al tiempo cero y cada instante de tiempo
apuesto en un volado ya sea la mitad de mi fortuna si tengo méas de 6 pesos o 2
pesos si mi fortuna es menor o igual a 6, ganando si cae aguila.

Un modelo matemaético es el siguiente: consideremos variables aleatorias Uy,
Us, ... uniformes en (0, 1) e independientes y definamos

1X,/2] X, >6

Xo=20 y Xpp1=Xn+(2%1y,,,<12—1) 9 X. <6

El modelo anterior se puede implementar facilmente en R con el cédio siguiente.

C<-20 #C es un vector cuya entrada i serd mi capital al tiempo i
fortuna<-C #Esta variable me dice cudl es el udltimo valor de mi capital
while (fortuna>0){ #Mientras no me haya arruinado
monto<-2*(fortuna<=6)+floor (fortuna/2)*(fortuna>6) #Calculo el monto que
apostaré, que es la mitad de mi fortuna cuando tengo mds de 6 pesos y
si no, dos pesos.
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Ficura 1. Trayectoria de una caminata aleatoria simple que
comienza en 20 y es detenida al llegar a cero

fortuna<-fortuna+monto* (2* (runif (1) >1/2)-1) #actualizo mi capital al sumarle
una variable que toma valores -1 y 1 con probabilidad 1/2 multiplicada
por el monto de la apuesta

C<-c(C, fortuna) #Agrego el dltimo valor de mi fortuna al vector C

}
plot (C)

LisTING 1.2. Prisa.R

Por supuesto, esperamos que esta estrategia nos llege méas rapido a la ruina. En la
Figura 2 podemos apreciar dos ejemplos de trayectorias simuladas de la evolucién
de la fortuna bajo este esquema de apuestas.

Los dos ejemplos anteriores corresponden a procesos con tiempo y espacio
discreto. Ahora analizaremos un modelo a tiempo continuo y espacio discreto.

EJEmpPLO 1.3 (Contéos aleatorios ). Imaginemos que queremos modelar los
tiempos sucesivos en que cambiamos un foco en nuestro lugar de trabajo. Supon-
dremos que en cuanto se funde un foco lo cambiamos (instantdneamente) por uno
nuevo.

Es natural asumir que podemos modelar los tiempos de vida de los sucesivos
focos mediante una sucesién de variables aleatorias independientes. El supuesto
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F1GURA 2. Dos trayectorias que muestran la evluciéon de un cap-
ital al someterlo a un esquema de apuestas arriesgadas

adicional que impondremos es que éstas tienen distribuciéon exponencial de tasa

A > 0, donde la tasa es el reciproco de la media. Sean Ui, Us,... variables in-
dependientes de distribucién uniforme en (0,1) y definamos a T; = —log(U;) /.
Entonces 11,75, ... son variables aleatorias exponenciales independientes de tasa

A. La variable T; la interpretamos como el tiempo de vida del i-ésimo foco.
Puesto que la distribucion exponencial esta caracterizada por la propiedad de
pérdida de memoria

P(S; >t+s]S; >t) =P(S; > s),

el suponer que el tiempo de vida de un foco tiene distribucién exponencial puede
ser cuestionable puesto que debe haber un efecto de desgaste en su tiempo de vida.
Sin embargo, lo que se espera con el modelo es que capture la escencia del fenémeno
que queremos modelar.

El proceso estocastico de interés es el que va midiendo la cantidad de focos que
hemos cambiado en el intervalo de tiempo [0, ] que mediremos en afios. Sean

To=0, Thy1 =T+ St1 y Ne= Z 17<;.
i—1

Entonces se interpreta a T, como el instante de tiempo en el que cambiamos el
n-ésimo foco y a Ny como la cantidad de focos que hemos cambiado en [0, ¢].

Se puede simular a la funcién aleatoria ¢ — N; en el intervalo [0, 1] mediante
el siguiente codigo.
lambda=24%360/1000 # Media, en a\“nos, del tiempo de vida de un foco

xi=rexp (1, lambda) # xi representa el tiempo en el que se cambié el dltimo

foco
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F1GURA 3. Los tiempos sucesivos en los que se cambia un foco a
lo largo de 1 y 8 anios

T=c(0,xi) # E1 vector T ird acumulando los tiempos en que vamos
cambiando los focos
N=0 # N nos dira cuantos focos hemos cambiado al final de un afio
while (xi<1){ # Mientras no haya pasado un afio
N<-N+1 # Aumentamos el nimero de focos cambiados en uno
xi<-xi+rexp(1,lambda) # Vemos el tiempo en el que debemos cambiar el
siguiente foco
T=c(T,xi) # Aumentamos un evento temporal
}

plot(T,c(1:(N+2)))
LisTiNG 1.3. Poisson.R

En la Figura 3 podemos observar dos trayectorias con los tiempos en los que
se cambian los focos, primero en un ano y luego en ocho. Podemos observar una
cierta regularidad, como si hubiera cierta tendencia determinista (una linea recta)
y unas fluctuaciones aleatorias que capturan los sucesivos tiempos de cambio de
foco.

EJEMPLO 1.4 (Tiempos de espera). Imaginemos la fila de un banco. Supong-
amos que los clientes van llegando a tiempos aleatorios y que cada uno requiere un
servicio que es también una variable aleatoria. Lo que se quiere medir es: al correr
el sistema, si un cliente llega al momento ¢, ‘?Cudnto debe esperar para salir del
banco?

Un modelo posible se enfoca en los tiempos entre los arribos de los clientes
y supone que éstos son variables aleatorias exponenciales de algiin pardametro ;.
Ademsds, podemos suponer que los tiempos de servicio son variables aleatorias in-
dependientes con distribucién comin, que fijaremos como la exponencial de tasa
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As para fijar ideas. Se supone que todas las variables en cuestén son independi-
entes. Este modelo, aunque sea criticable en su supuesto de pérdida de memoria
heredado de las variables exponenciales, tiene la particularidad de que se pueden
hacer cdlculos explicitos que no son posibles en modelos méas generales. Ademds,
ejemplifica algunas caracteristicas de los modelos mas generales.

Sean Sp, .9, ... variables exponenciales independientes de parametro A; y &1,
&a, ... variables exponenciales independientes (entre si y de las S;) de pardmetro
As. Si

Ty=0, Top1=Tu+8m41, Ne=) lr,<, Ro=0 y Rup1=Rn+&up,

n=1
definimos entonces los procesos

Xi=Rn, —t v @ :Xt—m<i£1Xs.

Entonces Q; representa el tiempo de servicio necesario para atender a los clientes
que se encuentran presentes en el banco al tiempo t.

Por otra parte, podemos simular al modelo matematico de la cola mediante el
siguiente cédigo en R.

li<-1 # Tasa interarribo
1s<-2 # Reciproco de la media de servicio
T=8%60 # Tiempo de la simulacién

t<-c(0,rexp(1,1i)) # Inicializacién del vector de eventos temporales
q<-c(0,rexp(1,1s)) # Inicializacién del vector de estado de la cola
while(tail(t,1)<T){ # Mientras no haya sobrepasado el umbral temporal
taux=rexp(1,1i) # Me fijo en cuanto falta para la llegada del préximo
cliente
if (taux<tail(q,1)){ # En particular si el préximo cliente llega antes de que
la cola se vacie
t<-c(t,tail(t,1)+taux) #En cuyo caso agrego el evento de llegada

q<-c(q,tail(q,1) -taux+rexp(1,1s)) # Junto con el tiempo de
servicio que requiere menos el que ya he realizado
}
else{ # Si el préximo cliente llega después de que la cola se vacie

t<-c(t,tail(t,1)+tail(q,1) ,tail(t,1)+taux) #Agrego dos eventos
temporales: cuando se vacia la cola y cuando llega el préximo

cliente
q<-c(q,0,rexp(1,1s)) #Agrego ademds un estado de cola=0 mas el
servicio del préximo cliente que llega
}
}
plot(t,q)

LisTING 1.4. Cola.R

Al ejecutar el cédigo se obtienen graficos como los de la Figura 4.
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F1GURA 4. Estado de la cola cuando A; =1y A; =1,2

2. La construccion fundamental de una sucesién de variables aleatorias
independientes

Como vimos en los ejemplos anteriores, y es cierto en gran generalidad, pode-
mos construir procesos estocasticos muy generales a partir de sucesiones de vari-
ables aleatorias inependientes. En cierto sentido, dichas sucesiones son los ejemplos
mas sencillos de procesos estocasticos, en los que no hay realmente una evolucion.
Al ser, sin embargo, los bloques fundamentales con los que se construyen todos los
demas, nos detendremos en su construccion matematica.

2.1. El modelo matematico de una sucesiéon de volados. Primero se
ejemplificard la construccién de una sucesién de variables aleatorias independientes
a partir de una sola variable.

Consideremos al espacio de probabilidad (€2,.%,P) en el que Q = (0,1], F =
B, v P es la medida de Lebesgue restringida a 2. Definamos a las variables
aleatorias d,, : 2 — R como sigue: a cada w € (), se le puede asignar su expansion
diddica con colas infinitas de tal forma que

o0
dy(w
w= Z 2<n )’

n=1
donde cada d,, es cero o uno. Aunque la expansién diddica todavia no esté bien
definida, puesto que por ejemplo a 1/2 se le podria asociar ya sea (1,0,0,...) o
(0,1,1,...), la expansion diddica con colas infinitas, que es la segunda en nuestro
ejemplo, si lo estda. Mas formalmente, definamos

0 siwe(0,1/2]

dl(w): 1 Siw€(1/271]'
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Notemos que si w; = 2w — d;(w), entonces wy € (0, 1]; recursivamente, definimos
dpy1(w) =di(wn) ¥y wpi1 = 2wy, —di(wy,) € (0,1].

Es facil ver que de hecho,
do(w) = L(1/a,2/4) + L(3/4,4/4)
ds(w) = L(1/8.2/8) + L(3/8,4/8) + L(5/8,6/8) + L(7/8.8/8]

y en general

271,—1

dn(w) = Z 1((2i-1)/2n 2i/27]-
i=1

Esto implica inmediatamente que si uq,...,u, € {0,1} entonces el conjunto
{dl ZU1,...,dn :un}
es un intervalo de longitud 1/2™ y que por lo tanto ds,...,d, son variables aleato-

rias independientes de distribucién Bernoulli de pardmetro 1/2.

2.2. Una sucesion de variables aleatorias uniformes independientes.
Ahora demostraremos que si (X;),~; son variables aleatorias independientes con
distribucién Bernoulli de parametro 1/2 (definidas en otro espacio de probabilidad)
entonces U = > ,o; X;/ 2¢ tiene distribucién uniforme. En efecto, puesto que

P(Xl:ul,...,Xn:un)zl/Q”:IP’(dl:ul,...,dnzun),

vemos que

]P’(iXi/T < x) = ]P’(idi/Qi < x) .
i=1 =1

Por otro lado,
U=1lim)_ X;/2,
i=1

y de hecho la sucesién de variables aleatorias es creciente. Por lo tanto U es variable
aleatoria y

n n
PU < z) = nli}rroloP<Z X, /2 < :v) = nh_{r;OIP(Z di)2¢ < x) =P((0,z]) = =.

i=1 i=1
Asi, vemos que U es una variable uniforme.

Ahora utilizaremos lo anterior para mostrar que existe un espacio de probabil-
idad en el que estdn definidas una sucesién de variables aleatorias uniformes inde-
pendientes. De hecho el espacio de probabilidad que consideraremos es el mismo
(Q, .#,P) que en la Subseccién 2.1. Como Z, y Zi tienen la misma cardinalidad,
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consideremos una biyeccién de ¢ : Zi — Zy. Definamos dj' = dy, ;) y para cada
n € Zy, sea

Como (df'),~, son variables aleatorias independientes de distribucién Bernoulli de
parametro 1_/ 2, se sique que U, tiene distribucién uniforme para cada n € N.
Se afirma ahora que las variables (U,),~, son independientes. En efecto, esto es
consecuencia del siguiente lema, un tanto méas general. Notemos que U,, es medible

respecto de la o-algebra generada por (d}'),.;, a la cual llamaremos .%,.
LEMA 1. Sean &, ;,i > 1,n > 1 o-dlgebras independientes y definamos
Fn=0(Fn1, Fna,--.)-

Entonces %#,,n > 1 son o-dlgebras independientes.

DEMOSTRACION. Debemos mostrar que para todo A; € Z1,..., A, € Z,, se
tiene que
(1) P(A1N---NA,) =P(A)---P(A4,).

Sea

Cn={A1N---NA, m>1yA; €U F,,;paraj=1,...,m}.

Puesto que
U Zni c 6. C Z,
i>1
vemos que
o(6n) = Fn.

Por otra parte, es facil ver que %,, es un m-sistema.
Consideremos ahora la clase

M ={Aec F, :P(ANB)=P(A)P(B) si B=B;N---NB, con B; € 6;}.
Es fécil ver que .}, es un A-sistema que contiene, por hipétesis a 7. Por lo tanto
My = F.

Ahora consideramos a
My ={A € Fy:P(ANB) =P(A)P(B)
siB=BiNBsN---NB, con B € #, y B; € €; para j > 3}.

Se prueba entonces que .#5 es un A-sistema que por hipdtesis y la igualdad .#; =
1 contiene a 6. Al aplicar este razonamiento sucesivamente, obtenemos la igual-
dad (1). O
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2.3. Una sucesion de variables aleatorias independientes con dis-
tribuciones arbitrarias. Ahora utilizaremos la construcciéon de la sucesiéon de
variables aleatorias uniformes independientes para demostrar el siguiente resul-
tado:

TEOREMA 1.1. Sean p,, n > 1 medidas de probabilidad en R. Entonces ex-
iste un espacio de probabilidad (Q0,.%,P) y una sucesion de variables aleatorias
independientes X, : Q@ — R, n > 1 tales que la distribucion de X,, €s .

La herramienta principal de la construccién sera el siguiente lema: (tomado
de Billingsley p. 190). Recordemos que una funcién F : R — [0, 1] es la funcién
de distribucién de una variable aleatoria real si y sélo si es no decreciente, con-
tinua por la derecha (y con limites por la izquierda) tal que lim,_, o F(z) =0y
lim, 00 F(z) = 1.

DEFINICION. La funcién de cuantiles de una funcién de distribucién F' es
la funcién ¢ : (0,1) — R dada por
pu)=inf{xr e R:u< F(x)}.
La funcién de cuantiles satisface la igualdad
o(u) <z e u< Fx)
que se demostrard posteriormente. De esta igualdad se deduce la medibilidad de
@.

PRUEBA DEL TEOREMA 1.1. Sabemos que existe un espacio de probabilidad
(Q,#,P) en el que existe una sucesién de variables aleatorias independientes
(Un),,>, uniformes en (0,1). Sea F, la funcién de distribucién asociada a la medida
de probabilidad ., v ¢, la funcién de cuantiles de .%,,. Como ¢,, es una funcién
medible, X,, = ¢,(U,) es una variable aleatoria. Ademds, como las variables
U,,# 1 son independientes, también lo son las variables X, ,n > 1:

{(X1€A1,..., Xne A} ={U1,€ 67 (A1),....Un, € 0, (A0)} .

Finalmente:

P(X; (=00, 2])) = P(U;7 (67 (=00, 2]))) = P(U7((0, Fi(x)])) = Fi(x),
por lo que X tiene distribucion ;. O

Ahora demostremos las propiedades de la funcién de cuantiles ¢ asociada a la
funcién de distribucién F. Sea u € (0,1); entonces el conjunto {z € R : u < F(z)}
es no vacfo y como F' es no decreciente, es un intervalo ya sea de la forma [¢(u) , 00)
o (¢(u),00), ya que ¢(u) es el infimo del conjunto considerado. La segunda opcién

se descarta al notar que F es continua por la derecha. Por lo tanto, u < F(z) si y
s6lo si ¢(u) < x.



CAPITULO 2

Cadenas de Markov a tiempo discreto

La Figura 1 representa un laberinto. Imaginemos que colocamos una rata en la
esquina inferior izquierda y un plato de comida en la esquina superior derecha. Para
modelar la trayectoria que sigue la rata hasta encontrar la comida, supongamos
que cuando se encuentra en un cuarto del laberinto, la rata va a cualquier otro con
la misma probabilidad. Un modelo matemético para esta situacién es el siguiente.
Enumeremos los cuartos del laberinto de izquierda a derecha, de abajo a arriba,
por lo que la rata comienza en el cuarto 1 y encuentra la comida en el cuarto 9.
Definamos F; ; como la probabilidad con que la rata pasa del cuarto ¢ al cuarto j;
por ejemplo, vemos que

5J —

1/4 je{2,4,6,8)
0 j¢&{2,4,6,8 "

FiGURA 1. Laberinto para un experimento aleatorio
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Esta informacion se puede organizar de forma matricial de la siguiente manera:

0 12 0 1/2 0 0 0 0 0
/3 0 1/3 0 1/3 0 0 0
0O 1/2 0 0 0 1/2 0 0 0

/3 0 0 0 1/3 0 1/3 0 0
P=|0 1/4 0 1/4 0 1/4 0 1/4 0
/

0

o

o 0 1/3 0 1/3 0 0 0 1/3
o 0 0 1/2 0 0 0 1/2

o 0 0 ©0 1/3 0 1/3 0 1/3
o 0 0 0 0 1/2 0 1/2 0

Entonces la probabilidad de que la rata siga la trayectoria 1,4, 7, 8,9 para encontrar
la comida es Py 4Py 7P7 gPg 9. Notemos que

(1) P,; >0paratodoiy jy

(2) >, Pi,j = 1 para toda i.
A una matriz con estas dos caracteristicas se le llama matriz estocdstica. La
segunda, condicién nos dice que F;1,..., ;9 es una distribucién de probabilidad
sobre el conjunto {1,...,9}. Si definimos a ¢; como la funcién de quantiles asoci-
ada, tendremos que ¢;(U;) es una variable aleatoria con la misma distribucién que
el cuarto al que pasa la rata si estd en el cuarto j. Es por esto que si definitmos

XO =1 y Xn+1 = ¢X,,,(Un+l)a

las variables X, X1, ... nos modelan el movimiento de la rata por el laberinto. Para
poder obtener la trayectoria de la rata detenida hasta que encuentre la comida,
podriamos modificar la matriz P en

0 1/2 0 1/2 0 0 0 0 0
/3 0 1/3 0 1/3 0 0 0 0
0 1/2 0 0 0 1/2 0 0 0
/3 0 0 0 1/3 0 1/3 0 0
P=|o0 1/4 0 1/4 0 1/4 0 1/4 0
o 0 1/3 0 1/3 0 0 0 1/3
o 0 0 1/2 0 0 0 1/2 0
o 0 o0 0 1/3 0 1/3 0 1/3
o 0 0 0 0 0 0 0 1

que difiere de P salvo en el dltimo renglén, en el cual especificamos que una vez
que la rata llegue al cuarto 9 se quede ahi. Si qu son las funciones de cuantiles
asociadas a los renglones de P, podemos entonces modelar la trayectoria de la rata,
detenida cuando alcanza la comida mediante la sucesion

XO =1 y X71,+1 = &X”(Un-&-l) .
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Se presenta a continuaciéon un coédigo en R para simular la trayectoria de la
rata.
P=matrix(c(0,1/2,0,1/2,0,0,0,0,0,1/3,0,1/3,0,1/3,0,0,0,0,0,1/2,0,0,0,1/2,0,0,0,1

/3,0,0,0,1/3,0,1/3,0,0,0,1/4,0,1/4,0,1/4,0,1/4,0,0,0,1/3,0,1/3,0,0,0,1/

3,0,0,0,1/2,0,0,0,1/2,0,0,0,0,0,1/3,0,1/3,0,1/3,0,0,0,0,0,1/2,0,1/2,0),9)
# Genera la matriz de transicién para la rata en un laberinto

X<-1 # E1 vector X acumulard la trayectoria que sigue la rata; comienza
en el cuarto 1.

N<-0 # Paso en el que vamos

while(tail(X,1)!'=9){ #Mientras la rata no encuentre la comida del cuarto 9

X<-c(X,sample(c(1:9),1,prob=P[tail(X,1),])) # Escogemos un cuarto al azar a
partir del que se encuentra
N<-N+1 # Especificamos que se ha dado un paso méas

}
LisTING 2.1. Rata.R

Como un ejemplo, se obtuvieron las siguientes dos trayectorias simuladas

©123212121414141236565232363236321212369
e 1456369

A continuacién presentamos una serie de preguntas para las cuales la teoria sub-
secuente encuentra una respuesta.

e ;Cuéanto tarda la rata en promedio en encontra la comida si comienza en
el cuarto i?
e Si quitamos la comida y nada mas seguimos la trayectoria de la rata,
;, Cudl es la probabilidad de que se encuentre en el cuarto j en el paso n si
comienza en i? Parte de la teoria que veremos nos dice que la probabilidad
se estabiliza conforme n — oc.
e Si de nuevo seguimos sélamente la trayectoria sin comida, ;estamos se-
guros de regresar al punto inicial?
e Si agregamos la comida, ;Cuantas veces regresara la rata al cuarto inicial
antes de encontrar la comida?
A continuacién daremos un marco teérico que permite generalizar al modelo
anterior. Se trata de las cadenas de Markov cuyo estudio abarcara este capitulo.
Sea E un conjunto a lo més numerable al que llamaremos espacio de estados.
Consideremos a una coleccién numérica P = (P, , g 2 la que pensaremos como
una matriz indexada por E. Supongamos que

)x,yE

(1) Ppy>O0paratodozyyy

(2) >, Puy =1 para toda z.
A P le llamamos matriz estocastica. Consideremos también una distribucién de
probabilidad 7 sobre F, que podemos pensar como un vector (digamos rengén)

T = (Tz) e

DEFINICION. Una cadena de Markov con matriz de transicién P y dis-
tribucion inicial 7 es un proceso estocéstico (Xy), oy con valores en E tal que si
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Zo,...,r1 € F entonces
]P)(XO =Zg,y. .- 7Xn = xn) = 7T$0Pmo7zl s Pzn_l’xn.
TEOREMA 2.1. Dada una matriz de transicion P y una distribucion inicial ©
existe un espacio de probabilidad en el que estdn definidas una sucesion de variables

aleatorias (X)), cy definidas en €l que conforman una cadena de Markov con matriz
de transicion P y distribucion inicial 7.

La demostracion del teorema es importante pues nos provée de un algoritmo
de simulacién para cadenas de Markov. Representa otra ilustracién del hecho de
que cualquier proceso estocastico se puede construir mediante variables uniformes
independientes.

DEMOSTRACION. Al enumerar a los elementos de F, podemos pensar que FE =
{0,...,n} 6 E =N. Sea ¢; la funcién de cuantiles asociada al renglén i de P, ¢ la
funcién de cuantiles de 7 y sea (2, .%#,P) un espacio de probabilidad en el que estédn
definidas una sucesién (U;),cy de variables uniformes independientes. Definimos a

Xo=0Uo) vy Xny1=0¢x,Uns1)-
Por definicién de funcién de cuantiles:
P(¢2(Uj) =y) = Puy,
por lo que se sigue que si xg, ..., T, € E entonces
]P(XO = $0,...7Xn = xn)
= P(¢(UO) = To, (b:ro (Ul) =T1y---, (b:rn,l(Un) = mn)
= P(¢(Uo) = z0) [[ i = 1" "P (s, (T) = 21)
= ’/T:copmo,ml T Pxn_l,zn~

O

Una de las caracteristicas principales de las cadenas de Markov es la propiedad
de Markov:

PROPOSICION 2.1 (Propiedad de Markov). Sea X una cadena de Markov de
distribucidn inicial w y transicion P. Si P(Xo = xq,..., X, = x,) > 0 entonces

P(Xn+1 = .Z‘n+1 |X0 = ZQy--- 7Xn = .Z’n) = P(Xn+1 = xn-i—l |Xn = xn) .

La interpretacién es que la evolucién futura de la cadena sélo depende del
pasado a través del presente.

DEMOSTRACION. Calculemos el lado izquierdo:
]P)(XO = Zgy .- 7Xn+1 = $n+1) = ’/TmOPm07$1 U P$n7$n+1
por lo cual

P(Xn+1 = Tn+1 |X0 = ZQy--- 7Xn = J?n) =P

TnsTn++1 "
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Por otra parte, puesto que
{Xn :xn}: U {XO:-IO,-'-;anl :xnthn:xn}
X0y yTn—1

donde la unién es disjunta, se sigue que

P(Xn = xn) = E 77330P£07481 e Pxn—lyxn
T0,-- T

Yy que
P(Xn = Tn, Xn+1 == mn—&-l) == § Wzong,ml e Pmn_l,aznprn,rn_H
ZOy--yTn
por lo que

HD(AXn+1 = Tp+1 ‘Xn = xn) =P

Tn,Tn41°

]

Esta misma técnica de descomposicion del espacio de estados nos lleva a lo que
se conoce como las ecuaciones de Chapman-Kolmogorov.

PROPOSICION 2.2. Sea X wuna cadena de Markov de distribucidn inicial 7 y
transicion P. Si P!, = P(X,, = y|Xo = z) entonces

n+m __ m n
PE,Z - z :P"L’yPva
yeE

La ecuacién anterior recuerda mucho a la de multiplicacién de matrices. En

efecto, lo que nos dice es que P}’ es la enésima potencia de la matriz de transicién
;
P.

DEMOSTRACION. Al generalizar la idea de la prueba anterior, vemos que si
definimos o = = y 4., = z entonces

P7L+7rz
P(Xn+m =z ‘X() = l')

- § Paioﬂﬂl T Pajn+1n717wn+7n

T1, s Tntm—1€EE

= § : E : Px()wxl '.'meyflay E : Pyvxm,+l'.'Pxn+m—lvz

YEE z1,...,.xm_1EE Tmt1sesTntm—1€EE
_ m pn
= PPy

yeE
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Ficura 2. 100, 1000 y 10000 pasos de una caminata aleatoria
simple con p = 1/4

Por supuesto, en general no es posible calcular explicitamente las potencias
de la matriz de transicién. Sin embargo, un paquete como R es capédz de realizar
este producto de manera numérica y asi poder resolver problemas de orden préctico
que se modelen mediante cadenas de Markov. A continuacién, se presentan algunos
ejemplos de cadenas de Markov.

EJEMPLO 2.1. La caminata aleatoria simple es una cadena de Markov cuyo
espacio de estados es Z y es tal que P; ;41 =1 — P;;_; = p para alguna p € (0,1).
Este es uno de los ejemplos introductorios. Basta entonces mencionar que se puede
simular una trayectoria de longitud fija n (de hecho 2 trayectorias) mediante el
siguiente cédigo.

# Cédigo para simular una trayectoria de n pasos de una caminata aleatoria
simple de parametro p

p<-1/2

n<-10000

U<-runif (n)

Y<-2*(U<p) -1

X<-cumsum(Y)

plot (X[1:100],type="1")

quartz () #usar x11() en UNIX y windows() en Windows, esto es para mac.
plot (X[1:1000], type="1")
quartz ()

plot (X[1:10000] ,type="1")
LisTinG 2.2. CAS1.R

Se pueden obtener entonces trayectorias como las de las Figuras 2 y 3 en las que
se examinan trayectorias de 100, 1000 y 10000 pasos respectivamente para los
pardmetros 1/4y 1/2. En la primera se aprecia la ley fuerte de los grandes ntimeros.

Por otra parte, se pueden calcular numéricamente las probabilidades de tran-
sicién a n pasos mediante el cédigo:

pa<-.5 #Probabilidad de ir de i a i+l
n<-6 #Cantidad de pasos que daremos
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Ficura 3. 100, 1000 y 10000 pasos de una caminata aleatoria
simple con p = 1/2

p<-matrix(0,n+1,2*n+1) #La entrada P[i,j] nos da la probabilidad de
encontrarnos en j-i al paso i-1

pl1,11<-1 #Inicializacién: comenzamos en O al paso O con probabilidad 1

for(i in 1:n){ #Con cada paso actualizamos nuestras probabilidades
pli+1,1=(1-pa)*pl[i,l+pa*c(0,0,pli,1:(2*n-1)1)
¥

LisTinG 2.3. CASnPasos.R

Podemos entonces obtener la matriz P tal que P; ; nos da la probabilidad de que
una caminata aleatoria simple esté en el estado j —1i al paso i —1. Para que cupiera
en la pagina sélo se corrié con n = 6, pero computacionalmente n = 1000 no
representa ningin problema. Una vez almacenados estos datos se pueden utilizar
para obtener numericamente la media, varianza, o la esperanza de alguna otra
funcién de la variable aleatoria que nos mide la posicién después de n pasos.

1 2 3 4 5 6 7 8 9 10 11 12 13
1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.25 0.00 0.50 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.12 0.00 0.38 0.00 0.38 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00
0.06 0.00 0.25 0.00 0.38 0.00 0.25 0.00 0.06 0.00 0.00 0.00 0.00
0.03 0.00 0.16 0.00 0.31 0.00 0.31 0.00 0.16 0.00 0.03 0.00 0.00
0.02 0.00 0.09 0.00 0.23 0.00 0.31 0.00 0.23 0.00 0.09 0.00 0.02

N OOtk W N

EJEMPLO 2.2 (Cadena de nacimiento y muerte). Se trata de una cadena de
Markov cuyo espacio de estados es E = {0,...,n} 6 N={0,1,2,...} con probabil-
idades de transicién son P; ;41 = p(i) y P;i—1 = ¢(i) donde 1 — ¢(i) = p(i) € [0, 1].
(Definimos ¢(0) =0y si £ ={0,...,n} entonces p(n) =0.)

EJEMPLO 2.3 (Cadena de Ehrenfest). En este ejemplo hay dos urnas, con bolas
numeradas del 1 al n repartidas entre ambas. A cada instante de tiempo se escoge
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FicurA 4. Trayectoria simulada de 1000 pasos de la cadena de
Ehrenfest con n = 1000

un nimero al azar entre 1 y n y la bola con ese niimero se cambia de urna. Lo que
se mide es la cantidad de bolas en la urna 1 (digamos). Esta serd una cadena de
Markov con espacio de estados E = {0,...,n} y matriz de transicién P dada por

PO,l =1= Pn;n—la Pi,i+1 =1 —z/n sii<n yPi,i—l = Z/?’l sié > 0.

Este es un caso particular de la cadena de nacimiento y muerte con espacio de
estados finito. Se puede simular la cadena mediante un cédigo como el siguiente:

# Cédigo para simular una trayectoria de m pasos de una cadena de Ehrenfest con
espacio de estados {0,...,n}.
n<-1000
m<-1000
U<-runif (m)
X<-n/2
for(i in 2:m){
aux<-tail (X,1)
if (aux==0) {X<-c(X,1)}
else if (aux==n){X<-c(X,n-1)}
else {X<-c(X,aux+1-2%(U[il<aux/n))}
}
plot (X,type="1")

LiSTING 2.4. Ehrenfest.R
Con él, se obtuvo la Figura 4.

Como ejemplo final, el lector puede verificar la liga http://www.r-bloggers.
com/basics-on-markov-chain-for-parents/ a un blog en el que se interpreta
al juego de serpientes y escaleras en términos de cadenas de Markov con cédigo en
R para simular el desarrollo del juego.


http://www.r-bloggers.com/basics-on-markov-chain-for-parents/
http://www.r-bloggers.com/basics-on-markov-chain-for-parents/
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1. Clases de comunicacién

Sean P una matriz de transicién sobre E y X una cadena de Markov con
matriz de transicién P y distribucién inicial v tal que v, > 0 para toda x € F.
Denotaremos por P, a P condicionada por Xy = x. Puesto que

]Px(Xn:y): Z Px<X1:(Elyw-aanl:xnflaXn:y)v
i1,0.yin—1€EE
vemos que
Py (Xn =y) = Z Py P,y
Por lo tanto, si se introducen a las potencias de la matriz de transicion P",n > 1
(v se define P? = §,,) vemos que

Pr(Xn = y) = Pf,y

Sean x y y dos estados de E. Diremos que x conduce a y si existe n > 0 tal
que P, > 0. Claramente esto ocurre si y sélo si existen xo, ..., 2, con xg =z y
zpn =y tales que P, , ., > 0. Cuando x conduce a y y y conduce a z, diremos
que x y y se comunican y lo denotaremos mediante x ~ y.

PROPOSICION 2.3. La relacidn x ~ y es una relacion de equivalencia en E.

A las clases de equivalencia inducidas por la relacién ~ les llamaremos clases
de comunicacion.

DEMOSTRACION.

Reflexividad: Puesto que P:B,m =1, vemos que x ~ .

Simetria: Por definicién x ~ y si y sélo si z ~ y.

Transitividad: Siz ~yyy ~ z, sean m y n en N tales que P, > 0y
Py, > 0. Puesto que

P;,ﬁjm > P, P, >0,

vemos que x conduce a z y un argumento analogo muestra que entonces
T~ z.

O

Se dice que una cadena de Markov es irreducible si tiene una sola clase de
comunicacién. A la clase de comunicacién a la que pertenece el estado x € E la
denotamos por C,; explicitamente:

C.={yeE:xz~y}.

El concepto de clase de comunicaciéon nos permite dar una primera descom-
posicién del espacio de estados. Esta se puede refinar al introducir el concepto
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de clase de comunicacién abierta y cerrada. Este concepto es util pues se puede
reducir el espacio de estados de una cadena de Markov a una clase de comunicacién
cerrada.

DEFINICION. Sea C un subconjunto del espacio de estados E. Decimos que C
es un conjunto cerrado si para toda y € E'\ C, x no conduce a y. Un conjunto
abierto es aquel que no es cerrado.

2. La propiedad de Markov fuerte

La propiedad de Markov fuerte es una extensién de la propiedad de Markov a
ciertos tiempos aleatorios. Es una herramienta de gran utilidad. En particular nos
servird para estudiar los conceptos de transitoriedad y recurrencia. Antes de pasar
a la propiedad de Markov fuerte, veamos la siguiente extensién de la propiedad de
Markov.

PROPOSICION 2.4. Sea A cualquier subconjunto de E™ tal que P(AN{X, =y}) >
0. Entonces, condicionalmente a AN{X, =y}, el proceso (Xptm,m > 0) es una
cadena de Markov que comienza en y y tiene matriz de transicion P.

DEMOSTRACION. Al descomponer al conjunto A como unién de eventos ele-
mentales de la forma {(zg,...,z,—1)}, vemos que

]P(A7 Xn = y7Xn+1 =Y, ;Xner = ym)

= Z P(Xo=x0,.. ., X1 =Tn-1,Xn =9, Xpnt1 = Y1, -, Xt = Ym)
($0,-~~790n71)EA

= E Pacl,wl "'Pxnfhypy,yl "'Pymfl,ym
(z0,yTn_1)EA

Asi, se obtiene

IEJ>(AXn-‘,-1 =Yi,---, Xn+m = Ym |A7 X, = y) = Prc,,,_l,yljy,yl cee Pym_l,ym-
O

Ahora verificaremos que la propiedad de Markov se extiende a ciertos tiempos
aleatorios. Un tiempo aleatorio es una variable aleatoria T : @ — N U {oo}.
Dicho tiempo aleatorio es finito si T'(w) € N para toda w € Q y es acotado si existe
K € N tal que T'(w) < K para todo w € Q.

DEFINICION. Un tiempo aleatorio T es un tiempo de paro si para todan € N
existe 4,, C E"*! tal que

Intuitivamente un tiempo de paro es un tiempo que obtenemos de observar la

trayectoria hasta que se cumpla una condicién. El instante en que se cumple es el
tiempo de paro.
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Nuestro primer ejemplo de un tiempo de paro es el tiempo 77 en que una
cadena X regresa a su estado inicial. En otras palabras:

T, = {oo X, # X( para toda n '
min{n >1: X, = Xo} en otro caso
En efecto es un tiempo de paro puesto que
{Th =1} = {X1 = Xo}
y paran > 2
{Th =n} ={X1 # Xo,... Xn-1# Xo,Xn =Xo}.
De igual manera, el tiempo T, en que ocurre la enésima visita al estado inicial es

un tiempo de paro. Esto se prueba por induccién al notar que ya hemos verificado
la base inductiva n = 1 y por otro lado

{Toir=m} = |JA{Tw =1} 0 {X11 # X0, ., X1 # Xo, X = Xo} .
I<m
Otro ejemplo de un tiempo de paro es la primera vez H4 en que la cadena accede
a un subconjunto A del espacio de estados. En otras palabras:
HA:{OO X,LEE\Aparatodan.
min{n >0: X, € A} en otro caso

TEOREMA 2.2 (Propiedad de Markov fuerte). Sea A cualquier subconjunto
de E™*! tal que P(A, X, =y, T =n) > 0. Entonces, condicionalmente a A N
{T =n, X, =y}, el proceso (X,,1m, m > 0) es una cadena de Markov que comienza
en y y tiene matriz de transicion P.

DEMOSTRACION. Sea A4,, C E™*! tal que
{T =n} ={(Xo,...,Xn) € An}.
Al descomponer al conjunto A como unién de eventos elementales de la forma
{(z0,...,2n_1)}, vemos que
PAT=n,X,=9Xnt1 =1, -, Xntm = Ym)

= Z P(XOZ-'EOa---anfl:xnflaXn:annle:y17~-~aXn+m:ym)
(o,...,xn)EANA,

= § Poy oy Poyy yPyys - Pyt g
(0,.,xn ) EANA,
Asi, se obtiene

]P(XnJrl =Yiy.-- 7Xn+m =UYm |AaT = ann = y) = Pzn_l,ypy,yl T Pym—l,ym'
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3. Transitoriedad y recurrencia

Pasaremos ahora al anélisis de dos conceptos que permiten hacer una distincién
entre los estados de una cadena de Markov, de acuerdo a si siempre seran revisitados
0 no.

Sea x € E. Definamos a la cantidad de visitas al estado x como la variable

aleatoria
o0
Va=) 1x,—a
n=0

Esta variable aleatoria podria tomar el valor infinito. Sin embargo, un resultado
curioso es que si toma el valor infinito con probabilidad positiva, entonces toma el
valor infinito con probabilidad 1. En caso de que V, sea infinita con probabilidad
1 bajo P, hablamos de un estado recurrente y en caso contrario de un estado
transitorio. Analicemos ahora por qué el conjunto {V, = co} tiene probabilidad
cero o uno. Para esto, definamos a Ty, 77, ... como los instantes sucesivos que X
visita al estado z. Bajo la medida P,
To=0, Ty =min{n>0:X, =2}

y Tny1 es la primera vez que la cadena de Markov (X7, 4m, m > 0) regresa a z.
Hemos visto que cada T, es un tiempo de paro.

Notemos que
(o]
Vac = Z ]-Tn<oo~
n=1

Se afirma ahora que bajo P, V,, es una variable aleatoria geométrica de parametro
P.(T1 < o0). En efecto, por una parte se tiene que

{Ve = n} ={T, < o}
y por otra,la propiedad de Markov fuerte nos permite afirmar que para cada n > 1:
Po(Thi1 < 00) =Py (Thi1 < 00,1, < 00) =Ep(17, «ooPr(Th < 00)),

por lo cual

P, (T, < 00) =P, (T1 < o00)".
El caso en que P, (T} < 00) = 1 ocurre si y s6lo si V, es infinita P, casi seguramente.
Si no, V, es geométrica de pardmetro P, (T} < co) y por lo tanto su esperanza
es finita. Esto nos proporciona una equivalencia, en términos de la matriz de
transicion, para que un estado sea recurrente.

PROPOSICION 2.5. El estado  es recurrente si y sélo si ) pPr, = .

DEMOSTRACION. La afirmacién se sigue de notar que
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Ahora veremos que la transitoriedad o recurrencia es de hecho una propiedad
de clase.

PROPOSICION 2.6. Six y y se comunican entre si e T es transitorio entonces
y es transitorio.

DEMOSTRACION. Sean m y n tales que P, >0y P, > 0. Entonces

m-+Il+n m ! n
Py 2 PryPyylya
Por lo tanto:
si E P < o0 entonces E Pé y < 00.
n n

O

La conclusién que obtenemos es que en una clase o todos los estados son re-
currentes o todos son transitorios y que por lo tanto podemos hablar de clases
recurrentes y de clases transitorias. Hay una forma facil de saber si una clase
es transitoria.

PROPOSICION 2.7. Sea C C E una clase abierta. Entonces C' es transitoria.

DEMOSTRACION. En efecto, puesto que C es una clase abierta, existe z € C,
y€e E\Cym>0 tal que Py, > 0 mientras que P;',, = 0 para toda n > 0. Por
lo tanto

o0 o0
Ey(vm) = ZEy(an:w) = ZP:;L,ZL’ =0

n=0 n=0

y puesto que V, es una variable aleatoria no-negativa, entonces
P,(V, =0)=1.
Asi, vemos que
P, (Ve <00) > Pu(Ve(Xons Xoni1,.-.) = 0, X = y) = Py >0

por lo que x es transitorio. O

Veremos ahora que la conclusiones anteriores nos permiten clasificar a las clases
de cadenas de Markov con espacio de estados finito. En efecto,

PROPOSICION 2.8. Si el espacio de estados es finito, una clase es recurrente si
y solo si es cerrada.

DEMOSTRACION. Sélo hace falta verificar que si C' es cerrada entonces es re-
currente. Puesto que C' es cerrada, vemos que para cualquier x € C,
1=P,(X, € C para todan >0).

Por otra parte, al ser F finito, lo anterior forza a que exista y € C que se visita
infinitas veces bajo P,:
0<P,(V, =00).
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Si T denota a la primera visita a y, vemos que
0 <P, (T, < 00)Py(V, = 00)

de acuerdo a la propiedad de Markov fuerte. Por lo tanto, vemos que y es recurrente
y que asi la clase C es recurrente. O

La primera conclusién es que una cadena irreducible con espacio de estados
finitos tiene a todos los estados recurrentes. Un ejemplo muy concreto seria el
de la cadena de Ehrenfest. Adn mads, en una cadena irreducible y recurrente, de
cualquier estado se accede a cualquier otro.

PROPOSICION 2.9. Si la cadena es irreducible entonces P, (V, = c0) =1 para
toda x,y € &

En particular, si recordamos la cadena de Markov que modela el movimiento
de una rata por el laberinto ilustrado en la Figura 1, si colocamos comida en algiina
celda, entonces la rata la encontrard con probabilidad 1.

DEMOSTRACION. Recordemos que P, (V, = c0) = 1 para toda y € E. Por otra
parte, al aplicar la propiedad de Markov al instante n, vemos que

1=P,(V, =00) = > Py Pu(V, = 0).
zelE

Del lado derecho tenemos un promedio ponderado de las cantidades P, (V, = o0) <
1. El promedio es igual a 1 si y sélo si P,(V, = o0) = 1 para toda y tal que
Pp . > 0. Por irreducibilidad, para toda y existe n tal que P;’, > 0y por lo tanto
P, (Vy = o0) =1 para toda z,y € E. O

Para la cadena de la ruina del jugador, donde el espacio de estados es {0, ..., N'}
y la matriz de transicién es

P 1< N,j=1+1
Pi=q1-p i>0,j=i—1,
1 i=0,N

vemos que 0 y IV son absorbentes y que de cualquier estado se accede a 0 y a N.
Hay por lo tanto 3 clases de comunicacién: {0},{1,...,N —1},{N}. La primera y
la 1ltima son cerradas y por lo tanto recurrentes mientras que la segunda es abierta
y por lo tanto transitoria. Cabe la pregunta de si en esta cadena alcanzamos alguno
de los estados 0 y NV con probabilidad 1. La respuesta es por supuesto afirmativa
y se puede generalizar como sigue:

ProproOSICION 2.10. Sean

A={x € E:C; es abierta}, C={xeE:C, es cerrada}
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[TEpL si{neN:X,eC}=0
¢~ min{n >0: X, € C} en caso contrario '

Si A es finita entonces para todo x € E, P, (Ho < 0c0) = 1.

DEMOSTRACION. Si x € C entonces 1 =P, (He = 0) < P, (Ho < 00).
Por la propiedad de Markov fuerte, si x € E'y y € A, se tiene que

P,(V, = 00) =P, (T, < 00) Py (V, = 0).
El segundo factor del lado derecho es cero puesto que y es transitorio. Puesto que
E es finito, se concluye que P, (ZyeA Vy = ) = 0 para todo z,y € A.

Por otra parte, ya que ZyeE y = 00, se deduce que para x € A:

ZV:oo =1.

yeC

Como

P,(Ho <00) =Py | > V=00 |,
yecC
se deduce el resultado deseado. O

El andlisis de recurrencia y transitoriedad de cualquier cadena con espacio de
estados finito es como el de los dos ejemplos anteriores. Sin embargo, cuando el
espacio de estados es infinito, el analisis de recurrencia y transitoriedad es mucho
mas delicado. Se presenta un ejemplo célebre de este tipo de andlisis. Para més
ejemplos, necesitaremos profundizar en la relacién entre la propiedad de Markov y
las relaciones de recurrencia, en la siguiente seccién.

EJEMPLO 2.4 (Recurrencia y transitoriedad de la caminata aleatoria simple y
el teorema de Pélya). Sea P dada por P, ;41 =p =1— P, ;1 para i € Z, donde
p € (0,1) y sea S = (S,) una cadena de Markov con esta matriz de transicién.

Esta cadena es irreducible y por lo tanto, basta ver la recurrencia o transito-
riedad del cero y los demas estados compartirdn esta caracteristica.

Sip # 1/2, la ley fuerte de los grandes ntdmeros nos dice que S,,/n — 2p — 1
conforme n — oo casi seguramente. Por lo tanto, para ¢ < p A 1 — p, existe N tal
que para toda n > N, se tiene que 2p—1—¢)n < S, < (2p —1+¢)n. Vemos
que entonces el nimero de visitas al estado cero es finito casi seguramente y por lo
tanto 0 es transitorio. Note que este argumento no es valido cuando p = 1/2.

Sip = 1/2, entonces se puede calcular explicitamente P0 5= (2;)2’2". Ahora
utilizamos la férmula de Stirling, la cual afirma que

|
lim ————— =1,

n—o0 ple=M\/2mn
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vemos que

Por lo tanto

y asi vemos que S es una cadena recurrente.

Consideremos ahora una caminata aleatoria simple y simétrica en dimension d,
que tomaremos igual a 2 6 3. Si i,j € Z4, definiremos P; ; = 1/2d si >, iy — ji| =
1. Mediante un argumento combinatorio y la férmula de Stirling, se puede probar
que Pgo/n?? — Cy donde Cy € (0,00). Entonces, vemos que si d = 2 la caminata
aleatoria simple y simétrica es recurrente mientras que si d = 3, es transitoria.
Este tltimo resultado se conoce como Teorema de Pélya para la caminata aleatoria
simple.

4. Ejemplos de utilizacién de la propiedad de Markov

EJjempLO 2.5 (El problema de la ruina). Consideremos la matriz de transicién
P it1=1—P;_1 =p € (0,1) que da lugar a una caminata aleatoria simple en
Z. Sea X una cadena de Markov con transicién P y tal que comienza en i bajo
P;. Consideremos N > 2y m € {1,..., N — 1}. Definamos al siguiente tiempo de
paro:

T=min{n >0:X, € {0,N}}.

El objetivo del ejemplo es utilizar la propiedad de Markov, mediante el llamado
analisis del primer paso para calcular la probabilidad siguiente:

(2) P (X7 = N).

La interpretacion es la siguiente: un jugador tiene un capital inicial de m pesos
y se enrola en un juego de volados en el que gana un peso con probabilidad p
(v los juegos son independientes). No deja de jugar hasta que pasan dos cosas:
acumula un capital objetivo de N pesos o pierde toda su fortuna. Lo que se quiere
determinar es la probabilidad de que termine de jugar con N pesos. Claramente,
para este problema, es igual trabajar con la caminata aleatoria simple, y su espacio
de estados infinito, que con la caminata aleatoria con absorciéon en 0 y en N que
tiene espacio de estados {0,...,n} y matriz de transicién @ dada por

Qoo=QnN=1 ,Qiit1=p=1—-Q;;—1si1<i<N-—-1L
La cantidad Q'm,0 nos da la probabilidad haber llegado a cero antes del instante
l y de visitar el estado N. El siguiente codigo R permite hacer un calculo de esta
cantidad cuando N =10,1 =26, m =5y p=>5/11.

# Objetivo: encontrar, numéricamente, las probabilidades de transicion y de
ruina para la cadena de la ruina del jugador
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N<-10 #Capital objetivo
p<- 5/11 #Probabilidad de ir hacia arriba
m<-floor(N/2) #Capital inicial

P<-matrix (0,N+1,N+1) #Matriz de transicion
P[1,1]<-1

P[N+1,N+1]<-1

for(i in 2:N) {P[i,(i-1):(i+1)]<-c(1-p,0,p)}

p<-matrix(0,1,N+1) #Distribucion inicial

plm+1]<-1
aux<-p
1<-26 # Cantidad de pasos que se haran

M<-matrix(0,1+1,N+1)
M[1,]<-aux

for(i in 1:1){
aux<-aux*%P
M[i+1,]<-aux

}

library(xtable) #Cargar el paquete que genera la tabla
print (xtable (M) ,type="latex",file="Ruina2.tex") #Genera el TeX de la tabla

LisTING 2.5. Ruina2.R

Se escogié n pequeno para poder presentar los resultados en la Tabla 1. Sélo se
imprimen dos decimales.

Antes que nada, probaremos que T' < oo P, casi seguramente. Al notar que
si hay N incrementos de X igual a 1 (lo cual sucede con probabilidad p¥ > 0,
entonces T' < 00). Sin embargo, como bajo P, los incrementos son independientes
y toman el valor 1 con probabilidad p, esto sucedera casi seguramente (como se ve
por ejemplo al utilizar Borel-Cantelli).

Escribamos

Gm =P (X1 = N)
y determinemos ahora el valor de ¢,,. Hay dos casos sencillos:
0=0 Yy g.=1
Por otro lado, observamos que si m < n — 2 entonces 1 < T por lo que
Gm = Pdm+1+ (1 = p) gm-1.

Asi, la probabilidad de interés queda determinada por una relacién de recurrencia
con valores de frontera.

Afortunadamente, la solucién a la relacién de recurrencia se conoce. En efecto,
escribamos la relacién de recurrencia en la forma

PGm + qGm = Pqm4+1 + @Gm-1 O PGm + @Gm = PGm+t1 + qGm—1
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1

2

3

4 5

6 7

8

9

10

11

0.00
0.00
0.00
0.00
0.00
0.05
0.05
0.11
0.11
0.17
0.17
0.22
0.22
0.27
0.27
0.32
0.32
0.36
0.36
0.40
0.40
0.43
0.43
0.46
0.46
0.48
0.48

00 ~J O UL = W N+~

DN DN DNDNDNDN = = = = s s
N U WINN R OOWOO U WD~ OO

0.00
0.00
0.00
0.00
0.09
0.00
0.11
0.00
0.11
0.00
0.10
0.00
0.09
0.00
0.08
0.00
0.07
0.00
0.07
0.00
0.06
0.00
0.05
0.00
0.05
0.00
0.04

0.00
0.00
0.00
0.16
0.00
0.20
0.00
0.20
0.00
0.19
0.00
0.17
0.00
0.15
0.00
0.14
0.00
0.12
0.00
0.11
0.00
0.10
0.00
0.09
0.00
0.08
0.00

0.00 0.00
0.00 0.55
0.30 0.00
0.00 0.41
0.30 0.00
0.00 0.34
0.27 0.00
0.00 0.29
0.25 0.00
0.00 0.26
0.22 0.00
0.00 0.23
0.20 0.00
0.00 0.21
0.18 0.00
0.00 0.18
0.16 0.00
0.00 0.17
0.15 0.00
0.00 0.15
0.13 0.00
0.00 0.13
0.12 0.00
0.00 0.12
0.11 0.00
0.00 0.11
0.09 0.00

1.00 0.00
0.00 0.45
0.50 0.00
0.00 0.34
0.37 0.00
0.00 0.28
0.30 0.00
0.00 0.24
0.26 0.00
0.00 0.21
0.23 0.00
0.00 0.19
0.21 0.00
0.00 0.17
0.19 0.00
0.00 0.15
0.17 0.00
0.00 0.14
0.15 0.00
0.00 0.12
0.13 0.00
0.00 0.11
0.12 0.00
0.00 0.10
0.11 0.00
0.00 0.09
0.10 0.00

0.00
0.00
0.21
0.00
0.20
0.00
0.19
0.00
0.17
0.00
0.16
0.00
0.14
0.00
0.13
0.00
0.11
0.00
0.10
0.00
0.09
0.00
0.08
0.00
0.07
0.00
0.07

0.00
0.00
0.00
0.09
0.00
0.12
0.00
0.12
0.00
0.11
0.00
0.10
0.00
0.09
0.00
0.08
0.00
0.07
0.00
0.06
0.00
0.06
0.00
0.05
0.00
0.05
0.00

0.00
0.00
0.00
0.00
0.04
0.00
0.05
0.00
0.05
0.00
0.05
0.00
0.04
0.00
0.04
0.00
0.04
0.00
0.03
0.00
0.03
0.00
0.03
0.00
0.02
0.00
0.02

0.00
0.00
0.00
0.00
0.00
0.02
0.02
0.04
0.04
0.07
0.07
0.09
0.09
0.11
0.11
0.13
0.13
0.14
0.14
0.16
0.16
0.17
0.17
0.18
0.18
0.19
0.19

TABLA 1. Elrenglén i representa la distribucion en el i-ésimo paso
de la cadena de la ruina del jugador

6 inclusive

Se sigue entonces que

y por lo tanto

dm =

(@m — Gm+1) = (4/P) (@m—1— Gm) -

Gm — Gms1 = —q1 (¢/p)""

1—(g/p)™
{‘ﬂ T—(a/p)

qim

siq#p

sig=p=1/2"
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Al utilizar la igualdad ¢, = 1 obtenemos finalmente

1-(¢/p)™ :

g =4 =a/mT .
m/N sig=p
Cuando p = ¢ = 1/2, podemos adicionalmente calcular v, = E,,(T). En
efecto, por la propiedad de Markov y el hecho de que T' 0 §; = 17> + 7', vemos
que
v=v8=0 vy 20, =2+Vnt1 +Vmn-1.

La ultima ecuacién se puede escribir, definiendo d,,, = v,;, —v;,—1 como una igualdad

matricial:
dm+1 _ 11 dm
-2 /7 \0 1 -2’
dmi1 (1 1\ (dy
-2/ \0 1 -2/

La potencia de la matriz resultante se puede calcular y nos devuelve

por lo que

d7rL+1 =d; —2m.
Puesto que d; = v1 y vg = 0, vemos que
Up=di+-+dpn=v1—v1—-2—--—v;—2(m—1)=mv; —m(m—1).
Al utilizar vy = 0, vemos que
(%1 =N-1
y que por lo tanto
v =m (N —m).

EJEMPLO 2.6 (Recurrencia y transitoriedad de una caminata aleatoria simple
con barrera absorbente). El ejemplo anterior nos permite establecer la recurrencia
o transitoriedad de una cadena de Markov con espacio de estados infinito que estéd
ligada a la caminata aleatoria simple. Sea P, ;11 = py Pij—1 =qgsii>1y
Py,1 = 1. Sea X una cadena de Markov con transicién P tal que comienza en
bajo P;. Notemos que P se comporta como una caminata aleatoria si se encuentra
en i > 1, pero si llega a cero automaticamente pasa a 1. Puesto que esta cadena y
la del ejemplo anterior tienen el mismo comportamiento hasta que llegan a cero o
a n, vemos que si p # q:

1-(q¢/p)’
1—(q/p)"
Al tomar el limite conforme n — 0o, obtenemos

Py(Tp = o0) = {(1)‘ (a/e) Z;fj

Pz(Tn < To) =
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Asi, la caminata aleatoria simple con barrera reflejante en cero es transitoria si
p > 1/2 y recurrente si p < 1/2.

EJEMPLO 2.7 (Cadenas de nacimiento y muerte). Para una sucesién de proba-
bilidades de éxito p; € (0,1) (con ¢; = 1 —p;), sea (P;,7 > 0) la familia markoviana
asociada a un proceso de nacimiento y muerte con matriz de transicién deterninada
por P; ;11 = p;. Haremos un andlisis de primer paso para calcular h; = P;(Ty < 00).
Notemos que hg = 1.

De nuevo, la propiedad de Markov nos permite obtener la siguiente relacién de
recurrencia para ¢ > 1:

hi = pihit1 + qhi—1.

De nueva cuenta, si escribimos d; = h; — h;+1, se tiene que

pidi = qidi—1
y sabemos que dy = 1 — h;. Vemos que entonces
d; =v;dy donde ~; = u
q; - q1

Asi, podemos escribir
do(l+m+-+7v-1)=do+ - +di-1=1—h,

Ahora debemos hacer un analisis méas preciso para determinar a la constante fal-
tante dg.

Si )7, 7 = oo, puesto que 1 — h; € [0,1], vemos que dg =1 —hy =0y por lo
tanto h; = 1 para toda i > 1.

Si ), v < oo, definamos

ibozl y ?liZI—a,(l—F’}/o—F-”—F’yi),
por lo que h; € [0,1] y

hi = pihiv1 + qihi—1 sii> 1.

Vemos que entonces

para toda n > 1. Sin embargo:
Ei(hx, ) = Pi(To < n) + Ei (b, Lner, ) 2 Pi(To < n).
Como lo anterior es valido para toda n, vemos que
hi > h;.

Asi, h; es la minima solucién no-negativa a la relacién de recurrencia y por lo tanto
do=1/(1+ 3, v). Vemos que por lo tanto h; < 1 para toda i > 1.
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EJeEmMPLO 2.8 (Tiempos de arribo para la caminata aleatoria simple unidimen-
sional). Sea (Py,k € Z) la familia Markoviana asociada a la caminata aleatoria
simple con matriz de transicién P, ;41 =1 — P, ;1 = p € (0,1). Sea Tj el primer
arribo a cero dado por

To =min{n: X, =0}.

Nuestro objetivo sera determinar a

o(s) =E(s70).

Comenzando en 2, la caminata aleatoria simple debe pasar por uno para llegar
a cero, y la trayectoria de 2 a 1 tiene la misma distribucién que la de 1 a cero. Por
lo tanto:

Ey(s™) = ¢(s)?.
Por otra parte, la propiedad de Markov al instante 1 nos dice que
¢(s) = Ei(sT0) = (1 — p)s + psEa(sT0) = (1 — p) s + pse(s)? .
Asi, puesto que ¢(s) € (0,1) para s € (0,1), vemos que

b(s) = 1—\/1—4p(1—p)82.

2ps

Esto tiene varias implicaciones. La primera es que

1—[1—2p| {1 p<1/2

E (T, = lim E,; (s™°) = .
1(Th < 00) lim 1(s™) o ¢ 12

La segunda es el célculo, para p < 1/2 de la esperanza de Tp: al derivar la ecuacién
que satisface ¢ vemos que

0=1-(2p—1)¢/(1-)

EJEMPLO 2.9 (El minimo de caminatas aleatorias skip-free). Sea Py, k € Z la
familia markoviana asociada a una caminata aleatoria cuyos saltos pertenecen a
{-1,0,1,...}. Dichas caminatas se llaman sin saltos a la izquierda (skip-free to the
left) aunque el punto es que el minimo acumulativo tiene como imagen un intervalo
de enteros. Sea

—I = min X,,.
n>0

Obviamente I = 0 si Po(X; = —1) = 0. Supongamos por lo tanto que este no es el
caso. Veamos que entonces bajo Py, I es una variable aleatoria geométrica (aunque
posiblemente degenerada en infinito). Recordemos que las variables geométricas
estan caracterizadas por la propiedad de pérdida de memoria, por lo que es sufi-
ciente verificar que

Po(I>m—+n)=Py(I>n)Py(I >m).
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Sin embargo, notemos primero que si
T_,, =min{n e N: X,, = —m},

entonces {I > m} = {T_,, < co}. Segundo, sobre el conjunto {T_,, < oo} se tiene
que I =ITo0p , . La propiedad de Markov fuerte nos permite afirmar que

Po(I>m+n)=Py(I>m)P_,,(I>n+m).
Finalmente, puesto que Py es la distribuciéon de X + m bajo P_,,, vemos que

P_,,(I>n+m)=PyI>n).

Ahora determinemos el parametro de la distribucién de I, al que denotaremos
por p y escribimos ¢ = 1 —p. Al aplicar la propiedad de Markov al tiempo 1, vemos
que

q=Po(I >1)=Py(Px,(I >1)) =Eg(q"™).

Si ¢ denota a la funcién generadora de la distribucién de salto, vemos que

1=¢(q).

Por la desigualdad de Holder, es facil ver que la funcién gzﬁ(e"\) es log-convexa. Por
lo tanto la ecuacién ¢(s) = 1 sélo se satisface cuando s = 1 si ¢'(1—) = Eo(X;) <0
(lo cual dice que I es casi seguramente infinito) mientras que admite dos soluciones,
digamos ¢ y 1 si Eg(X;) > 0. Ahora veremos que ¢ = g en este tltimo caso. Basta
mostrar que ¢ < ¢. Puesto que

Er(¢¥) = ¢ Eo(q) = ¢"9(q) = ¢",

la propiedad de Markov nos permite probar que

Ex(7%) = ¢".
Por lo tanto, al utilizar la propiedad de Markov
G =TEo(qg"*n ZJEO 1, —kE_1 (¢ %)) + Eo (17, 50" ")
=0
PO(T <n)+Eo(1r_,5ng" t¥")

Al tomar el limite conforme n — oo, vemos que § > ¢ y por lo tanto, ¢ es la
solucién minima en [0, 1] a la ecuacién ¢(s) = 1.

EJEMPLO 2.10 (El principio de reflexién). Consideremos la familia markoviana
(Py) ez asociada a la caminata aleatoria simple y sea

T =min{n € N: X, =m}.
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Definamos
Xn _ X, s% n<T,, '
2m— X, sin>1T,,

El principio de reflexién, que ahora demostaremos, afirma que la distribucion de
X bajo Py es precisamente Py. En efecto, el principio de reflexién es consecuencia
de la propiedad de Markov fuerte y el hecho de que la distribucién de —X bajo Py
es también Py.

Como una aplicacién, notemos que si k > 0 entonces

Po(Trn <n) =Po(Tr <y Xy, > m) +Po(Thy <, X, <)
Puesto que {T,, <n} C {X, >m}y
{Th, <n, X, <m} = {Xn > m},
se deduce que
Po(Tr, < n) =Po(X,, =m) +2Po(X,, > m).
5. Medidas y distribuciones invariantes

Comenzaremos con un sistema lineal importante que se obtiene de una apli-
cacion de la propiedad de Markov fuerte.

EJEMPLO 2.11 (Cantidad esperada de visitas antes de la recurrencia). Consid-
eremos de nuevo a los tiempos de primera visita

T, =min{n e N: X, =y}.

Fijemos a « € E y definamos

Tx
v, =1y v, =E,; (Z lxn_y> para y # .

=0

TEOREMA 2.3. Para una cadena irreducible y recurrente, v* satisface vi =1,
0<vy <ooy

(3) Z voPy . =v.
z€E

Una medida invariante es un vector renglén v,y € E con entradas no-
negativas tal que vP = v o0 més explicitamente,

E V;P 2=V
z€E

Por lo tanto, el vector v representa una construccién probabilistica de una medida
invariante.
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DEMOSTRACION. Claramente v = 1. Para ver que v* satisface (3), utilizamos
la propiedad de Markov de manera similar al analisis del primer paso. Supongamos
primero que y # x. Entonces, puesto que T, es finito P, casi seguramente

Ex < Z ]-Xn_y> = Er Z 1Xn:y = Z ]Ez(an:lemSn) .

n<Ty n<Ty n=1
El sumando n = 1 es facil de calcular puesto que bajo P, T, > 1:
Er(1x,=y1l7,>1) = Ex(1x,=y) = Py

Para los sumandos con n > 2, aplicamos la propiedad de Markov al instante n — 1
(haciendo una especie de andlisis de dltimo paso), notando que {T' < n} € .%,,_1:

Ez(an:y]-ngn) = Z Em (]—Xn_lzz]-Xn:leISn)
z#x

Z ]Em (]'Xn—lzleISn) Pzay.
zFT

Asi, vemos que

Vi =E, ( > 1Xn_y> = Poy+ > Eallx,—y11,50) Poy

n<Ty z#z n=1
Tp—1
=ViPy+ > K, ( > 1X”_y> P.,
zF#x n=0
= Z vy P, .
z€E

Ahora veremos que 1 = v* = > v, Py .. En efecto, basta descomponer respecto al
valor de T3, y de X1, _1, recordando que T es finito P, casi seguramente:

oo

1= Pu(T, =n)

= Iz + Z ZPI(Tm = naanl = y)

n=2yZz
= Iz + Z ZPZL’(TI 2 n— lﬂX”*I = y) P:v,y
n=2y#x

=loe+ Z Vy Pry-
y#x
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Finalmente, si consideramos m tal que P;", > 0y n tal que P;', > 0 entonces por
una parte
vy = D ViPI, 2 Py >0
y por otra ’
lL=vy =) viP!, >viPy,
z
implica que v, < 0. (|

DEFINICION. Un estado x de una cadena de Markov es positivo recurrente
si E,(T,) < oco. Denotamos por m, a dicha cantidad, a la que nos referiremos
como tiempo medio de recurrencia de x.

Notemos que, de acuerdo a nuestra definicién de v*, se tiene que

Dvp=E.| > Y 1X, =y | =E.(Tx).

y n<Ty,

Si x es positivo recurrente, podemos entonces definir al vector 7 = (I/Z/]EI(TI))

que satisface
7TZ >0, Z’ITZ =1y ZWZP?/’Z =75
Y yeE
Una distribucién invariante es un vector renglén que satisface las 3 condiciones
anteriores. Una propiedad importante y 1til de una distribucién invariante es que
si X tiene distribucién 7, entonces X, tendra distribucién 7 para toda n. Por otra
parte, en espacio de estados finito es facil ver que existen distribuciones invariantes.

COROLARIO 1. En una cadena irreducible con espacio de estados finito, todos
los estados son positivo recurrentes.

DEMOSTRACION. Sea x cualquier estado de la cadena. Por el teorema anterior
v, < 00 para toda y y como FE es finito, entonces

Eo(To) = vy < oo. O
yeE

En caso de que exista un tnico vector de probabilidad invariante, se pueden
calcular tiempos medios de recurrencia al resolver un sistema de ecuaciones. A
continuacién profundizaremos en esta idea.

TEOREMA 2.4. Si v es una medida invariante para una matriz de transicion
wrreducible P y v, = 1 entonces v > v®. Si ademds P recurrente entonces v = v°®.

DEMOSTRACION. Al aplicar la invariancia de v se obtiene

Vy = E , Vy Py oy = Vo Pry + E , Vy Py 2 = Ppy + E Vy Py, y-
y1€E y1FT Y17£T
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Al volverla a aplicar se obtiene

vy = Pry+ E :Px7y1Py1,y+ § , Vys Pys s Pys y
Y17£T Y1,Y2 7T

y al continuar repetidamente, vemos que

vy = Ppy+ Z Py Py y + -+ Z Pr g Pypiyn—s - Pyo iy Py y
Y17#T Y1, Yn AT

+ E : Vyn+1pyn+17yn "'Pyz,ylpyhr'
Y1, Yn+ 17T

Si y # x, encontramos la cota

m=0

y el lado derecho converge conforme n — oo a v/, por lo que

xr
VyZVy.

Por otra parte, si la cadena es recurrente ademéas de irreducible entonces v*
es invariante, por lo cual yt = v — v® es una medida invariante con p, = 0. Por
irreducibilidad, para toda y € E existe n > 0 tal que P"y,x > 0 y entonces

por lo que py = 0. |

TEOREMA 2.5. Para una cadena irreducible las siguientes condiciones son
equivalentes.

(1) Todos los estados son positivo recurrentes
(2) Algin estado es positivo recurrente
(3) La cadena admite una distribucidn invariante.

En este caso, la distribucion invariante es unica y asigna a x el reciproco de su
tiempo medio de recurrencia.

DEMOSTRACION. Primero probaremos que si la cadena admite una distribucién
invariante v entonces todos los estados son positivo recurrentes. Para esto, note-
mos primero que v, > 0 para toda x € E. En efecto, lo debe ser para alguna z y
al utilizar la irreducibilidad para encontrar n tal que P, > 0, vemos que

Uy = Z nguz > I/ngy > 0.
z€E
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Siz € E, entonces v/v, es una medida invariante que asigna 1 a z, por lo cual
v/v, > v*. Puesto que v es una distribucién:

mm:Ez(Tx):ZVZ§Z%:%<oo.
y y

Asi, todos los estados son positivo recurrentes. Al ser en particular recurrentes,
hemos visto que v, = V¥ = m, y como v, es una distribucién entonces m, < oo.
Esto termina la demostracion de las implicaciones y ademaés nos produce la férmula
requerida para la distribucién invariante. O

EJEmMPLO 2.12 (La cadena de Ehrenfest). Sea £ = {0,...,N} y P41 =
1—4/N =1—P,;_1. Esta cadena es irreducible y con espacio de estados finito,
por lo que todos los estados son positivo recurrentes y por lo tanto existe un tinico
vector de probabilidad invariante 7. Ademéds, 7, = 1/E.(T,). El siguiente cédigo
nos permite obtener numéricamente estas cantidades.

N<-10 #Cantidad de bolas para la cadena de Ehrenfest
P<-matrix (0,N+1,N+1)
P[1,2]<-1
P[N+1,N]<-1
for(i in 2:N){
Pli,i+1]1<-1-(i-1)/N
P[i,i-1]1<-(i-1)/N

}
I<-diag(1,N+1,N+1)
Null<-function (M) #Calcula una base del kernel de la matriz M mediante
factorizacion QR
{
tmp <- qr (M)
set <- if (tmp$rank == 0) 1:ncol(M) else - (1l:tmp$rank)
qr.Q(tmp, complete = TRUE)[, set, drop = FALSE]
}
v<-t(Null(I-P)) # E1 kernel de I-P tiene dimension 1 por ser la cadena
irreducible y finita
v<-v/sum(v) #Se obtiene el vector de probabilidad invariante

m<-1/v #Se obtienen los tiempos medios de recurrencia
library (xtable) #Cargar el paquete que genera tablas en TeX
print (xtable(v) ,type="latex",file="EhrenfestInvariantDist.tex") #Genera el TeX
de la tabla
print (xtable(m) ,type="latex",file="EhrenfestMeanRecurrence.tex") #Genera el TeX
de la tabla

L1sTING 2.6. EhrenfestMatrix.R

El resultado se puede visualizar en las tablas siguientes

1 2 3 4 ) 6 7 8 9 10 11
1 0.00 0.01 0.04 0.12 0.21 0.25 0.21 0.12 0.04 0.01 0.00
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1 2 3 4 5 6 7 8 9 10 11

1 1024.00 102.40 22.76 8.53 4.88 4.06 4.88 8.53 22.76 102.40 1024.00

Por otra parte, para esta cadena particular, podemos calcular explicitamente el
vector de probabilidad invariante y por lo tanto los tiempos medios de recurrencia.
En efecto, sea m; = (];’)2_]\7 y notemos que si j € {1,..., N — 1} entonces

> miPiy=mj1Pio1y P
%

:< N )2_NN—j+1+( N )2_Nj+1

j—1 N j+1 N
QNN'[ 1 N—j+1 1 j41
NG-D)I(N—j+1)! N G+DI(N—j—1)! N

_N N! 1 L
G-DI(N—j—1) {N<N—j)+jN}

N N! 1
=2 <j—1>!<N—j—1>![j<N—j>]

j
J

Por lo tanto la distribucién binomial de pardmetros N y 1/2 es invariante para la
cadena de Ehrenfest con espacio de estados (0,...,N). Como ésta es irreducible,
los tiempos medios de recurrencia son

2N

-

(7)

Si ahora utilizamos la férmula de Stirling, notamos que conforme N — oo
1

——— pero mgy = oN,

m ~Y
N2TUAN

m; =

6. Comportamiento a tiempos grandes

El objetivo de esta seccién es estudiar como se comporta una cadena de Markov
recurrente cuando la dejamos correr un tiempo grande. Una aplicacién de este
tipo de ideas sirve para desplegar el resultado de una buisqueda en Google en
orden descendiente de importancia de las paginas. Para describir como se define la
importancia de una péagina, podemos pensar en la siguiente situaciéon: se considera
a la red como un conjunto de nodos (pdginas web) y aristas (hipervinculos) que
los conectan. Si N, denota la cantidad de hipervinculos que hay en la pagina v, se
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puede definir la importancia de una pagina v como la cantidad I, que satisface el

sistema de ecuaciones: I
T SECHD S
w v

La interpretacién es que una pagina importante transmite su importancia a cada
una de las ligas que esta presente en la pagina y que la suma de las importancias
es 1. Esta es la base del algoritmo PageRank de Google. Para interpretar lo
anterior en términos de cadenas de Markov, consideremos la siguiente estrategia
para navegar en esta red: al encontrarme en la pagina web, escojo un hipervinculo
al azar y lo recorro. Entonces mi trayectoria por la red serd una cadena de Markov
con matriz de transicién

~ si existe hipervinculo de v a v

Ny,
— 1 . .
Puw = § TotaTde pagmas 0 hay hipervinculos en u
0 otro caso

Notemos que la importancia de una péagina es simplemente una solucién I a la
ecuacion I = I P. Por otra parte, mediante la estrategia de navegacién postulada,
podriamos pensar a la importancia de una pagina web como la fracciéon de tiempo
asintotica que le dedico cuando recorro la web al azar. En esta seccién veremos
que de hecho, son la misma idea. En la pagina http://www.nd.edu/~networks/
resources.htm el los autores Albert, Jeong y Barabdsi proporcionan sus datos
sobre la estructura de la red que recopilaron para un estudio de 1999. Por supuesto
ha crecido mucho desde entonces, pero es un buen ejemplo de datos que se han
hecho de acceso publico. Un pequeno detalle es que los fundadores de Google
se dieron cuenta de cuestiones numéricas que aparecen al tratar de encontrar la
importancia de una pagina, por lo que modificaron la definicién de importancia a:

I, 11—«

I, =« Z N, + N
donde « € [0,1] y N es la cantidad de paginas web que hay. La interpretacién en
términos de estrategia de navegacion es que, con probabilidad « sigo la estrategia

de navegacion anterior y con probabilidad 1 — « salto a una pagina al azar. Asi,
se estara considerando la matriz de transicién

= si existe hipervinculo de u a v

Ny
P(X = Wlpégmas no hay hipeerIlClﬂOS en u
PT"‘ otro caso

El valor utilizado por Google es a = .85. La diferencia entre P y P% es que la
segunda es irreducible y aperiédica mientras la primera no tiene por qué serlo.
Como ejemplo concreto utilicemos la grafica que, el 21 de Mayo del 2012,
se encuentra en la pagina de Wikipedia de PageRank. Los vértices son seran
etiquetados del 1 al 11 y la gréfica se presenta en la Figura 5. Con a = .85, la


http://www.nd.edu/~networks/resources.htm
http://www.nd.edu/~networks/resources.htm
http://en.wikipedia.org/wiki/PageRank
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Ficura 5. Tlustracién sobre la definicion de importancia de
paginas web
matriz de transicién es
9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09
1.36 1.36 86.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36
1.36 86.36 136 136 136 1.36 1.36 1.36 1.36 1.36 1.36
43.8 438 136 136 136 136 1.36 1.36 1.36 1.36 1.36
1.36 29.70 1.36 29.70 1.36 29.70 1.36 1.36 1.36 1.36 1.36
100x@Q = | 1.36 43.8 136 136 438 136 136 1.36 1.36 1.36 1.36
1.36 438 136 136 438 136 136 1.36 1.36 1.36 1.36
1.36 438 136 136 438 136 1.36 1.36 1.36 1.36 1.36
1.36 438 136 136 438 136 1.36 1.36 1.36 1.36 1.36
1.36 136 136 136 86.3 1.36 1.36 1.36 1.36 1.36 1.36
1.36 136 136 136 863 136 136 1.36 1.36 1.36 1.36

El vector de probabilidad invariante, que nos da la importancia de cada péagina,

€s

100 # 7 = (3.28, 38.44, 34.29, 3.91,8.09, 3.91, 1.62, 1.62, 1.62, 1.62, 1.62)

Como comentamos, otra manera de pensar a la importancia de un vértice es
mediante la fraccién de tiempo que paso en el. La fraccién esperada de tiempo que
paso en j comenzando en i después de n pasos es

1< -,
%;Qi,j'
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Sin embargo, al calcular numéricamente la entrada 50 de la cadena, vemos que es
igual a

3.28 38.44 34.29 391 8.09 391 162 1.62 1.62 1.62 1.62
3.28 3843 34.30 391 809 3.91 1.62 1.62 1.62 1.62 1.62
3.28 38.45 34.28 391 8.09 391 1.62 1.62 1.62 1.62 1.62
3.28 38.45 34.28 391 8.09 391 1.62 1.62 1.62 1.62 1.62
3.28 38.44 34.29 391 8.09 391 1.62 1.62 1.62 1.62 1.62
Q" =1328 3845 3428 391 809 391 1.62 1.62 1.62 1.62 1.62
3.28 38.45 34.28 391 8.09 391 162 1.62 1.62 1.62 1.62
3.28 38.45 34.28 391 809 391 1.62 1.62 1.62 1.62 1.62
3.28 38.45 34.28 391 8.09 391 1.62 1.62 1.62 1.62 1.62
3.28 38.44 34.29 391 809 391 1.62 1.62 1.62 1.62 1.62
3.28 38.44 34.29 391 8.09 391 1.62 1.62 1.62 1.62 1.62

Vemos que desde el punto de vista numérico, Q®° es ya una matriz cuyos renglones
son iguales al vector de probabilidad invariante. Esto no es ninguna coincidencia y
uno de nuestros objetivos serd explicarlo. Se utiliz6 el siguiente cédigo para generar
a la distribucién invariante y a la potencia 50 de la matriz.

N<-11

Il
8
[

O 0O O O OO0 O OO0 >
-
OOOOO“OOOOHHH‘

2]

O O O O OO OO O A~

;;;;;;;;;

:::::::::

yyyyyyyyy

’’’’’’’’

:::::::

sssssss

,,,,,,,,,

:::::::::

;;;;;;;;;

O O O O O O O O O~

,,,,,,,,,

,0),N,N,byrow=TRUE) #Define la matriz de adyacencia de la

O O O OO O O O O O =
O O O OO OO O O O
O O O O OO0 OO O O
O O O OO OO OO0 O

:::::::

P=A/rowSums (A) #Normaliza los renglones para obtener una matriz estocastica
a=.85
Pa=axP+(1-a)/N #Se produce la matriz irreducible

1<-50

aux<-Pa

for(i in 1:1){ #Se calcula la potencia 50 de la matriz de transicion
aux<-aux%*%Pa

}

I<-diag(1,N,N)

tmp <- qr(I-Pa) # Se obtiene la factorizacion QR

set <- if (tmp$rank == 0) 1:ncol(M) else - (1:tmp$rank)

Null<-qr.Q(tmp, complete = TRUE)[, set, drop = FALSE]

v<-t(Null) # El1 kernel de I-P tiene dimension 1 por ser la cadena irreducible y
finita
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v<-v/sum(v) #Se obtiene el vector de probabilidad invariante

library(xtable) #Cargar el paquete que genera tablas en TeX

print (xtable(Pa) ,type="1latex",file="PageRankMatrix") #Genera el TeX de la tabla
print (xtable(v) ,type="latex",file="PageRankInvariantDistribution.tex")

print (xtable (aux) ,type="latex",file="PageRankMatrixPower.tex")

LisTiNnG 2.7. PageRank.R

Vale la pena comparar lo anterior con la cadena de Ehrenfest: con N = 10, a
continuacion se presentan las potencias 50 y 51 de la matriz de transicién:

2 0 8 0 410 0 410 0 8 0 2
0 20 0 234 0 492 0 234 0 20 O
2 0 8 0 410 0 410 0 8 0 2
0 20 0 234 0 492 0 234 0 20 O
2 0 8 0 410 0 410 0 8 0 2
1000«P°=10 20 0 234 0 492 0 234 0 20 O
2 0 8 0 410 0 410 0 8 0 2
0 20 0 234 0 492 0 234 0 20 O
2 0 8 0 410 0 410 0 8 0 2
0 20 0 234 0 492 0 234 0 20 O
2 0 8 0 410 0 410 0 8 0 2
0 20 0 234 0 492 0 234 0 20 O
2 0 8 0 410 0 410 0 8 0 2
0 20 0 234 0 492 0 234 0 20 O
2 0 8 0 410 0 410 0 8 0 2
0 20 0 234 0 492 0 234 0 20 O
1000«P* =12 0 8 0 410 0 410 0 8 0 2
0 20 0 234 0 492 0 234 0 20 O
2 0 8 0 410 0 410 0 8 0 2
0 20 0 234 0 492 0 234 0 20 O
2 0 8 0 410 0 410 0 8 0 2
0 20 0 234 0 492 0 234 0 20 O

Casi lo mismo se repite al calcular potencias superiores. En este caso, paraceria
haber convergencia de las potencias pares y de las potencias impartes a un limite
distinto. La diferencia entre la matriz de transicién de PageRank y la de la cadena
de Ehrenfest se encuentra en el siguiente concepto.

DEFINICION. Sea P una matriz de transicién. Definimos al periodo de un
estado 2 como el méximo comtn divisor de {n >0: P}, > 0}. Decimos que la
cadena es aperiddica si el periodo de todo estado es 1.

Si x tiene periodo d, entonces Pfifc > 0 salvo para una cantidad finita de indices

i kd+(d—1
k mientras que Pj)i‘“ = ... = Pn;r( ) 0.
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Es fécil verificar que el periodo es el mismo para todos los elementos de una
clase de comunicaciéon. Entonces, para verificar que una cadena irreducible es
aperiédica, basta verificar que un algin estado tiene periodo 1.

Cuando el espacio de estados es finito, una cadena es irreducible y aperiddica

si y sélo si existe N > 0 tal que Pgﬁ\fy > 0 para todo z,y € E.

DEFINICION. Decimos que una cadena finita es regular si existe una potencia
de la matriz de transicién con todas las entradas positivas.

Puesto que la matriz PageRank con @ < 1 tiene todas las entradas positivas,
entonces es regular. Sin embargo, la cadena de Ehrenfest tiene periodo 2, por lo
que no es regular. Esta es la gran diferencia entre ambos tipos de cadenas.

El resultado méas importante que relaciona a las potencias de la matriz de
transicion con el vector de probabilidad invariante es el siguiente.

TEOREMA 2.6 (Teorema fundamental de convergencia). Si P es la matriz de
transicion de una cadena de Markov irreducible, aperiddica y positivo recurrente y
7 es la unica distribucion invariante de P entonces Zy !P;‘y — 7Ty| — 0 conforme
n — oo.

Utilizando el hecho de que si una sucesién converge también converge la sucesién
de sus promedios, vemos
1m:y+Pz,y+"'+P;;y

lim = Ty.
n—o00 n

Por lo tanto la entrada y del vector de probabilidad también se puede interpretar
como la fraccién esperada asintética de veces en que la cadena se encuentra en el
estado y, independientemente de dénde comenzo.

Hay dos tipos de prueba muy distintos para este resultado. EIl primero se
enfoca en espacio de estado finito y utiliza el hecho de que la matriz de transicién
de la cadena serd regular, asi como un argumento de punto fijo. El segundo se
basa en una idea probabilistica conocida como acoplamiento, en el que se prueba
que para dos cadenas de Markov independientes que satisfacen las hipétesis del
teorema toman el mismo valor en un tiempo aleatorio y finito.

A continuacién exploraremos la prueba del teorema fundamental de conver-
gencia en el caso de espacio de estados finito. Comenzaremos con el caso en que
no s6lo P es regular sino que ademaéas P tiene todas las entradas positivas.

Definimos a

= min P, ,.
P z,ycE Ty

Puesto que el espacio de estados es finito, el minimo anterior estd definido y es
positivo. Sea y un vector columna. Probaremos a continuacién que las entradas de
Py se van acercando entre si conforme n crece. Para esto, sean m,, el minimo de las
entradas de Py y M™ el maximo. Primero mostraremos que mg < m; < My < My
y que M7 —my < (1 —2p)(My — myg). La idea, que se puede justificar con célculo
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diferencial, es que para maximizar el promedio j P; ;y; sujeto a la restriccién de
que max;y; = Mo y min; y; = mo formamos un vector con todas sus coordenas
iguales a My salvo una, que serd igual a mgy y que colocamos con el menor peso
posible, es decir, en la coordenada j tal que P;, j =min; P ; > p. Asi, obtendremos

ZPinj < Mo(]. — Pz’l) + mOPiyl- < MO (]. - p) + mop.
J

Con un argumento similar se obtiene

Z-Pi,jyj > mo(1l — p) + Mop
J
y por lo tanto
M1 — ma S (1 — 2p) (Mo — mo)

como se anuncio.
Al aplicar lo anterior con P" "'y en vez de y, vemos que mg < my < --- <
mnSMnSSMlgMquue

(M, —my) < (1—2p)" (Mo —mg) — 0.

Por lo tanto, P"y converge a un vector con todas sus entradas iguales.

Si aplicamos lo anterior al vector e; que tiene 1 en la entrada j y cero en
cualquier otra entradas, vemos que (P"e;), (la i-ésima entrada de P"e;) es igual a
P}, que esta cantidad converge a u; para cualquier 7. Notemos ademds que m; > 0
y por lo tanto u; > 0 para toda j. Asf, la matriz P™ converge a una matriz cuyos
renglones son todos iguales al vector cuya entrada j es u;. Finalmente, notamos
que u es una distribucién invariante. Es una distribucién pues, como el espacio de
estados es finito, entonces

1= lim P = lim P, i
i D Pl =)l Ply=)
J J j
Por otro lado, puesto que P*T! = P"P, vemos que
. 1 . .
u; = lim Pl-”;r = lim (P"P), = lim PPy j ZukPk,J

n—o0 ’ n—o0 ’ n—o0

Finalmente, aprovechamos la ocasién para dar otra prueba de por qué en este
caso, hay a lo mas una distribucion invariante. Si v es una distribucién invariante
entonces vP" = v y por otro lado

vj UP" Z v Pl — Z ViU = Uy

Por lo tanto u = v.
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Histogram of apariciones

Frequency
2000 3000 4000
1 1

1000
I

FicUrA 6. Histograma de una muestra del tiempo de apariciéon
de la palabra 101

7. Cadenas absorbentes

Consideremos el siguiente problema: se tiene un abecedario fijo (digamos para
fijar ideas igual a {0,1}) con cuyos elementos conformamos palabras (como podria
ser 1001). Si se extraen las letras del abecedario con igual probabilidad y con
independencia entre las extracciones, ;Cuanto se debe esperar para que aparezca
la palabra escogida? Més generalmente: ;con qué probabilidad aparece la palabra
por primera vez al observar n letras? Un caso particular de este problema es cuando
la palabra tiene s6lo una letra (digamos p); el tiempo de aparicién de la palabra es
entonces geométrico de parametro p.

El siguiente cédigo toma una muestra de tamano 10000 de la distribucion
del tiempo de apariciéon de la palabra 101 cuando las letras 1 y 0 aparencen con
probabilidades 2/3 y 1/3. Se obtiene el histograma de la muestra (ver la Figura 6)
asi como la media empirica, que result6 ser de 8.26.

# Obtener una muestra de tamafio 10000 del tiempo de aparicién de la palabra 101.

# 1 aparece con probabilidad 2/3
p<-2/3 #Probabilidad de que salga 1

N<-10000 #Tama\“"no de muestra

llevo<-0 #Cu\’antas simulaciones 1llevo

apariciones<-c() #En que tiempos aparecen las palabras

while(llevo<N){ #Mientras no lleve N simulaciones
llevo<-llevo+l #Realizo una mas
n<-0 #Inicializando a $n$ en cero
palabraAleatoria<-c() #Con un nuevo repositorio de letras

aux<-0 #Y una variable que indica si ya he visto la palabra
while (aux==0){ #Mientras no haya visto la palabra
n<-n+l1 #Espero una unidad de tiempo
palabraAleatoria<-c(palabraAleatoria,rbinom(1l,size=1,prob=2/3)) #0btengo
una letra nueva
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if (n>2){if (palabraAleatorial[n-2]==1 & palabraAleatoria[n-1]==0 &
palabraAleatoria[n]==1){ aux<-1 }}
} #Si he visto la palabra, la variable aux nos sacar\’a del ciclo
apariciones<-c(apariciones ,n) #Agrego el nuevo tiempo de aparici\’on
}
hist (apariciones)
mean (apariciones)

LisTinG 2.8. Palabra.R

Consideremos otro problema similar: para el laberinto de la Figura 1, si la rata
comienza su trayectoria en el cuarto i, ;Cual es la cantidad de tiempo esperada
para que llegue a la celda 97 Estas preguntas pueden responderse con la teoria de
cadenas de Markov absorbentes. Ya hemos discutido por qué el segundo problema
esta relacionado con cadenas de Markov, en particular con una cadena de Markov
en la que el estado 9 es absorbente. El primero pareceria no estarlo. Sin embargo,
asociemos una cadena de Markov a nuestro ejemplo particular.

El espacio de estados es {0,1,2,3,4} donde el estado i representa que han
aparecido ¢ letras correctas de la palabra 1001. El estado 4 serd absorbente y
nos senalard que ya ha aparecido por primera vez la palabra. Si p representa la
probabilidad de que la enésima letra sea 1 y ¢ = 1 — p, la matriz de transicion de
la cadena sera

qg p 0 0 0
p 0 g 0 0
P=|p 0 0 q O
qg 0 0 0 p
00 0 0 1

Si por ejemplo tuvieramos la palabra 11011, la matriz de transicién seria

o K OoOr R
oo ocoooT
cooRVR T O
S oo OO
oo OO O
_8 0 0 oo

puesto que si tengo 2 letras correctas es por que estoy viendo la palabra 11; si sale
1 seguiré observando 11 mientras que si sale 0, observaré 110.

Ahora interpretemos una entrada particular de la matriz de transicién: Py,
para la palabra 1001. Es la probabilidad de que la cadena se encuentre en el estado
al tiempo n, que equivale a que la cadena se haya absorbido en 4 antes del tiempo
n, que significa a su vez que haya aparecido la palabra a lo més en la enésima
extraccion.

Pasemos a la abstraccién comun de ambos problemas.
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DEFINICION. Una cadena absorbente es una cadena absorbente con espacio
de estados finito, que tiene al menos un estado absorbente y que desde cualquier
estado se puede acceder a un estado absorbente.

Los estados de una cadena absorbente los podemos dividir en no-absorbentes
(T, pues son transitorios) y absorbentes (A). Si los enumeramos del 1 al n y
ponemos al final a los absorbentes, la matriz de transicién tomara la forma

_(@ R
r=(5 1)

donde @ es una matriz de tamafio m x m (m < n) en donde se encuentran las prob-
abilidades de transicién entre estados no-absorbentes, R es una matriz de tamano
m x n correspondiente a las probabilidades de transicién de estados no-absorbentes
a absorbentes, mientras que I es la matriz identidad de tamafo (n — m) x (n — m).
Si 4 es no-absorbente y j es absorbente, la entrada F;"; representa la probabilidad
de que comenzando en 7 la cadena se haya absorbido por el estado j antes del
instante n, mientras que » j<m Q7 ; representa la probabilidad de que comenzando
en 7, la cadena todavia no se haya absorbido en el instante n. Es usual escribir
> Q="
Jj<m
donde 1 es un vector columna de longitud m y entradas iguales a 1.

PROPOSICION 2.11. Sea
ro > {n>0:X,€A} =10
~ |min{n>0:X, € A} en otro caso

el tiempo de absorcion de una cadena absorbente. Entonces P;(T < o0) = 1 para
toda i € E ylim,_ ., Q™ = 0.

En el enunciado anterior, 0 es una matriz de m x m cuyas entradas son iguales
a cero.

DEMOSTRACION. En la Proposicién 2.10 hemos probado que P;(T < oco) = 1
puesto que T es una clase abierta y finita. Por otra parte, si i,j < m:

0="Py(T =00) = lim P{(T >n) > lim P;(,X,, = 5,7 >n)= lim Q.
n—00 n—o00 n— 00 ’
]

Ahora mostraremos un resultado que nos permite encontrar la cantidad esper-
ada de visitas a los diversos estados absorbentes.

PROPOSICION 2.12. La matriz I —Q es invertible. Si M = (I — Q)" entonces

Mi,j:I+Q+Q2+Q3+"':Ei<len—j>-
n=0
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Sit; =E;(>," o 1x,er) entonces

t=M1.
Si B, j = Py(Xr = j) entonces

B=MR.

DEMOSTRACION. Debemos mostrar que si (I — Q) z = 0 entonces 2z = 0. Sin
embargo, si x = Qz entonces z = Q"x — 0, por lo que x = 0. Por otra parte,
puesto que

I-Q(+Q+Q"+--+Q") =I1-Q"",
al multiplicar por M = (I — Q)fl vemos que
1+Q+ Q>+ +Q"=M (I -Q"")
y al tomar el limite conforme n — oo, vemos que
Mij=I+Q+Q*+Q°+

Al utilizar el teorema de convergencia dominada, vemos que
ILTES SRR ot |
n

Notemos que

SN 1x,- =) 1x.er

JET n
es la cantidad de veces que X estd en el conjunto T, que es igual al tiempo de
absorcién. Al sacar esperanza, vemos que

ti=E(T) =Y M;; = M1.
J

Finalmente, notemos que

Pi(Xr =j) ZZP Xr=4T=n,X,_1=2)

n jeT

=>> PPy

n keT

=Y M; Py ;.

keT
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Apliquemos ahora la proposicién anterior al tiempo de apariciéon de la palabra
101 cuando p = 2/3. La matriz de transicién y la matriz @ asociadas son:

1/3 2/3 0 0
0 2/3 1/3 0 1/32/3 0
13 0 o0 2| Y Q@=(0 2313

0 0 0 1 1/3 0 0

P =

El siguiente c6digo nos permite calcular numéricamente la matriz fundamental, la
matriz B y el vector t.

P=matrix (0,4,4)
P[c(1,3,10)]1<-1/3
P[c(5,6,15)]1<-2/3
P[4,4]<-1
Q=P[1:3,1:3]
R=P[1:3,4]
I=diag(1,3,3)
M=solve (I-Q)
uno=matrix (1,3,1)
t=M)%*%uno

B=M%=*%R
LisTING 2.9. PalabraFundamental.R
Se obtiene
2.25 4.50 1.50 8.25
M= 1075 4.50 1.50 y t=16.261,
0.75 1.50 1.50 3.75

mientras que la matriz B tiene obviamente las entradas iguales a 1. Notemos que
el tiempo esperado para la aparicién de la palabra coincide (a nivel numérico) con
el obtenido por simulacién con el cédigo Palabra.R.

En el caso de la rata y el laberinto de la Figura 1, se utilizé el cédigo siguiente
para determinar la matriz fundamental M y al vector t.
P=t (matrix(c(0,1/2,0,1/2,0,0,0,0,0,1/3,0,1/3,0,1/3,0,0,0,0,0,1/2,0,0,0,1/

2,0,0,0,1/3,0,0,0,1/83,0,1/3,0,0,0,1/4,0,1/4,0,1/4,0,1/4,0,0,0,1/3,0,1/
3,0,0,0,1/3,0,0,0,1/2,0,0,0,1/2,0,0,0,0,0,1/3,0,1/3,0,1/3,0,0,0,0,0,1/2,0,1

/2,0),9) )
P[9,6]1<-0
P[9,8]<-0
P[9,91<-1 # Genera la matriz de transicil’on (absorbente) para la rata en un

laberinto

Q=P[1:8,1:8]
I=diag(1,8,8)
M=solve (I-Q)
uno=matrix(1,8,1)
t=M%x*%uno

LisTING 2.10. LaberintoFundamental.R
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Se obtuvieron los siguientes resultados numéricos:

3.00
2.00
1.50
2.00
1.50
1.00
1.50
1.00

3.00
3.62
2.62
2.37
2.25
1.62
1.87
1.37

1.50
1.75
2.50
1.25
1.25
1.25
1.00
0.75

3.00
2.37
1.87
3.62
2.25
1.37
2.62
1.62

3.00
3.00
2.50
3.00
3.50
2.00
2.50
2.00

1.50
1.62
1.87
1.37
1.50
2.12
1.12
0.87

1.50
1.25
1.00
1.75
1.25
0.75
2.50
1.25

1.50
1.37
1.12
1.62
1.50
0.87
1.87
2.12

18.00
17.00
15.00
17.00
15.00
11.00
15.00
11.00




CAPITULO 3

Procesos de renovacion

Retomaremos el ejemplo de contéos aleatorios del Capitulo 1 (Ejemplo 1.3).

Consideremos variables aleatorias independientes e idénticamente distribuidas
S1,59,... con valores estrictamente postivos. Podemos pensar en que S; es el
tiempo de vida de un componente crucial para el funcionamiento de cierto sistema
y que al fallar se debe reemplazar. Los tiempo de reemplazo seran

To =0, leSh T2:S1+SQ,....

Por otra parte la cantidad de componentes que han fallado hasta el tiempo t seria

o0
Ny=min{n:T, >t} = Z nly, <t<Th-
n=0
A este modelo general se le llama modelo de renovacién. La sucesién S serd la
sucesion de tiempos de vida, la sucesién T la de tiempos de renovacion y
la sucesion N sera el proceso de contéo asociado.
Hay un par de procesos adicionales que son ttiles e interesantes: el proceso de
tiempo residual (hasta el préximo reemplazo) es

Ry =Tn,41 — 1,

el proceso de edad es

At =t— TNt.
Su suma es el proceso de tiempos totales
Lt - SNt_;,_l.

En la Figura 1 se ilustran las definiciones asociadas a los procesos de renovacion.

Imaginemos ahora que en vez de cambiar al componente crucial en cuanto falla,
se realiza una revisiéon diaria en la que se ve si se cambia o no. Entonces es mas
conveniente medir el tiempo en dias en vez de continuamente. En términos del
modelo, se puede imponer simplemente que el tiempo de vida S; sea una variable
aleatoria con valores en {1,2,...} y las definiciones tienen sentido como las hemos
puesto, salvo que R,,, A, y L., con n € N, toman valores en N y determinan a los
procesos R, Ay L. En este caso hablamos de un proceso de renovacién aritmético.

51
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FiGuRrA 1. Ilustracién de las definiciones de proceso de renovacion

En este capitulo se hard una introduccién a los procesos de renovacién. Se
enunciaran los resultados tanto en el caso general como en el aritmético, pero las
justificaciones se haran en general en el caso aritmético.

EJseEmpLo 3.1. Imaginemos la trayectoria de la rata en el laberinto de la Figura
1, que hemos modelado mediante una cadena de Markov. Supongamos que inicial-
mente le damos de comer a la rata en la casilla central y que, al terminar, la rata
se va a dar un paseo aleatorio. Cuando regresa a la casilla central, encontrard la
comida de nuevo dispuesta. En este caso, nuestros tiempos entre sucesos S; seran
la cantidad de pasos entre dos comidas de la rata y nuestros tiempos de reemplazo
(o de renovacién) serdn los instantes de las visitas sucesivas de la rata a la casilla
central. La variable R,, se puede interpretar como la cantidad de tiempo que le
falta a la rata, después de n pasos, para volver a comer. La variable A, es la
cantidad de tiempo que lleva la rata sin comer al paso n mientras que L, es la
cantidad total de pasos que pasard la rata sin comer desde la tltima vez que comid
anterior al paso n, hasta la siguiente vez que lo hara. No es completamente trivial
verificar que la situacién descrita corresponde a un fenémeno de renovacién, pues
no hemos discutido por qué los tiempos entre las visitas sucesivas de la rata a la
casilla central conforman una sucesién de variables independientes e idénticamente
distribuidas. Sin embargo, la propiedad de Markov fuerte nos permite ver que asi
es.
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El tipo de preguntas a las que responde la teoria de renovacién en este contexto
son las siguientes: Al instante n: jcudntas veces ha comido la rata? ; Qué pasa
conforme n — c0? j Qué pasa en promedio? ; Cudl es la distribucién del tiempo
que le falta para volver a comer (R,,)? j Qué le pasa a esta distribucién conforme
n — 0o? ;jCudl es la probabilidad de que al paso n la rata coma? ;Qué pasa con
dicha probabilidad conforme n — co?

El ejemplo anterior es caso particular de uno mucho mas general: si 0 = Ty <
Ty < --- son los instantes sucesivos en que una cadena de Markov recurrente visita
a su estado inicial, que fijamos igual a x, entonces las variables T; — T;_; son
independientes e idénticamente distribuidas por lo que conforman un fenémeno
de renovacién. Si Xo = y # z, entonces la distribucién de S; es distinta a la
de S5, S3,..., aunque ain asi son iid. En este caso hablamos de un proceso de
renovacién demorado.

EJEmMPLO 3.2 (El proceso Bernoulli). Se trata de un proceso de renovacién
aritmético en el cual los tiempos entre sucesos tienen distribucion geométrica:

P(Si=k)=p(1-p)""

parak = 1,2,.... En este caso particular se pueden calcular las distribuciones de los
procesos asociados al fenémeno de renovaciéon. Ademds, admite una interpretacién
adicional: sean Bj, Bs, ... variables aleatorias Bernoulli de parametro p y sean

To=0 y Thy1=min{i>T,:B;=1}.

Entonces T es un proceso Bernoulli en el sentido de que la sucesién (T,4+1 — T5,)
es iid con distribucién geométrica (concentrada en {1,2,...}) de pardmetro p.

Comencemos con la distribucién de T;,: de acuerdo a nuestra interpretacion,
T, es el tiempo en el que ocurre el enésimo éxito de la sucesién Bernoulli B, por
lo que T, es binomial negativa de pardmetros n y p con valores en {n,n+1,---},
es decir:

BT =) = () -n

Al proceso de contéo asociado también se le puede calcular la distribucién
exacta: notemos que N, es la cantidad de unos en la sucesién By, ..., By, y como
estas variables toman los valores cero y uno, pues N,, = Z?:l B;. Asi, N, tiene
distribucién binomial de pardmetros n y p. Esto ademds implica que E(N,,) = p/n
y por lo tanto E(N,/n) — p conforme n — 00, que es un caso particular del
teorema de renovacién elemental que demostraremos més adelante.

Respecto al proceso de tiempos resiguales, notemos que

{R, =k} ={Buy1=0,...,By11-1=0,Bp =1}
de donde concluimos que

P(R,=k) =p(1—p)"' k=12....



54

En otras palabras, R, es geométrica de pardmetro p con valores en {1,2,...}.
Un argumento similar funciona para el proceso de edad pues

{4, =k}={B,=0,B,-1=0,...,Bp_11=0,B,_p =1}
por lo que
P(A, =k)=p(1—p)* k=0,1,....
En otras palabras, A, es geométrica de pardmetro p con valores 0,1,2, .. ..

De hecho, las variables A,, y R,, son independientes pues al ser las B; indepen-
dientes vemos que

P(A, =j,R, =k)
=P(B,=0,...,B,_j-1=0,B,—j =1,Bp11 =0,...,Bptx-1=0,Bpyr = 1)
=P(B,=0,...,By_j_1=0,B,_; =1)P(By41 =0,...,Bptx—1 =0,Bp1, = 1)
=P(A, =j)P(Rn = k)

Finalmente, la distribucién del proceso de tiempos totales se puede entonces
calcular; recordemos que la suma de dos geométricas independientes es binomial

negativa. Sélo hay que tener cuidado pues este cdlculo asume que ambas variables
geométricas toman valores en el mismo conjunto. El resultado es que

P(L,=m)=mp>(1—p)™'. m=12,...

A continuacién exploraremos otra liga entre cadenas de Markov y procesos de
renovacion.

PROPOSICION 3.1. En procesos de renovacidén aritméticos, el proceso de tiem-
pos residuales es una cadena de Markov. Si M es el supremo del soporte de la
distribucion de S1, la matriz de transicion de R es irreducible en {i € N:i < M}.
R es aperiddica si {n > 1:P(S1 =n) > 0} ¢ hN para toda h > 2.

Un proceso de renovacién aritmético aperiédico es aquel para el cual se satisface
la anterior condicién para que R sea aperiddica.

DEMOSTRACION. Consideremos a la funcién

f(”){z’—l i>1

r i=1"
Al definir a la sucesién R medante
RO =1 y Rn+1 = f(Rn7Sn+1) )

vemos que R es una cadena de Markov con matriz de transicién

p 1 i>1,j=i-1
YPS =4) i=1 '
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Sin embargo, puesto que la sucesién S es iid, R y R tienen la mismas distribuciones
finito-dimensionales en el sentido siguiente:

IP’(RO:iO,...,Rn:z’n):P(Rozim...,ﬁn:in).

En efecto, si ig,...,in € {1,2,...} ey = 1 siysélosil € I C {0,...,n} e
iy =141 —1sil &1y digamos que I = {ly,...,l,;,} entonces

P(RO — o, Ry :in) :P(Silk :ilk,kgm)
=P(Sk =i,k <m)
— P(Ro = g, .., Rn = in).

Esto prueba que R es una cadena de Markov con matriz de transicién P.

Si M es el supremo del soporte de la distribucién de S; y M < oo, entonces
P(Sy =M) > 0y P(S; =n) = 0 para toda n > M. Entonces de 1 se accede a
M, a partir del cualse accede a M —1,...,1, por lo que {0,..., M} es una clase
de comunicacién, que de hecho es cerrada pues P(S; =n) = 0 para toda n > M.
Esto hace que la cadena en {1,..., M} sea irreducible. Si M = oo, entonces para
toda M existe n > M tal que P(S; =n) > 0, por lo que 0 se comunica con M via
n. Es decir, la cadena es irreducible en {0, 1,...}.

Si{n>1:P(S; =n)>0} ¢ hN para h > 2 entonces existen ny,ng, k1 y ks
naturales tal que n1ky = 1 + noke y tales que P(S1 = nq),P(S1 = n2) > 0. Vemos
entonces que es posible ir de cero a cero en ni1k; = naks 4+ 1 pasos y en nsks pasos,
por lo que el periodo de 1 es 1 y por lo tanto la cadena es aperiddica. O

La respuesta a cuantas veces a comido la rata al paso n se puede interpretar
en términos de N,, en el caso de procesos de renovacién aritméticos o de Ny en el
caso general. Los siguientes dos resultados nos permiten dar una posible respuesta:
para tiempos grandes, la variable V; se puede predecir deterministicamente.

PROPOSICION 3.2 (Ley fuerte de los grandes nimeros). Si p = E(S;) < oo
entonces N/t — 1/u casi sequramente

DEMOSTRACION. Por la ley fuerte de los grandes ntimeros, sabemos que T, /n —
1 casi seguramente. Notemos que si t € [T, T,,41) entonces
T, n__t _Tunn+l
nn+1 - N " n+1 n
Los extremos de la desigualdad convergen al mismo limite, u, conforme n — co de
manera casi segura. Por lo tanto Ny/t — 1/p. O

Nuestro siguiente resultado involucra a la llamada funcién de renovacion. Es
la funcién m : [0,00) — [0, 00) dada por m(t) = E(Vy).

PROPOSICION 3.3 (Teorema de renovacién elemental). Si p = E(S;) < oo
entonces m(t) /t — 1/p.
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La demostracién utilizard un resultado sobre camintas aleatorias conocido
como la identidad de Wald y que se prueba como una aplicacién de la teoria de
martingalas. Se trata de una generalizacién de la férmula E(T),) = nE(T}) al caso
en que n ya no es una cantidad fija sino aleatoria. En nuestro contexto, veremos
que

(4) E(TN,+1) = E(Ne + 1) E(T1) = E(N: + 1)
La demostracién en este caso particular es la siguiente: notamos que
{Ni+1=n}={Ne=n—-1}={T1 <t <T,}.

Se sigue que {N; + 1 > n} pertenece a la o-dlgebra generada por Si,...S, y es
por lo tanto independiente de S, ;1. Al aplicar el teorema de Tonelli (dos veces):

E(Tn,+1) = (le Nt+1T>
=K ZZli:NH_lSj

i j<i

=E 221 —N,+15;

i>7

=E| > 1n+1255;
i

=Y E(S;)P(N; +1 > j)
=pY PN, +12 )
= uE(N; +1).

PRUEBA DEL TEOREMA DE RENOVACION ELEMENTAL. Ocupémonos primero de
obtener una cota inferior. A partir de la identidad de Wald, vemos que

t <E(Tny41) <E(Ne+1)p

Por lo tanto

Notemos que
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Para obtener una cota superior, definimos a~5'i = 5; Ab. Con la notacién obvia,
notemos que T; < T; y que por lo tanto N; < N;. Ademas,

E(S Ab) BN, +1) =E(Ty, ) <t+b,
por lo que
E(Ny) t+b
< .
t - tE(Sl A\ b)

Al utilizar b = /%, el teorema de convergencia monétona nos dice que
E(Sl A \/%) — W,

por lo que

t+Vt 1

lim ————— .
S (B (S AVE) K
Podemos entonces deducir que

limwzl. O

t—oo L 7

1. La medida de renovacién en el caso aritmético

Continuaremos el estudio de procesos de renovacién al introducir a la medida
de renovacién. En realidad se introducira a partir de la funcién v dada por

Up =PEm, T, =n) =Y P(Tr, =n).

En términos de la rata en el laberinto, u,, es la probabilidad de que la rata coma
al instante n. El comportamiento asintético de wu, se conoce y es el objeto del
teorema de renovacién para procesos de renovacion aritméticos de Erdos, Feller y
Pollard.

TEOREMA 3.1. Para un proceso de renovacion aritmético, aperiodico y con
media finita:

. 1
lim u,, — —.
n—oo l[_,L

DEMOSTRACION. Primero probemos que el proceso de tiempos residuales R
tiene una distribucién invariante. En efecto, sean

Uy :P(Sl ZZ)//.L
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y P la matriz de transiciéon de R. Entonces
(mP); =Y miPi;
i

=it Py +mP1

P(S, >j+1 1 .
:(1u)pj+1’j+up(51:ﬁ
<
:P(Sl >J) = ;.
7]

Al ser la cadena irreducible y aperiédica y con una distribucién invariante, es
positivo recurrente y se puede aplicar el teorema fundamental de convergencia

para concluir que
1

lim P = —.
n—00 ’

Por otra parte, podemos calcular explicitamente P'; pues
Py =P(R, = 1) =P(n =T, para alguna m) = u,,.

Asi, vemos que u, — 1/p conforme n — oo. O

2. La medida de renovacién en el caso continuo

Ahora presentaremos el resultado andlogo al teorema de renovacién aritméticos
en el caso de procesos no aritméticos. No se abordard la prueba pues depende de
resultados analogos al teorema fundamental de convergencia pero para cadenas de
Markov a tiempo discreto y espacio continuo (en este caso, el espacio de estados
del proceso de tiempos residuales es (0, 00)).

Sea S un proceso de renovacién no-aritmético, es decir una sucesion de variables
aleatorias independientes e idénticamente distribuidas con valores en (0,00) y tal
que no toman valores en 6N. Se puede pensar que S; es una variable aleatoria con
densidad. Sea T la sucesién de tiempos entre sucesos y N el proceso de contéo
asociado.

DEFINICION. La medida de renovacidn es la medida U en [0, 00) tal que
U([0,1]) =E(N;) =Y P(T,, <t).
n=1

Se utilizard la notacién U; para U([0,t]). En general, para procesos de reno-
vacién no aritméticos, la cantidad P(InT,, = t) es cero para casi toda t. Es por eso
que se utiliza la medida de renovacion en vez de la funcién de renovacién del caso
aritmético. En efecto, si [a,b] es un intervalo muy pequernio, puede que haya un
punto T}, en dicho intervalo, pero seria raro que hubiera més de uno. Por lo tanto
U([a,b]) = P(3n,T,, € [a,b]). El siguiente teorema puede entonces interepretarse
como es una extension del teorema de renovacién para procesos aritméticos.
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TEOREMA 3.2 (Teorema de renovacién de Blackwell). Para todo h > 0:

. h
Am Uiy —Up = m

3. La ecuacion de renovacion

La ecuacién de renovacién aparece en el calculo de algunas cantidades de la
teoria de renovacion. En general se trata de un andlisis al primero instante de ren-
ovacién al notar que el proceso T" dado por 0,75 — 11,75 —T4, - - - es un proceso de
renovacién idéntico en distribucién a Ty, Ty, 715, - -+ e independiente de T7. Ejem-
plos de su utilidad es que nos permite estudiar el comportamiento asintético de
las distribuciones de los procesos de tiempo residual, de edad 6 de tiempos totales.
Sin embargo, también se puede entender como una relaciéon de recurrencia para
cantidades de interés en teoria de renovacién. Nos concentraremos en el caso ar-
itmético, al ser técnicamente menos complicado, al comenzar con algunos ejemplos.
Escribiremos

pr =p(k) =P(S1 =k).

EJEMPLO 3.3. Sea uy la densidad de renovacién para un proceso de renovacién
aritmético:
up =P(3In > 0 tal que T, = k).
Escribiremos a dicha cantidad como u(k) cuando la tipografia lo requiera.
Notemos que up = 1, mientras que para k > 1, claramente P(Tp = k) =0y
por lo tanto:

ug = P(In > 1 tal que T,, = k)

k

= P(S =j,3n >0 tal que T, — j =k — j)
j=1
k

:ZIP’(Sl =4,3n >0 tal que T, = k — j)
j=1
k

=> p;P(En >0 tal que T, =k — j)

j=1

k
= pjur;
j=1
— E(u(k — 51)),

donde por supuesto se utiliza el hecho que por definicién u; = 0 si j < 0.
La ecuacién

ug = do(k) + E(u(k — 51))
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que también se escribe
up = 0o(k) + ZP; U—j

es la llamada ecuacién de renovacién para la densidad de renovacién.

EJEMPLO 3.4. Sea L,,n > 0 el proceso de tiempos totales de un proceso de
renovacién aritmético. Para r > 0, sea z(n) = P(L,, =r) paran > 0y z(n) = 0 si
n < 0. Notemos que si n < r entonces

z(n) =P(S1 =r) = p,.

Por otra parte, si n > r, nos fijamos en la primera renovaciéon 77 = Sy, que si
L,, = r es necesariamente es més chica que n. Entonces se obtiene:

ZPSI—.]’ n] ij n— ]
i<n i<n
La ecuacion de renovacion resultante es
Z(n) = lp<rpr + ijz(n - .]) .
J
EJEMPLO 3.5. Sea R, el proceso de tiempos residuales de un proceso de ren-

ovacién aritmético. Sea z(n) =P(R, =r)sin >0y z(n) =0sin < 0. El cdlculo
de R,, se puede dividir en dos casos, dependiendo de si S; < n o no:

z(n) =P(R, =7) = pptr + Z P(S1=r)z(n—r).

j=1

En general, la ecuacién de renovacién es la siguiente: dada una funcién b (tal
que b, =0 si n < 0) se busca una funcién z tal que z(n) =0sin <0y

)+ przin - ).
Jj<n
La solucién se puede encontrar al iterar la ecuacién de renovacion para escribir:
z(n) = b(n) + E(z(n — S1))
=b(n) +E(b(n —51)) + E(b(n — S — S2))
=b(n)+Eb(n —51)) +Ebn—S5; —53)) +E(b(n—S; — Sy — 53)) =

Puesto que b(n — T,,) = 0 si m > n, vemos que
ZE’ - m

y al sumar sobre los posibles valores de T;,, se obtiene

= ZZ b(n—x)P(T, =x) = Zuxbnfa:-
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Una vez establecida la relacién entre soluciones a la ecuacién de renovacion y
la densidad de renovacién, se tienen los elementos clave para probar el siguiente
resultado.

TEOREMA 3.3 (Teorema clave de renovacién en el caso discreto). Si z es
solucion a la ecuacion de renovacion

2(n) =b(n) + Y prz(n —j).
Jj<n
y b es sumable entonces z estd dada por z(n) = Y bx)u(n—z) y z(n) —
> . b(x) /i conforme n — oo.

DEMOSTRACION. Sélo hace falta verificar el comportamiento asintético de z.
Sin embargo, si b es sumable, puesto que u,, es una probabilidad, se tiene la cota

Zb(m) u(n —z) < Zb(x) < 00

y por lo tanto el teorema de convergencia dominada y el teorema de renovacién de
Erdés-Feller-Pollard (EFP) nos dicen que
lim z(n) = nli)ngoz b(x)u(n —x) = Zb(x) /1.

n—oo

O

Veamos ahora algunas aplicaciones del teorema de renovacion clave. En el caso
del tiempo total asintdtico, vemos que
lim P(Ry=7) = pria/n=P(S1 >7) /1,
xr
aunque en realidad esto ya lo sabiamos y lo utilizamos en la prueba del teorema
de renovacion de EFP.
Un ejemplo més interesante es el del tiempo total:
lim P(L, =7) =Y pe/p=rp/p.

n—o00
z<r



CAPITULO 4

Procesos de Poisson

Imaginemos la siguiente situacién: al tiempo cero (inicial) una serie de personas
contratan un seguro por el que pagan una prima. La compania de seguros tienen
entonces la obligaciéon de dar una compensacién econémica a los contratantes en
caso de que suceda un cierto evento llamado siniestro. En muchos casos, el monto
que debe pagar la compania por el siniestro también es aleatorio.

El modelo matemaético se realiza en dos etapas: primero nos enfocamos en los
instantes en que suceden los siniestros y luego en sus montos. Si 0 = Ty < T1 <
T5 < --- son los instantes en que acaecen los siniestros, se introduce al proceso de
contéo asociado N = (N, t > 0), donde N; nos dice cudntos siniestros han sucedido
al instante £, mismo que estd caracterizado por satisfacer las identidades

Ny = E N7, <t<Thyis
n

{Nt = TL} = {Tn <t< Tn+1}

(N, >n} ={T, <t}.

En general, un proceso de contéo es un proceso con trayectorias constantes
por pedazos que toma valores enteros y va incrementando de uno en uno. A
S; = T; — T;_1 se le llama i-ésimo tiempo interarribo. Es maés natural imponer
supuestos sobre N que sobre los tiempos T;. Los supuestos se pueden traducir
como sigue:

Incrementos estacionarios: La distribuciéon de Ny, — N, sélo depende
de s (en otras palabras, si los siniestros se presentan homogéneamente
en el tiempo, se tiene la igualdad en distribucién; en particular no hay
fenémenos estacionales).

Incrementos independientes: Si 0 = tg < t; < --- < t,, las variables
Ny, — Niy, ...y Ny, — Ny, _, son independientes. (Asi, el que ocurran
siniestros por la manana no afecta lo que ocurre por la tarde.

DEFINICION. Un proceso de Poisson es un proceso de contéo con incremen-
tos independientes y estacionarios.
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Esta definicién captura la idea de que el riesgo de que ocurra un siniestro se dis-
tribuye homogéneamente tanto en el tiempo como en la poblacién. EIl primer
objetivo de este capitulo es mostrar como una tal definicién tiene implicaciones
practicas y tedricas que hacen que podamos hacer calculos con el proceso de Pois-
son que no es posible hacer explicitamente con otros modelos. En efecto, hay
una definicién alternativa de proceso Poisson que automaticamente nos deja hacer
calculos.

TEOREMA 4.1. Un proceso de contéo N es de Poisson si y sdlo si existe
A > 0 tal que los tiempos interarribo son variables exponenciales independientes
de parametro \.

Al pardmetro A se le conoce como intensidad del proceso de Poisson. Antes de
probar el teorema, vedmos algunas de sus consecuencias. La primera es que N; es
el proceso de contéo asociado a un proceso de renovacién con tiempos interarribo
exponenciales. Por lo tanto, se satisface la ley fuerte de los grandes nimeros en
particular. Ademds, se pueden calcular explicitamente las distribuciones al tiempo
t del proceso de edad, de tiempos residuales y de tiempos totales, atin en el contexto
de procesos a tiempo continuo.

Una segunda consecuencia es que se conoce la distribucién exacta del proceso
de contéo.

PROPOSICION 4.1. Sea N un proceso de Poisson de pardmetro X. Entonces Ny
tiene distribucion Poisson de pardmetro At.

DEMOSTRACION. Puesto que los tiempos interarribo son exponenciales inde-
pendientes de pardmetro A, entonces T}, tiene distribucién I' de parametros A\ y n
y es independiente de S,y1. Asi, vemos que la densidad conjunta de (T}, Sp+1)
esta dada por

)\ntn—le—)\t e—)\s

n—1! A

an75n+1 (t’ 8) =

Por lo tanto:

P(N; = n) = P(T, < t < Tp + Sps1)

/ / an; n+1 (t17 )ds dtl
© )\ntn 1 —>\t1

/ / A M ds dty
t n— 1!

1,—X
_ / A"t? e At—t)
0 n—1'

Y )"

n'
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Como corolario, podemos calcular las distribuciones finito dimensionales de V:
sean 0=ty <t1 <---<tp, yng=0<n; <--- <n,, por lo que

P(A&l :an,...,Ian :ZTMn)
= ]P(Ntl — Nto =M1 —Ng,. .. 7Ntm — Ntm—l = Nm — Tlm_l)

y al utilizar la independencia de incrementos

m

= ]‘—[ED(]\/}1 — Nti71 =N; — 7712'71)
i=1

asi como su estacionariedad
(N,

i1 — n; — ni*l)

L

@
Il
-

e~ Ati—ti—1) ()\ (t; — ti71>)’ﬂi*ni71

(’I’Li — ni_l)!

=T

1

.
Il

Ya con esto, podemos hacer un primer cédigo para simular al proceso de Pois-
son. De hecho se trata simplemente del cédigo Poisson.R que ya se habia intro-
ducido: se trata de generar variables exponenciales e irlas sumando hasta que se
sobrepase el tiempo ¢:

lambda=10 # Intensidad

xi=rexp (1, lambda) # xi representa el tiempo del primer siniestro
T=c(0,xi) # E1 vector T ird acumulando los tiempos en que van
ocurriendo siniestros
N=0 # N nos dira cuantos siniestros ocurren hasta el tiempo 1
while (xi<1){ # Mientras no se haya sobrepasado el instante 1
N<-N+1 # Aumentamos el nimero de siniestros
xi<-xi+rexp(1,lambda) # Vemos el tiempo en el que ocurre el siguiente
siniestro
T=c(T,xi) # Aumentamos un evento temporal
}

plot (T,c(1:(N+2)))

LISTING 4.1. Poisson2.R

Para ver otro esquema de simulacién para el proceso de Poisson, en el que el
ciclo while se substituye por un ciclo for, haremos algunos célculos adicionales. La
primera pregunta es: si sabemos que han ocurrido n siniestros en [0,¢], jen dénde
han caido estos saltos? Para responder a dicha pregunta, calcularemos la densidad
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conjunta de Ti,...,T, dado que N; = n. Puesto que

]P)(Tl € dtl,...,Tn € dtn,Nt = TL) = ]P(Tl edty,..., T, edty,t, <t <t, +Sn+1)
— )\efA(tiftifl) 67}\(15715”)

i=1

vemos que la densidad condicional buscada es:

n
!
— “A(timtioa) o= At—ta) M
Iro T Ne=n(t1, s tn) = };[1)\6 Ve O e
n'
T
Se concluye que condicionalmente a N; = n, las variables T1,...,T, los valores

ordenados de n uniformes independientes en [0,¢]. Por lo tanto, hay otra manera
de simular la trayectoria de un proceso de Poisson en el intervalo de tiempo [0, ¢]:

1<-10 % Intensidad

t<-3 % Umbral de tiempo

N<-rpois(1,1*t) % Cantidad de siniestros

u<-runif (N)*t % Tiempos en que ocurren (desordenados)
u<-sort (u) % Tiempos de siniestros ordenados

plot (u)

LISTING 4.2. PoissonConUniformes.R

Antes de continuar con el modelo completo de reclamaciones en una compania de
seguros, veremos algunos procesos estocdsticos importantes asociados al proceso
de Poisson. Se definird a

Fr=0(Xs:5<t).

EJEMPLO 4.1 (El proceso de Poisson compensado). El proceso de Poisson com-
pensado es el proceso My = N; — A\t. Este proceso satisface la siguiente propiedad:
sis<t

E(M; | Zs) = M.
En efecto, al notar que M; = M; — My + M, vemos que
HE(A4} |52;) ::HE(AA% _'A4g |é¥;) +_HE(A4$ |52;) ::IE(AA% _'A4;) +'A4$ ::A4$

puesto que My — M, tiene media cero y es independiente de .Z,.
La propiedad anterior nos dice que M es una martingala. Las martingalas son
fundamentales en el desarrollo de la probabilidad moderna.

EJEMPLO 4.2 (La martingala exponencial). Consideremos al proceso

B, = e—th+t>\(1—e*q).
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Este proceso también es una martingala. Para verificarlo, primero calculemos

> —At n
]E(equt) — Ze’qne ('M) — e MpAte T _ —tA(1meT?)
n!
n=0

Luego utilizamos la independencia entre Ny — Ny y %, para obtener:
E(E; | %) = et)‘(l_eiq)e_qNS]E(e_’I(N‘_NS) ‘ﬁs)
_ etA(l—e*q)67qN56—(t—s)A(1—e*q)
= E,.

Una consecuencia del calculo de la transformada de Laplace de N; es que
podemos calcular la esperanza y la varianza de N;: si definimos

pelq) = E(e7Nt) = 7212,
y derivamos bajo el signo integral cuando g > 0, se obtiene
9pi(q)

t(q) (—)\te_q) = = —E(Nte_th) )
dq
Luego el teorema de convergencia mondtona nos permite ver que

Al derivar dos veces se tiene que para g > 0:
—q\2 _ 0 3
pe(a) (Ate™)" + pi(q) Me™ = %tq(q) =E(NZe™®™),

por lo que el teorema de convergencia mondtona nos dice que
E(N?) = (M) + At.

Finalmente, se obtiene
Var(N;) = At.

Continuaremos ahora con el modelo de las reclamaciones en una compania de
seguros: es natural que los montos de los siniestros son independientes entre si y de
los tiempos en que acontecen. Por lo tanto se plantéa el siguiente modelo completo:

(1) Los tiempos en que acontecen los siniestros tienen como proceso de contéo
asociado a un proceso de Poisson N. Sea A su intensidad.
(2) Los montos de los siniestros son variables aleatorias independientes e
idénticamente distribuidas &7, &3, . . ..
Sea S, = & + -+ + &, la sucesién de sumas parciales asociada a los montos de
los siniestros. Entonces, al tiempo %, el monto total que ha sido reclamado a la
compania de seguros es

Xy =8y = > &

i< N,
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Al proceso X se le conoce con el nombre de proceso de Poisson compuesto. A
la distribucion de &; se le conoce como distribucién de salto de X y al parametro
de N se le conoce como intensidad de X. El siguiente cddigo permite simular al
proceso de Poisson compuesto cuando la distribucién de salto es la de 100,000 veces
una Beta de pardmetros 1/2 y 1/2. La idea es modelar una situacién en la que es
mas probable que los montos de los siniestros sean o muy pequenos o muy grandes
(hasta el tope de 100,000 que podria ser la suma asegurada). El resultado se puede
apreciar en la Figura 1

lambda<-10 # Intensidad

s<-rexp(1,lambda) # s representa el tiempo del primer siniestro

x<-100000*rbeta(1,1/2,1/2) # x representa el monto del primer siniestro

T<-c(0,s) # E1 vector T ird acumulando los tiempos en que van
ocurriendo siniestros

X<-c(0,x) # X ird acumulando los montos de los siniestros

N<-0 # N nos dird cuantos siniestros ocurren hasta el tiempo
1

while (s<1){ # Mientras no se haya sobrepasado el instante 1
N<-N+1 # Aumentamos el nimero de siniestros

s<-s+rexp(1l,lambda) # Vemos el tiempo en el que ocurre el siguiente
siniestro
x<-100000*rbeta(1,1/2,1/2) # Calculamos su monto

T<-c(T,s) # Aumentamos un evento temporal
X<-c(X,tail (X,1) +x) # Agregamos el monto de la reclamacién
}

plot (T,X)

LisTING 4.3. PoissonCompuesto.R

Se pueden hacer calculos paralelos a los del proceso de Poisson en el caso Poisson
compuesto. Por ejemplo, calculemos la media y varianza de X;: si p = E(S7) y
2 = Var(S1) son finitas entonces

oo

oo
= ZE(Sfll(Nt:n)) = Z (no? +n® 2) P(N; =n) = E(O’QNt + /LQN,?) <0
n=0
ya que las variables Poisson tienen momentos de cualquier orden. La media estéd
dada por

E(Xe) =Y E(SPl(n—n)) = > nuP(N; = n) = Xty = E(N;) E(Sy).

Asi, también se tiene que

Var(X,) IE(]E( (Sn, — Aut)? ‘Nt))
IE( ( (Sn, — Nupt)? + (N — Apat)? ‘Nt))
E(Nta (N, — )\t)2>

o2\t + p2 At
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FiGuraA 1. Trayectoria de un proceso de Poisson compuesto

Las igualdades anteriores también se pueden interpretar como un caso partic-
ular de las identidades de Wald.

Continuaremos ahora con un anélisis del Teorema 4.1. Primero probaremos
que un proceso de contéo con tiempos interarribo independientes y exponenciales
de parametro \ tiene incrementos independientes y estacionarios.

Sean S1,959,... exponenciales independientes de parametro A, T' las sumas
parciales asociadas dadas por Ty = 0,7, = S1+ -+ S, y N = (Ni,t > 0) el
proceso de contéo asociado dado por

Nt = : anrL§t<Tn+1'

Consideremos al proceso Nt dado por N = N;, , — N;. Este proceso es un proceso
de contéo. Sus tiempos interarribo son

t t t
Sl = TNt+1 - t,Sg = SNtJ,_Q,S?) == SNt+3a PEPE
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Al descomponer respecto al valor de N; vemos que

P(Si > tl,Sé > to,. .. ,S,t.b > tn)

= ZP(Nt = m,Sm+1 —t> t]_,Sm+2 > tg, ey Sm+n > tn)
m

= Z]P(Tm <t< Tm+5m+1,Tm+Sm+1 —t> tl,Sm+2 > t2,...,Sm+n > tn)

m

= P(Tp <t < T+ St T + Smg1 — > 61) P(Smuya >ty o, S > 1)
m

Al condicionar sobre el valor de Tj,, su independencia con S,,+; y utilizar la
propiedad de pérdida de memoria para S7, vemos que

P(T,, <t <Ty+ Sm+1,Sm+1 —t > t1)
=E(E( 17, <t<Tp+Smi1 LTt Somsr—t>ts ‘ Ty))
= E(leqe*/\(t*T")) e M
Sin embargo, al utilizar ¢t; = 0, nos damos cuenta de que
P(N; = m) = P(Ty, <t < Ty + S1) = ]E(lT”LSte_’\(t_T")) ,
por lo cual se deduce que

P(St > 1,85 >ta,..., S, >t,) = 3 P(N; =m)e Me M2 emMn,
m

Se deduce que los tiempos de salto de N son exponenciales independientes de
pardmetro A. Se puede concluir que N? tiene las mismas distribuciones finito-
dimensionales que I, es decir, que si 0 =ty < t; < --- entonces

P(Ny, =ma,..., Ny, :mn):IP’(Ntt1 :ml,...7Nttn :mn).

(Esto se verifica al expresar los eventos anteriores en términos de los tiempos in-
terarribo.) En particular, N tiene incrementos estacionarios. Ahora veamos que
N tiene incrementos independientes. Para esto, consideremos al evento

A={Ns, =ki,...,Ns,, =km},
donde s1,...,5, <t. Al descomponer sobre el valor de N; se obtiene
P(A, Ny =m,S] > t1,55 > ta,...,Sh > t,)
=Y P(A, Ty <t < Ty + Sngt, T + Sengr — £ > 1) P(Smuya >ty Snn > ).

Sin embargo, como el conjunto AN{N; = m} se escribe en términos de Sy, ..., Sy,
y de {N;y = m}, podemos repetir el argumento anterior para verificar que

P(A,Tm <t<Tm,+ Sm+1aTm + Sm-‘rl -t > tl) = IP(A N {Nt = m}) e_Atl.
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Por lo tanto,

P(A, Ny =m,S; > 1,55 > to,..., S, > t,)
=P(A, N, =m)P(S] > t1,55 > ta,..., S, > t) .

Lo anterior implica que N{ es independiente de Ng,,..., Ny Si 81,...,8n <t,y
por induccién se puede probar entonces que N tiene incrementos independientes.
Asi, N es un proceso de contéo con incrementos independientes y estacionarios.

Consideremos ahora un proceso de contéo con incrementos independientes y
estacionarios y veamos que se trata de un proceso de renovacion con tiempos inter-
arribo exponenciales. De la propiedad de incrementos independientes y estacionar-
ios, podemos inmediatamente verificar que T3 tiene una distribucién exponencial.
En efecto, notemos que

P(Tl >t 4 8) = P(Nt = O,Nt+s — Nt = 0)
=P(N, = 0)P(N, = 0) = P(Ty > t)P(T} > s)

Asi, o T3 es infinito casi seguramente, lo cual dice que N es idénticamente cero, 6
es exponencial de algin pardametro A > 0.

Ahora sélo debemos ver la razén por la que los tiempos interarribo son inde-
pendientes y con la misma distribuciéon que el primero. Para esto, analizaremos
dos implicaciones de nuestras hipétesis conocidas como la propiedad de Markov y
de Markov fuerte.

PROPOSICION 4.2 (Propiedad de Markov del proceso de Poisson). El proceso
Nt dado por N! = Nyys — Ny es un proceso de Poisson con las mismas distribu-
ciones finito-dimensionales que N y es independiente de F;.

DEMOSTRACION. Lo primero es notar que N es un proceso de Lévy y de
contéo. Para ver que tiene las mismas distribuciones finito-dimensionales que N,
notamos que

(NEoNL = N NE =N )
= (Nt+t1 - Ntth+t2 _Nt+t17"'7Nt+t - Nt+tn,1)

n

d
L (N, Ny = Niyyo o Ny = Ny, )
Al considerar f(x1,...,2,) = (x1,21 + z2,...,21 + - - + ), vemos que entonces

(N{, N

too "

N = F(NGNG = NN =N )

g f(Nt17Nt2 _Nt17"'7Ntn _Ntnfl)
= (Ngy, Neyy ooy Nt
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Ahora sélo se debe probar que N? es independiente de .%;. Sin embargo, si
0=s50<s1 <8, <t=tyg<t; <t, entonces las variables

(Ns1 - Nsoa ] NSM - NS"’L’I)

(Ntl - Ntm s 7Ntm - Ntm—l) = (Nttﬂ t "N'iinfi5 - me71*t>
son independientes. Eso implica que
(NSU"-aN?m) y (Ngla'”thtm—t_Nttm,l—t)

son independientes y que por lo tanto, si definimos a los m-sistemas

¢ ={Ns, € A1,...,Ng € Ap}

¢ ={N{ €Bi,...,N} €B,}
se sigue que
My ={A e F;: AL B paratodo B € 65}
contiene a ;. Puesto que .#) es un A-sistema y (%) = .%, entonces
Fs C M.
Por lo tanto el A\-sistema
My ={B € F : ALl B para todo A € F}

contiene al m-sistema %5. Esto implica que o(N! : s > 0) C .45 y que por lo tanto
N es independiente de .%;. O

Ahora, haremos una extensién adicional de la propiedad anterior.

PROPOSICION 4.3 (Propiedad de Markov fuerte). Si T : Q — [0,00) es una
variable aleatoria tal que {T <t} € % para todat >0 y

Fr={Ae.F: An{T <t} € FVt}

entonces el proceso NT dado por NI = Ny 4 — Nt es un proceso de Lévy y de
contéo con las mismas distribuciones finito-dimensionales que N e independiente
de ﬁT.

Veamos cémo se aplica la propiedad de Markov fuerte: puesto que los tiempos
interarribo de NT» son Toi1—Tn, Tnyo—Tht1,. ..y son independientes de F7, , se
deduce que T,,+1 — T, es exponencial e independiente de 71,7 —T11,..., T, —Tp—1.
Esto termina la prueba de que un proceso de contéo y de Lévy es el proceso de
contéo asociado a un proceso de renovaciéon exponencial.
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PRUEBA DE LA PROPIEDAD DE MARKOV FUERTE. Para cada n > 1, defini-
mos T™ igual a (k+ 1)/2" si T € [k/2™,(k + 1)/2™). Formalmente, podemos
escribir

" =T12"T1/2".
Entonces T es una sucesién de variables aleatorias que decrecen hacia T'. Ademdés,
notemos que

{IT"=k+1/2"}={k/2" <T < (k+1)/2"}
={T < (k+1)/2"}\{T < k/2"} € F(141) /27
Por el mismo argumento, si A € %1 entonces
AN{T" =k/2"} € P(it1)/2n-
Asi, por la propiedad de Markov, vemos que
]P’(A,T" —k+1/2" NI =ky,... NI = km)
=PAT"=k+1/2")P(Ny, = k1,...,N¢, =k
Al sumar sobre k, vemos que

P(A,Ntf" =y, NE :k) —P(A)P(N,, = k1, Ny = k) -

m

Como N es continuo por la derecha y T™ decrece a T', vemos que confome n — oo:
IP’(A, NtT1 =ki,..., Ngn = km) =P(A)P(N¢, = k1,..., Ny, = kn). Se concluye que
NT es un proceso de contéo y de Lévy con las mismas distribuciones finito-
dimensionales que N. Por lo tanto, sus tiempos interarribo tienen la mismas
distribuciones conjuntas, pues si S son los tiempos interarribo de N7 entonces

]P’(SH >51,5'2 >52,...,§n >5n)

(Tl>817T2>81+52,...,Tn>51+...+8n>

(NS <o,NT ., <1,... N, ., <n-1)
(N81 SO0, Noygsy < 1,000, Noyooigs, Sn—1)
(Sl>51752>52;-~-75n>5n)~

P
P
P
P

]

PROPOSICION 4.4. El proceso de Poisson compuesto es un proceso de Lévy
y satisface la propiedad de Markov siguiente: si F;X = a(X, :r <t) entonces el
proceso X' dado por X; = Xiys — Xi es un proceso de Poisson compuesto con la
misma intensidad y distribucion de salto que X y es independiente de F;X.

DEMOSTRACION. El proceso X comienza en cero y tiene trayectorias que son
constantes por pedazos, en particular, continuas por la derecha y con limites por
la izquierda.
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Para ver que X tiene incrementos independientes y estacionarios, notemos que
si0=tg<t1 <---<tp,y A € B parai=1,...,n, entonces

]P)(th - th.71 S AZ,Z = 1,...7TL)

= > P(Sk, — Sty € Ay Ny, = kiyi=1,...,n)
0=ko<k1<---<kn

— > TIP(Sk, = Sk,oy € A))P(Ny, = kiyi=1,...,n),
0=ko<ki<- <k, i=1

puesto que las variables {S; :4=0,1,---} y {Ny:¢ > 0} son independientes. Si
ko > k1, entonces Si, — Sk, tiene la misma distribucién que Sk, _x,, entonces

> TT®(Sk, — Sk, € Ai) P(Ny, = kiyi=1,...,n)

0=ko<k1<---<k, 1=1

= > TTP(Sk—k,-, € A) [T P(Ne, = Noo, = ki — k1)

0=ko<k1 <<k, i=1 i=1

= > TIPS € A Nirisy = i)

0< 41 yvverin i=1

=[[P(Xe v, € A).
1=1

Si utilizamos el caso n = 2, con A; = R, podemos concluir que Xy, — Xy, v X, ¢,
tienen la misma distribucién, de donde la igualdad

P(Xy, — Xy, € Ayi=1,...,n) = [[P(X¢,—¢,_, € 4)
i=1

nos permite concluir la independencia de los incrementos y por lo tanto, que el
proceso Poisson compuesto es un proceso de Lévy.

La propiedad de Markov es védlida més generalmente para procesos de Lévy y
tiene una demostraciéon muy similar a la del proceso de Poisson. (|

Veamos una aplicacién adicional del Teorema 4.1.

PROPOSICION 4.5. Si N' y N? son dos procesos de Poisson independientes

de intensidad A\' y A2 entonces N' + N2 es un proceso de Poisson de intensidad
AL+ 22

En efecto, N' + N2 es un proceso de contéo y de Lévy y su primer salto, que
es igual a S A S1, tiene distribucién exponencial de pardmetro A' + A\2.



CAPITULO 5

Procesos de Markov constantes por pedazos

En este capitulo analizaremos una clase de procesos estocasticos que generaliza
al proceso de Poisson y tiene similitudes con las cadenas de Markov: los procesos
de Markov a tiempo continuo con valores en un conjunto a lo més numerable F.
Comenzaremos con un estudio del proceso de Poisson, al expresar su propiedad
de Markov de forma que se parezca a la de las cadenas de Markov. Luego, se in-
troducira un segundo ejemplo, el de los procesos de nacimiento puro. Finalmente,
comenzaremos el estudio de procesos con trayectorias constantes por pedazos y
daremos una descripcién probabilistica de estos al introducir pardmetros que de-
terminan a un proceso de Markov: la distribucién inicial y la matriz infinitesimal.
Luego, estudiaremos sus probabilidades de transicion mediante unas ecuaciones
diferenciales que satisfacen y que estan ligadas con su matriz infinitesimal: las
ecuaciones backward y forward de Kolmogorov. Finalmente, veremos cémo las
ecuaciones backward nos permiten estudiar a las distribuciones invariantes de los
procesos de Markov a tiempo continuo.

1. El proceso de Poisson como proceso de Markov

El proceso de Poisson toma valores en los naturales. Como lo hemos definido,
siempre comienza en cero, a diferencia de las cadenas de Markov que podemos
comenzar en cualquier parte de su espacio de estados. Recordemos que si NV es un
proceso de Poisson de parametro A, al tener incrementos independientes y esta-
cionarios, podemos escribir, para =tg < t; <ty <--- <t,

]P(Nh = k17 Nt2 = k27 sy Ntn = kn)
== ]P)(Ntl == kl) P(thftg == k2 - kl) . ']P)(Ntn - Ntn—l = kn - knfl) .
Por lo tanto, si definimos

e ()"
n!

Pt(i,j)ZIP’(Nt:j—i):e )
vemos que

P(Ny, = ki, Niy = ko, ..., Ny, = kn) = Py (0, k1) Pry—t, (K1, k2) - Pr, (k-1 kn) -

La expresién anterior ya es muy paralela a la que vemos en cadenas de Markov; la
entrada ¢, j de la matriz (infinita) P; se puede interpretar como la probabilidad de

74
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ir de 7 a j en t unidades de tiempo. Esto ademaés nos dice como podriamos definir
a un proceso estocdastico que fuera como el proceso de Poisson pero que comenzara
en k: simplemente substituimos Py, (0, k1) por Py, (k, k1). Sin embargo, no tenemos
un proceso estocastico que satisfaga lo anterior; demos una construccién de él.

Sea N un proceso de Poisson de pardmetro A. Si ¢ > 0, hemos visto que el
proceso Nt dado por N! = Ny, — N; es un proceso de Poisson independiente de
N;. Por lo tanto:

P(Nits, = k1,..., Nigs, = kn [Ny = k)
P(Nips, = k1, ..oy Nevs, = kny Ny = k)
P(N, = )
P(Ny, = k1 — &y ..., Ny = kn — k) P(N, = k)
P(N, = k)
—P(Ny, +k=kyeor, Ny 4k = k).

Vemos entonces que, la distribucién condicional del proceso de Poisson en tiempos
posteriores a t condicionalmente a N; = k es la misma que la del proceso k + .
Asi, es natural definir al proceso de Poisson que comienza en k como k + N, pues
este proceso tiene trayectorias como las del proceso de Poisson (aumenta de uno
en uno en ciertos tiempos aleatorios) pero comienza en k. Ademds:

P(Nits, = ki,.... Neys, = kn|Ne = k) = Py, (k, k1) Pry—t, (k1, k2) - Pr,, (kn—1, kn)

Recordemos que en el caso de cadenas de Markov, se satisfacen las ecuaciones
de Chapman-Kolmogorov. FEn este contexto, las ecuaciones se pueden expresar
como sigue:

Py (i k) = ZPs(i,j) Py(j,k).

EJercicio 5.1. Al utilizar el teorema del biniomio, pruebe directamente que
la ecuacion anterior se satisface. Dé ademés un argumento probabilistico, basado
en condicionar con lo que sucede al tiempo s, para probar dicha ecuacién.

La diferencia con las cadenas de Markov y el proceso de Poisson es que, al ser el
segundo un proceso de Markov a tiempo continuo, en lugar de tener una sola matriz
cuyas potencias nos permiten describir al proceso, tenemos toda una colecciéon de
matrices (P;,t > 0). Uno de los objetivos de este capitulo es mostrar como, con
una definicién adecuada, podemos generar a todas las matrices (P, ¢ > 0) mediante
una sola matriz, la llamada matriz infinitesimal o matriz de tasas de transicién. La
idea es la siguiente: si x es un nuimero, podemos interpolar a la sucesiéon z",n € N
mediante la funcién exponencial: 2™ = e"1°8*_ El lado derecho ya tiene sentido si
n >0y no sélo si n € R. En cierto sentido, si P, = e!%, podriamos interpretar a Q
como el logaritmo de P;. Para ver cémo podriamos obtener a ), notemos que para
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obtener a log z si conocemos a f(t) = e*1°87 simplemente calculamos logx = f/(0)
y ademds f’(t) = f/(0) f(t). En el caso de nuestra matriz P;, vemos que
d d ()™

ZP(id) = —
att0d) = e (G —i)

1 o B -
T G- [B_M (G =TIV T i = AeT M (A1)

por lo que al evaluar en cero se obtiene:

A =i
A T,
0 jFELI+1
EJERCICIO 5.2. Sea
“A =i
Qli,7) =< j=1+1
0 j#ii+1
Pruebe directamente que
(5) 2 b i,) = QP ) = PiQGLJ)

dt
donde QP; es el producto de las matrices Q y P;.

A las ecuaciones (diferenciales) (5) se les conoce como ecuaciones de Kol-
mogorov. Esbocemos una interpretaciéon y deduccién probabilistica de dichas
ecuaciones. Para calcular P;;1(0,7), podemos descomponer respecto del valor de
Nj, para obtener

Prin(isj) = P(Negn = j) = P(Ny = i) P(Ny = j — i)
Por otra parte, al utilizar explicitamente la distribucién Poisson, vemos que

1—-P(N, = P(N, =1 P(Ny > 2
lim L2 PR =0y PR =D lim 28 22)
h—0 h h—0 h h—0 h
La interpretacion es que es muy probable que haya cero saltos en un intervalo de
longitud h, hay probabilidad proporcional al tamano del intervalo de que haya un

sélo salto, y muy improbable que haya méas de dos saltos. Se concluye que
8Pt(zvk) lim Ph(ivi) Pt(i,k)*Pt(Lk)

ot h—0 h
4 Jim Py(i,i+ 1) P(i+ 1,k)
h—0 h

A esta ecuacién se le denomina ecuacién hacia atrias de Kolmogorov (también
llamada, ain en espanol, ecuacién backward) y fué obtenida al descomponer a
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Ny4p, respecto del valor de Ny,. Esta implica automéaticamente la ecuacién hacia
adelante de Kolmogorov

0P (i, k
IPULR) _ opi k)

al utilizar la relaciéon Py(i +1,j) = Pi(i,5 — 1).

2. El proceso de nacimiento puro

El proceso de nacimiento puro es una generalizaciéon del proceso de Poisson que
puede presentar un fenémeno interesante: la explosién. Daremos una definicién de
dicho proceso paralela a la del proceso de Poisson.

DEFINICION. Sean ¢, q1,--. € (0,00). Un proceso de nacimiento puro es
el proceso de contéo cuyos tiempos interarribo conforman una sucesién de variables
exponenciales independientes S1, Ss, ... de pardmetros Ag, A1, .. ..

La interpretacién del proceso de nacimiento puro es que A; representa la tasa a
la que un nuevo individuo se agrega a una poblacién cuando esta tiene ¢ elementos.
Asi, el proceso de nacimiento puro se construye al definir a los tiempos de salto

0=Tp Tn=S++5% Te=)»_ 5
n=0

y al proceso de contéo asociado

Ny = E nlr, <t<T, -

neN
Claramente, cuando ¢; = A para toda i el proceso que hemos construido es el
proceso de Poisson. Sin embargo, cuando tenemos ¢; dependientes de ¢ se presenta
un nuevo fenémeno. En efecto, en el caso del proceso de Poisson, sabemos que
T,/n — 1/X =E(S7) > 0 por la ley fuerte de los grandes niimeros y por lo tanto
T, = 00 casi seguramente. Sin embargo, en el caso del proceso de nacimiento puro
puede suceder que T, < 00, en cuyo caso:

lim Ny = oo.

t—T oo —

Decimos entonces que ha ocurrido la explosién (en este caso demografica) del pro-
ceso de nacimiento puro y es natural definir

Ny = ool _<¢ + Z nlr, <t<T s
neN
pues con la definicién anterior el proceso se vuelve cero despues de que la poblacién
haya explotado.
Puesto que el proceso de nacimiento puro admite una construccién sencilla,
se puede dar un criterio explicito para la explosion, el cual ademés prueba que la
explosion se da o con probabilidad cero o con probabilidad uno.
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PROPOSICION 5.1. T, = oo casi sequramente si E(Tw) = >, 1/q; = 0o. Si
> 1/6i < 00 entonces To, < 00 casi sequramente.

DEMOSTRACION. Si >, 1/¢; < oo entonces podemos aplicar el teorema de
convergencia monotona a la sucesién T;, para deducir que

E(T, )—hmE —hmz l/qm—zl/%<007

m<n n

por lo que T, < o0 casi seguramente.
Por otra parte, si ), 1/¢; = oo, entonces podemos aplicar el teorema de con-
vergencia acotada para ver que
n

T\ 1 TN\ 1 qi
E(e ) —hgnE(e ) —115111:1 Ttq

Ahora dividiremos en dos partes nuestro andlisis: si existe u > 0 tal que ¢; < p
para una cantidad infinita de indices 7 entonces

n qz 1 n
< —0
o lta <1+1/M>

conforme n — oco. Si por otra parte g; — oo entonces utilizamos el hecho de que
gilog (1+1/g;) — 1 conforme n — oo y por lo tanto

n

1<qu — o~ Titilog141/4) < (~C Ty 1/ _y )
i=1
Vemos que en cualquier caso
E(e ") =0,
lo cual nos dice que T, = co casi seguramente. O

Para analizar la propiedad de Markov del proceso de nacimiento puro, nece-
sitamos definirlo cuando comienza en i € N. Una definiciéon posible es que se
trata del proceso (Nr,4¢,t > 0). Este proceso va tomando los valores sucesivos
i, 4+ 1,7+ 2,... y los tiempos que permanece en cada uno de los estados son
Siy Si+1, ..., Pues este proceso tiene la misma estructura probabilistica que ¢ mas
un proceso de contéo cuyos tiempos interarribo son exponenciales independientes
de pardametros A;, A\jy1,..., 0 sea, que una definicién equivalente es que un pro-
ceso de nacimiento puro con pardmetros Ag, A1, ... que comienza en ¢ es i mas un
proceso de nacimiento puro con parametros A;, Ajy1,.... Con estos preliminares
podemos enunciar la propiedad de Markov del proceso de nacimiento puro.

PROPOSICION 5.2. Sean N un proceso de nacimiento puro de pardmetros Ao, A1, . . .

y s > 0. Condicionalmente a Ny = i, el proceso estocdstico (Nyts —i,t > 0) es
un proceso de nacimiento puro de parametros A, \i+1,... y es condictonalmente
independiente de Fs = o(N, : v < t) dado Ns = i.
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En otras palabras, condicionalmente a Ny, = ¢, el proceso Nyis,t > 0 es un
proceso de nacimiento puro que comienza en i.

DEMOSTRACION. El proceso Ny, ,—i,t > 0 es un proceso de contéo cuyos tiem-
pos interarribo son Tn,11 — 8, SN,+2, SN.+3,. ... Denotémoslos como S§,S7,....
Debemos ver que condicionalmente a Ny = i, estos tiempos interarribo son expo-
nenciales, independientes y de pardmetros A;, A\j+1,.... En efecto:

P(Ns =14,55 > S0, -+ ,S; > $p)
:]P)(TZ SS<T¢+S¢,SO+S<T1‘+SZ'781 <S7;+1,...7Sn <Si+n)~

Al condicionar por T;, utilizar la independencia de las variables T; S;, ..., Sitn ¥
la propiedad de pérdida de memoria de la distribucién exponencial vemos que

P(T, <s<T;+ Sis0+s<Ti+8i,81 < Sig1yevy8n < Sign)-
= E(lTigse_’\f' (s — E)) e NS L e Aitnsn
Sin embargo, al poner sg = --- = s, = 0, vemos que
E(lTiSse_M (S - Tz)) = P(Ns = Z)
y por lo tanto, al condicional por Ny = 4, vemos que N* es un proceso de nacimiento
puro que comienza en 1.

Falta demostrar que N*® es condicionalmente independiente de .%; dado que
N; =i, esto es, que para todo A € %, se tiene que

P(Ny =ki,..., N} =kn, A|N; = i)
= IP’(Nf1 =ki,...,N =kn|Ns = z) P(A|N; =14).
Por clases mondtonas, basta verificarlo cuando A = {Ng, = j1,...,Ns,, = jm} con

$1 < <5y <tyji1 <o <jm <i. Para esto, seguimos el mismo razonamiento
anterior al notar que

AN, =i} ={Tj, < s1 <Tjy1,-+, Tj,, <5 <Tj 1} {T < s <Tiga}
O
EJERCICIO 5.3. Haga un programa en R que simule al proceso de nacimiento

puro que comienza en 1 si A; = ¢\ para algun A > 0. ;Este proceso explota? Haga
otro programa que simule el caso \; = \i? y diga si ocurre explosién o no.

La propiedad de Markov se puede interpretar de manera similar a la del proceso
de Poisson. Dados los pardmetros q = (Mg, A1, ..), sea P;(i,j) la probabilidad de
que un proceso de nacimiento puro de pardmetro q que comienza en 7 se encuentre
en j al tiempo t. Entonces:

P(Nertl =ky,... 7Ns+tn =kn |Ns = k)
= Ptl (ka kl) Ptz—tl (kla k'2) e Pt¢L—tn71(kTL—1) kn) .
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Aqui es més dificil obtener una expresién explicita para Py(i, j). Esto se puede
lograr cuando por ejemplo A\; = i\ para alguna A > 0 (que es el caso del Proceso
de Yule, bésico en la teorfa de procesos de ramificacién a tiempo continuo). Sin
embargo, podemos argumentar por qué son validas las ecuaciones hacia atras de
Kolmogorov: Si h es pequefio y nuestro proceso de nacimiento puro comienza en
1, serd raro que haya mas de dos saltos en un intervalo de tiempo pequeno. Lo que
se afirma es que, exactamente como en el caso de procesos de Poisson,

1 — Py(i,1) Pp(i,i+1) ZjZQ Pu(i, )

Jimy h =i fimy h =X Jimy h =0

Por lo tanto, las ecuaciones hacia atras de Kolmogorov serfan
o, . _ . .
&Pt(ld) = NP (i +1,7) — NP(i, ) -

Vemos entonces que la matriz infinitesimal o de tasas de transicién estaria dada
por

A i=j
QU J)=qN Jj=i+1
0 en otro caso

y que las ecuaciones hacia atrds se pueden escribir como

0

3. Matrices infinitesimales y construccién de procesos de Markov

Comenzaremos por describir a un tercer ejemplo de proceso de Markov a
tiempo continuo. FEste ejemplo se basa en calcular el minimo de variables ex-
ponenciales independientes.

Comenzaremos con un ejemplo con espacio de estados E finito. Para cada
z,y € Econx # ysea A\yy > 0. Sean E;,,,> 1l,z,y € E,x # y variables
aleatorias exponenciales independientes, tal queE; ; , tiene pardmetro A, ,. A A; 4
lo interpretaremos como la tasa a la que dejo el estado = para acceder al estado y
y supondremos que para cada x € E existe y € F distinta de z tal que A, , > 0.
Si z € F, definamos a

Tl = n;in El’aj’y donde T1 == El’w,Xr
y#T

Recursivamente, definiremos a
Tn—‘rl = yI;Ié%? En+1,Xn,y donde Tn+l - El,Xn,Xn_H .

Definamos finalmente, al proceso a tiempo continuo de interés:

Zy=X, si te[ThTos)
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Hagamos un ejemplo en R para ilustrar la definicién. Comencemos con E =
{1,2}, por lo que necesitamos definir a dos cantidades positivas A1 2 (que deno-
taremos por A, y digamos que es igual a 2) y A1 (denotada Ag y digamos igual
a 1). Si queremos comenzar nuestra construccién con = 1, podemos utilizar el
siguiente codigo.

# Simulemos una cadena de Markov en tiempo continuo en $E={1,2}$%
# 1(1) es la tasa a la que dejo $1% (para ir a 2) y viceversa

1=c(2,1);
# x es el estado actual, comenzamos en
x=1;
X=c(x);
# T contendr\’a los tiempos en que cambia la cadena
T=0
# n es la cantidad de pasos
n=20;
for(i in 1:mn)
{
#Cambio de estado
x=3-%;

#Agrego el nuevo estado
X=c(X,x)
# Simulo la exponencial de la tasa adecuada y la agrego a mis tiempos
T=c(T,tail(T,1)+rexp(1,1[x]1));
¥
# Grafico la trayectoria
plot (T,X,type="s"

LisTING 5.1. QCadena2Estados.R

Una exponencial de pardmetro A tiene la misma distribucién que una exponen-
cial de pardmetro 1 dividida entre A, por lo cual en el ciclo es equivalente utilizar
el comando T=c(T,tail(T,1)+rexp(1)/1[x]);.

Un ejemplo un poco més complicado lo obtenemos si E = {1,2,3} y ponemos
las tasas de transicién A2 = 2, A1 = A2 3 = 1, A31 = 1/3 y todas las demads
igual a cero. En este caso, nuestro primer impulso podria ser el utilizar el siguiente
codigo:

# Simulemos una cadena de Markov en tiempo continuo en $E={1,2,3}%
# La matriz de tasas de transicil’on
L=matrix (0,3,3)

L[1,2]=2

L[2,1]=1

L[2,3]=1

L[3,1]1=1/3

# Estado inicial
x=1

# Vector de estados
X=c(x)

# Vector de tiempos
T=c (0)

# N\’umero de pasos
n=20
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for(i in 1:20)
{
# Genero las exponenciales
e=rexp(3)/L[x,]
# E1 nuevo tiempo de salto
t=min (e)
T=c(T,tail(T,1)+t)
# E1 nuevo estado
x=which.min (e)
X=c(X,x)
}

plot (T,X,type="s")

LisTING 5.2. QCadena3Estados.R

Hay una manera de realizar la simulacion anterior con menos variables aleato-
rias. En vez de las 3 exponenciales, podemos utilizar una exponencial y una uni-
forme. La idea es utilizar la proposiciéon siguiente para ver que el minimo de
variables exponenciales es exponencial.

PROPOSICION 5.3. Sean T4, ...,T, variables exponenciales independientes de
pardmetros respectivos Ai,...,\,. Sea T = min; T;. FEntonces, con probabilidad
1, existe un unico indice K tal que T' = Tg. T y K son independientes, T tiene
distribucién exponencial de pardmetro N =X 1 + -+ A\, y P(K = k) = A/

DEMOSTRACION. Calculemos:

P(T > t,T; > T}, para toda j # k) = P(Ty, > t,T; > T}, para toda j # k)

=K 1Tk2t H ef)"“T’“

ik
o0
= / Ape s H e N ds
t j#k
A
= —kef)‘t.
A
Al evaluar en t = 0 vemos que
A
P(T; > Ty, para toda j # k) = Tk
por lo que al utilizar que los eventos anteriores son ajenos conforme variamos a k
y su unién es la probabilidad de que el minimo de T7,...,7;, se alcance para un
sélo indice, vemos que
. - A A
P(Existe un tnico k € {1,...,n} tal que T =Ty) = Z U 1.

k

Al sumar sobre k, vemos que
P(T >t) =e ™M,
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lo cual implica que T es exponencial de pardmetro A
Puesto que con probabilidad 1 hay un unico indice (aleatorio) en el que se
alcanza el minimo, digamos K tal que Tx = T, vemos que

P(K:kat):%e—”:P(K:k)P(th). O

Asi, nuestro proceso a tiempo continuo se puede simular también mediante el
siguiente cédigo.

# Simulemos una cadena de Markov en tiempo continuo en $E={1,2,3}$%
# La matriz de tasas de transicil’on
L=matrix (0,3,3)
L[1,2]=2
L[2,1]=1
L[2,3]=1
L[3,1]1=1/3
# Tasas totales de salto
l=rowSums (L)
# Matriz de transicil’on
P=L/rowSums (L)
# Estado inicial
x=1
# Vector de estados
X=c(x)
# Vector de tiempos
T=c (0)
# N\’umero de pasos
n=20
for (i in 1:20)
{
# Genero la exponencial
e=rexp(1,1[x])
# E1 nuevo tiempo de salto
T=c(T,tail (T, 1) +e)
# E1 nuevo estado
x=sample(3,1,prob=P[x,])
X=c(X,x)
}
plot(T,X,type="s")

LisTING 5.3. QCadena3EstadosConMinimo.R

Continuemos con el andlisis de la cadena general. A partir del cédigo, vemos
que los pardmetros se pueden reducir a una matriz de transicion P con ceros en la
diagonal y un vector [ de tasas totales de salto. Explicitamente,

Azyy

Y

Ademis, es posible construir nuestra cadena mediante una sucesién de variables
exponenciales estandar independientes £1,&s,... entre si y de una sucesion iid
Ui,Us,, ... de variables uniformes. En efecto, podemos definir a Xg = z, Ty = =



3. Matrices infinitesimales y construccién de procesos de Markov 84

yaT =5 = &/l(Xp). Luego, utilizamos a la variable uniforme U; para es-
coger a un elemento aleatorio X; de E tal que P(X; =y) = Px,,,. Finalmente,
continuamos este procedimiento de manera recursiva: si ya tenemos definidos a
Xo,.... Xp yaTy,..., T, en términos de S1,...,5, y Uy,...,U, entonces defin-
imos Sp41 = &ut1/U(Xn), Tne1 = Tn + Spy1 y utilizamos a las variables U, 41 y
X, para construir a X, de tal manera que P(X, 1 =y|X, =2) = P, ,. Fi-
nalmente, recordemos que Z; = X, si T, <t < T,4+1. Resulta ser que Z es un
proceso de Markov a tiempo continuo. Formalmente, sea P;(x,y) la probabilidad
de que Z; = y cuando Zy = x y probemos que

ng(th =T1y.-- ath = yn)
= Py, 1y (20, 21) Pry—ty (®1,22) - Prp—t (X1, Tp)

donde P, es la medida de probabilidad que rige a Z cuando comienza en x y
0 =1ty <ty < -+ <ty Elargumento es parecido a cuando probamos que el
proceso de Poisson (o més generalmente el de nacimiento y muerte) es un proceso
de Markov, se basa en notar que el proceso posterior a s, condicionalmente a
Zs = x tiene la misma construccién probabilistica que Z comenzando en x. Esto
es, que sus tiempos y lugares de salto se pueden obtener a partir de una sucesién
de variables uniformes y exponenciales estandar independientes. Concentrémonos
mejor en las aplicaciones de este hecho.

La primera aplicacion es a la obtencién de las ecuaciones de Chapman-Kolmo-
gorov. En efecto, vemos que

Pt+s(xa Z) = Px(Zt-i-s = Z)

= ZPI(ZS =Y, Zt+s = Z)
Yy

= ZPs(x, y) Py, z) -

Seguido de esto, obtendremos las ecuaciones de Kolmogorov como en el caso
de procesos de procesos de Poisson. Se afirma que

Ji 2= ), i ) Py
y
>
lim w = 0.
h—0 h

En efecto, puesto que bajo P, el primer salto de N ocurre en una variable expo-
nencial de pardmetro [(z), entonces
1-P.(N,=0) .. 1—el@h

iy =i = @)
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Por otra parte, vemos que

{Np > 2} ={S1 + 52 < h}

:{l(§0)+l(§?1)<h}
fee.

El ultimo evento corresponde a que un proceso de Poisson de parametro A, digamos
N tenga més de dos saltos en el intervalo [0, ¢], que ya hemos estimado. Se concluye
que

P, (N} > 2)

P.(Np > 2
0< limsup% < lim =0.

h—0 ~ h—0

Finalmente, veamos c6mo ocuparnos de P, (Np, X =y) = 1. Puesto que U; es
independiente de &1, &5, entonces

1
PNy = 1,2 = y) = 513h<51+52)1%c,y

(l(x) Wz) ~ U(y)

= ng,y}lL]P’gg<gl <h< S + Ez)
1 h
h

Podemos entonces deducir que

. Py(z,r) -1 . Pu(z,y)
}lllg%) — = —l(z) yparay#cz }llli% — = Py

l(x).

Llamemosle @ a la matriz

) (= y=ux
@r={in, 150

A esta matriz se le conoce como matriz infinitesimal del proceso de Markov Z.
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Al utilizar la finitud de E para intercambiar derivadas y sumas y las ecuaciones
de Chapman-Kolmogorov se obtiene

Pt+h(x7z) — Pt(gjv Z)

d
— Py(z,z) = lim

dt h—0 h
L Py(z,2z)—1 o1
= lim Py(e,2) HEE 2 ST Py g) Jim 1Py, )
y#z
y#z
= (PtQ>:c,y :

Estas son las ecuaciones forward de Kolmogorov. De igual manera, al utilizar
la finitud de E se obtienen las ecuaciones backward de Kolmogorov

d
%Pt(xv Z) = (th)r,y :

Como ya se ha comentado, la anterior ecuacién diferencial matricial es parecida
a la ecuacién diferencial f/(¢t) = Af(t) (con f(t) = P y A = Q) cuya tnica solucién
es f(t) = e*. Atn en el caso matricial se le puede dar sentido a esta ecuacién
diferencial al definir la exponencial de la matriz t@) por medio de

t’rLQn

tQ _

€ _Z n!
n

Entonces, se deduce que
Pt = etQ.

La pregunta que sigue es si es posible realizar la construcciéon que acabamos de
explorar en espacio de estados numerable. La respuesta es basicamente que si, salvo
que se debe prestar atencién al fendmeno de explosiéon. Otra pregunta importante
es si cualquier cadena de Markov a tiempo continuo se puede construir como lo
acabamos de hacer. La respuesta es basicamente afirmativa de nuevo cuidandonos
de la explosion. La siguiente seccién aborda este segundo cuestionamiento.

4. Descripcién probabilistica de procesos de Markov constantes por
pedazos

En esta seccién definiremos a las cadenas de Markov a tiempo continuo y
analizaremos su estructura y su comportamiento a tiempos grandes. Se realizard
por lo tanto un estudio paralelo al de las cadenas de Markov a tiempo discreto.

Sea F un conjunto a lo mas numerable, A ¢ F algin punto que denominaremos
cementerio y a donde mandaremos las trayectorias de un proceso de Markov
cuando explote, y sea C el conjunto de funciones f : [0,00) — E U {A} que
satisfacen:
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(1) si f(t) € E entonces existe 6 > 0 tal que f(s) = f(t) para s € [t,t + J],
(2) si f(t) = A entonces f(s) = A para toda s >ty
() siti <ta<- -+, tp, 2>t<0y f(tnst1) # f(tn) entonces f(t) = A.

DEFINICION. Una cadena de Markov a tiempo continuo con espacio de
estados E es un proceso estocdstico X = (X, ¢t > 0) tal que

(1) X; toma valores en E U {A}
(2) para todo w € , la trayectoria t — X;(w) es un elemento del conjunto
de funciones C,
(3) existe una coleccién de matrices estocésticas (P, t > 0) indexadas por los
elementos de E tales que si 0 =tg < t; < --- < t,, entonces:
P(Xo=2,Xt, =x1,..., X, =)
=P(Xo =) Py, —t,(%0,21) Pry—t, (x1,22) - Pr,—t,,_, (Tn—1,Tn) -
Denotaremos por P, a P condicionada por Xy = z. A la coleccién de matrices
estocdsticas (P, t > 0) les llamamos probabilidades de transicién.

Comenzamos por verificar una propiedad familiar de las probabilidades de
transicion.

PROPOSICION 5.4. Las probabilidades de transicion satisfacen las ecuaciones
de Chapman-Kolmogorov

Py = P,P,.

DEMOSTRACION. Al descomponer P, (X; s = 2) por el valor que toma X; se
obtiene

Py(Xits = 2) = Z]P)Z(Xt =y, Xits = 2) = Zpt(x,y) Py(,y),
Yy y
de lo cual se sigue que P, es el producto de las matrices P; y Ps. O

PROPOSICION 5.5 (Propiedad de Markov). Si X es una cadena de Markov a
tiempo continuo y X! = Xyis, entonces X' también es una cadena de Markov a

tiempo continuo con las mismas probabilidades de trancision que X. X' es inde-
pendiente de X, s <t condicionalmente a X;.

DEMOSTRACION. Sean t; < t3 < ---. Entonces
t t t
]P’x(XO =x0, Xy, = 1,...,X; = xn)
= IFDQ:(XtJrO = Zo, Xt+t1 =T1,..- 7Xt+tn = CUn)
Py(z,20) Pr, (w0.71) - Pt —t, 1 Tn—1,Tn-

Puesto que Py(z,z0) = Po(X{ = z0), vemos que X! es una cadena de Markov a
tiempo continuo con las mismas probabilidades de transiciéon que X.
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Para ver la independencia, hacemos un cédlculo similar: sean 0 < 51 < --- <
Sm <ty 0 <t < -+ < tn. Al utilizar la definicién de cadena de Markov,
obtenemos

]P’QE(XS1 =21,...,Xs, = xn,Xé = yo,X?f1 = yl,...,Xttn = yn)
= Py, (z,71) Ps,—s, (x1,72) -+ Ps,, s, (Tn—1,2n)
P s, (Tn,Y0) Pry (21,90) Pry—ty (Y1,92) - Proy—ty s (Yn—1,Yn) -
Al condicional por X; = yg vemos que
Po(Xs, =21,..., Xy, =20, Xg =v0, X{, =01, ., X{ = vn th =1o)
IP’z(XSl =x,...,Xs, =Ty | X! = yo) Py (Xt =01, ., Xb, = Un)

por lo que X! es independiente de X, s < ¢ condicionalmente a X;. O
Consideremos a los tiempos aleatorios
To=0, Thp=inf{t>T,:X;#Xr,} vy (= nlLIrgoTn
con la convencién inf ) = co.
PROPOSICION 5.6. T}, y ¢ son tiempos de paro respecto de la filtracién candnica.

Existen tres categorias para las trayectorias en términos de estos tiempos
aleatorios:

Absorcion: Cuando existe n tal que T;, < oo = T}, 41, en cuyo caso X; =
Xr, para todat > T,

Explosién: cuando ( < ooy

Movimiento perpetuo: cuando 7T,, < oo para todany ¢ = co.

PROPOSICION 5.7. Bajo P, Ty es exponencial de pardmetro c(x) € [0,00). Si
e(x) > 0 entonces las variables X1, y Ty son independientes.

DEMOSTRACION. Al utilizar la propiedad de Markov, vemos que

Po(Ty >t+5) =P, (Th > 5, Xs =2, T1(X°) > )
= ]P)T(Tl > S) ]PI(Tl > t)

y por lo tanto, bajo P,, T} es exponencial.
Por otra parte

P$(1T1>tXT1 = y)
=P (Lry50, Xo = 7, Xb (x = ¥)
= Pm(1T1>t)Px(XT1 = y)

por lo que T} es independiente de X o O, . O
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A ¢(x) la interpretamos como la tasa a la que dejamos el estado z. Definamos
ahora

Po(X1y =y) cf2) #0
A a se le conoce como la matriz de tasas de transicién y la interpretacién de a(z, y)
es la tasa a la que dejamos el estado = para pasar al estado y. La matriz de tasas de
transicion es el parametro que nos permitird caracterizar a la familia Markoviana.
Para verificar por qué, es necesario extender la propiedad de Markov.

P, = {0 cl@) =0 y a(z,y) =c(z) Py y.

TEOREMA 5.1 (Propiedad de Markov fuerte). Sea T' un tiempo de paro finito.
Entonces el proceso XT dado por XI = Xgy; es una cadena de Markov con
las mismas probabilidades de transicion que X que es independiente de Xg, 8 <t
condicionalmente a X7 y a T < t.

La prueba es un tanto més complicada del nivel que se quiere para este curso
y no se dara.

El teorema anterior nos permitira caracterizar a la cadena de Markov en tiempo
continuo en términos de la matriz de tasas de transiciéon «, o equivalentemente, de
cy P. Sea Z el proceso estocastico a tiempo discreto definido por

Zn =X,

si T, < oo. En el caso absorbente, definimos Z,,y,, = Z, para toda m > 1 si
T, <oo= Tn+1.

TEOREMA 5.2. FEl proceso Z es una cadena de Markov de matriz de transicion
P que comienza en x bajo P,. Si c(x) > 0 para toda x € E, condicionalmente a
Z, las variables Sy, S2,... con S; = T; — T;_1 son independientes y exponenciales
de pardmetros ¢(Zy),c(Z1) . . ..

DEMOSTRACION. Al utilizar el lema de clases de Dynkin, vemos que es sufi-
ciente verificar que

(6) }P’m(lexl,...,Zn:xn,Sl>t1,...,Sn>tn)

=Pyy Py Ine—dw)tle—c(wl)tz e d@Bn—1)tn

n—1,

Esto se sigue por induccién al utilizar la propiedad de Markov fuerte. La base
inductiva es la Proposicién 5.7. Por otra parte, si suponemos vélida la ecuacién (6)
vemos que al aplicar la propiedad de Markov fuerte al instante 7T;, y la Proposicién
5.7 se sigue que

]P).L(Zl =T1y-- ~7Zn+1 = xn-‘rlel > tla . '7Sn+1 > tn+1)
= ]P)I(Zl =21y, Zn = .’En,Sl > tq,... s Sn > tn) e*‘(wn)t,,L+1PIn’In+1

puesto que Z, 1 es el primer estado al que salta X y S, es el tiempo que
tarda en realizar X7 su primer salto. O



5. Las ecuaciones backward y forward de Kolmogorov 90

Dada una funcién o : E x E — [0,00) tal que c(z) = > a(z,y) < oo,
podemos definir a P, , = a(z,y) /c(z) cuando ¢(z) > 0y a P, = d,, cuando
¢(x) = 0 y preguntarnos cudndo existe una cadena de Markov a tiempo continuo
cuya matriz de tasas de transicién sea «. Nos abocaremos ahora a verificar que
se puede construir una cadena de Markov cuya matriz de tasas de transicién sea
o. En efecto, sean Sy, Ss, ... variables aleatorias exponenciales de pardmetro 1 y
Z una cadena de Markov con matriz de transicion P que comienza en X. Ahora
definamos

To=0, v Tpy1="Tn+5,/c(Z,).
Consideremos al proceso X definido mediante

Xy =2Z, si te[l,,Tui1).

Definimos a P, como P condicionada por Zy = z. Se afirma que P, es una familia
Markoviana cuya matriz de tasas de transicion es a. Por definicién, bajo la medida
de probabilidad P, es valida la ecuacién (6).

TEOREMA 5.3. La coleccion (Py),cp es una familia Markoviana con matriz
de tasas de transicion o.

De hecho, hemos verificado este teorema en la seccién anterior y la prueba en
este caso en el que el espacio de estados es posiblemente infinito es muy similar.

5. Las ecuaciones backward y forward de Kolmogorov

Tal como la propiedad de Markov y de Markov fuerte nos llevan a relaciones
de recurrencia para probabilidades que deseamos calcular, en tiempo continuo nos
llevan a ecuaciones diferenciales. Una de ellas es la ecuacion backward de Kol-
mogorov. Sea (P,,z € E) una familia markoviana con probabilidades de tran-
sicién Pi(z,y) = P.(X; =y). Estas probabilidades de transicién satisfacen las
ecuaciones de Chapman-Kolmogorov

Pt+s(xaz) = Zpg(xay) Pt(yvz) .

TEOREMA 5.4 (Ecuaciones backward de Kolmogorov). Para cualquier x,y €
E, las probabilidades de transicion satisfacen la ecuacion backward de Kolmogorov

%Pt(x, y) = Z alx, z) Pz, z) — P(z,y) .
zeFE

Dada la matriz de tasas de transicién, definiremos a la matriz infinitesimal @

mediante:
_ {a(x,y) T#FyY
Qazy = :
—c(z) x=y
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Entonces la ecuacién backward de Kolmogorov se puede escribir como la ecuacién
diferencial para la matriz P,

%Pt = QPt

Esto explica la conexién con ecuaciones diferenciales: las probabilidades de tran-
sicién de una familia markoviana satisfacen una ecuacién diferencial. Veremos
que en el caso de espacio de estados finito, la teoria clasica de ecuaciones diferen-
ciales lineales nos permite verificar que existe una unica solucién para la ecuacién
backward de Kolmogorov y por lo tanto nos da una manera de obtener, a ve-
ces explicitamente pero inclusive también numéricamente, a las probabilidades de
transicion de la familia Markoviana.

DEMOSTRACION. Heuriisticamente, la prueba es una aplicacién de la propiedad
de Markov fuerte. Sin embargo, necesitamos una verisén que también depende del
tiempo. Especificamente, notemos que si s <t

Pt(xay) = P"c(Xt = y) = ]Ez(Pt—S(XS) y)

Podemos por lo tanto pensar que por la propiedad de Markov fuerte aplicada al
tiempo de paro o =t AT} se satisface

(7) Pi(z,y) = Ee(Pro(Xo,y))

para t > 0. Esto es en efecto cierto pero no se ha demostrado y se sigue del hecho
de que podemos aproximar al tiempo de paro o por ¢” = [02"]/2" y tomar el
limite conforme n — oo para verificar (7). Veamos cémo se aplica dicha ecuacién.
De (7) se deduce que:

Puf(@) = Eo(Prg (X)) = fla) @ + [ 30 a(w.9) P ) s

Al multiplicar por e4®)* de ambos lados se obtiene

t
NP (@) = Fla)+ [ Y ale,y) PLS) ds
0
Y
Finalmente, la expresion del lado derecho muestra que el lado izquierdo es derivable
y por la continuidad del integrando vemos que

& P@) + o) RS I O

Ahora recordemos que en espacio de estados finito, digamos de cardinalidad
n, estas ecuaciones backward admiten una solucién en términos de la matriz infin-
itesimal ) y esto nos permitira introducir a las ecuaciones forward. Cuando I es
finito, debemos resolver el sistema de ecuaciones

0
&Pt:QPt'
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Este es un sistema lineal y si @) fuera de tamano 1 x 1, tendria como tnica solucién
a la funcién exponencial. Lo mismo sucede en el caso n x n, si definimos a la matriz

o0
thn
tQ _
€ _Z n!

n=0

para cualquier ¢t € R.La convergencia de la serie se sigue pues la sucesion

Z n!

n=0

es de Cauchy cuando se utiliza la norma
QI = max {[|Qz| : x € R™, [lz]| =1} .
En efecto, puesto que esta norma es submultiplicativa, se sigue que:

Z" tr Q" Zt Q’“ ZOO [t el
Sl>1p || k" T —m—o00 0
n>m 1 ! .

k=m+1

Ahora veremos que e!?,t > 0 es la tnica solucién a las ecuaciénes backward y
forward de Kolmogorov:

g 1Q _ 1Q ZotQ — otQ
8te = Qe Bte =e™ Q.

Ademas, satisfacen las ecuaciones de Chapman-Kolmogorov
e(5HQ _ 05Q Q.

y

En efecto, Chapman-Kolmogorov se sigue de la definicién de la exponencial
de una matriz. Por otra parte, podemos derivar término a término la serie de
potencias (cuyo radio de convergencia, con la norma matricial, es infinito) para
obtener

ot Ko k! Qg

k=1 k=0
lo cual muestra que se satisfacen las ecuaciones backward y forward. Ademés 9 =
Id. Para la unicidad de la solucién a estas iltimas, supongamos que P;,t > 0 es una
coleccién de matrices en R™ que satisface las ecuaciones backward (el argumento
para las forward es similar) y tal que Py = Id. Notemos que la inversa de e’ es
e~ '@, Entonces

0
&eftQP —Qe PP, + ¢ QP, = —Qe 9P, + Qe 9P, = 0.

Por lo tanto e *?P, es constante y como la constante es Py = Id, vemos que
Pt = etQ.

© k—1ok 20 tkyktl tQ
ﬁetQ:Zt Q _ZtQ :{Qe
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6. Distribuciones invariantes

Ahora pasaremos al estudio de las distribuciones invariantes para familias
markovianas. La liga entre el tiempo continuo y discreto nos lo proporciona el
siguiente resultado que se sigue de las ecuaciones backward de Kolmogorov.

DEFINICION. Decimos que una distribucién v en F (identificada con la coleccién
numérica v, = v({z})) es invariante para una familia Markoviana si

Zl/wpt(xay) = Vy.

En otras palabras, la distribucién v es invariante si la distribucién de X; bajo
P, =3, vzP, es igual a la de X,.

TEOREMA 5.5. Una medida de probabilidad v tal que ) vyc(x) < oo es in-
variante para X si y sélo si cv = (cyvz,x € E)) es invariante para la cadena
asociada.

DEMOSTRACION. Por la ecuacién backward de Kolmogorov y el teorema de
Fubini-Tonelli se sigue que

(8) S waPiw2) =3 vPo(w,2) + A S5 veale,y) [Py, 2) — P, 2)] ds.

x

Asi, v es invariante si y sélo si la integral del lado derecho es igual a 0 para cualquier
t. Escribamos a a(x,y) = c¢(z) P(x,y), donde P es la matriz de transicién de la
cadena asociada. Puesto que ) cyv, y t — Py(x,y) es continua, podemos aplicar
el teorema de convergencia dominada para concluir que el integrando en el lado
derecho de (8) es continuo. Por lo tanto, v es invariante si y sélo si

0= Z Z vea(x,y) [Po(y, 2) — Po(x, 2))
= Z Zc(x) VpPpy[ly=z — Lp=.] = Z c(x) vy Py, — Cos

x

En otras palabras, cv es invariante para la cadena asociada. (|

Recordemos que en el teorema fundamental de convergencia para cadenas de
Markov (en tiempo discreto) la periodicidad juega un rol importante. Ahora vere-
mos que en tiempo continuo, en cierto sentido el proceso ya es periddico.

PROPOSICION 5.8. Py(x,y) > 0 para alguna t > 0 si y sdlo si P(z,y) > 0 para
toda t > 0. En particular P;(z,x) > 0 para toda t > 0.

DEMOSTRACION. El caso particular es simple:

Py(z,x) > Py(Ty > t) > 0.
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Por otra parte, si y # x y para la cadena asociada se accede de x a y entonces
existen xg,...,x, € F tales que zy =z, x,, =y y Tk4+1 # Tk para los cuales

vaml ..'Pmn—lvy > 0.

En particular, se tiene que c¢(x;) > 0 para i < n.

Si Si,..., 5,41 son exponenciales de parametro 1 independientes entonces
P(z,y) > P Z <t< Z P(xg,x1)- - Py, 4y > 0.
k<n (xk 1) k<n+1 c(%k-1)

(Sélo se debe tener cuidado si ¢(y) = 0.)
Finalmente, si de x no se accede a y para la cadena asociada Z entonces

P,(X; # y para toda t > 0) = P,.(Z, # y para todan > 0) = 1. O

Una familia markoviana es irreducible si P,(X; =y) > 0 para todat >0y
today € F.

PROPOSICION 5.9. Si la cadena asociada a una familia markoviana irreducible
es recurrente entonces no hay explosion.

Lo anterior nos dice que los conjuntos {t >0: X; =y} y{neN:Z, =y} o
son ambos acotados o ambos no acotados para familias markovianas irreducibles.
En el primer caso hablamos de transitoriedad y en el segundo de recurrencia.

DEMOSTRACION. Sélo hay que notar que si P,(Z, = z i.0. ) entonces o Z,, se
absorbe en z (que sucede si y sélo si ¢(x) > 0y no es compatible con la irreducibil-
idad de la cadena) 6 ¢(x) >0y

Z C(;n) > oco/c(x) = 00

P,-casi seguramente, en cuyo caso, al condicionar con Z, vemos que no hay ex-
plosién. (Recordemos que si 7; son exponenciales independientes de pardmetro \;
entonces Y 7; = 0o casi seguramente si y sélo si Y 1/A; = 00.) O

TEOREMA 5.6. Si (P,) es una familia markoviana irreducible entonces son
equivalentes:

(1) Existe una dnica distribucion invariante v para la familia que satisface
vy > 0 para toda x € E y para cualquier distribucion inicial p:

Jim ST BL(Xe =) ~vy| = 0.

(2) Para alguna h > 0, la sucesidn de variables aleatorias (X,pn,n € N) es
una cadena de Markov positivo recurrente.
En caso contrario, no existe ninguna distribucion invariante y Po(X; =y) — 0
conforme t — 0.
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DEMOSTRACION. Sélo demostraremos la equivalencia. (La prueba completa
se puede verificar en el libro de Kallenberg.)

Sea h > 0. Notemos que (X,z,n > 0) es una cadena de Markov con matriz de
transicién Py (x,y),z,y € E. En efecto, vemos que

Po(Xn =x1,...,Xph = Tp) = Pa(z,21) Pp(x1,22) - Pr(@n—1,2n) .

Si para alguna h, dicha cadena de Markov es positivo recurrente, entonces al ser
irreducible y aperiédica, existe una tunica distribucién invariante v,. Por otra
parte, la cadena de Markov X,,j,/on > 0 debe también ser positivo recurrente pues
su tiempo de primer retorno esta acotado por dos veces el tiempo de primer retorno
de X,n,n > 0, el cual es integrable. Asi, existe una tunica distribucién invariante
para X, 2, digamos v, /5 pero como ésta también es invariante para X, vemos
que vy o = vp. Escribamos por lo tanto v = v". Generalizando, vemos que para
cualquier racional no-negativo g, la distribucién de X, bajo P, es v y, al aproximar
a cualquier ¢ > 0 por la derecha por reales de la forma gh, vemos que v es invariante
para la familia markoviana. Para mostrar la convergencia en variacién, notemos
que, de acuerdo al teorema fundamental de convergencia para cadenas de Markov,
se tiene que

Z|Pnh($>y) _Vy| —0
T

conforme n — co. Por lo tanto, al escribir a ¢t (de manera unica) en la forma nh+r
conn € Ny 0 <r < h, las ecuaciones de Chapman-Kolmogorov y la invariancia
de v nos dicen que

Z|Pt(xay) - Vy‘ S ZZ|Pnh($7Z) - I/Z|P’I"(Z7y) — 0.
x z Yy

Por lo tanto, el teorema de convergencia dominada nos permite afirmar que

Jim SR, (X, = y) — | = 0.

Por otra parte, si existe una distribucién invariante v para la familia marko-
viana, entonces v es una distribucién invariante para X5, lo que implica que esta
es positivo recurrente para cualquier h > 0. O

Finalmente, pasamos a la relaciéon entre el comportamiento asintético de la
probabilidad de transicién y los tiempos medios de recurrencia. Sea

TY =min{t > T : X; =y}.
TEOREMA 5.7. Siy no es absorbente entonces

im P(z,y) = Lw(Ty = OO)
AR = e, ()
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DEMOSTRACION. Sélo podremos probarlo en el caso transitorio y positivo re-
currente. En el caso nulo recurrente, tendremos la convergencia en el sentido de
Cesaro.

Primero nos concentraremos en el caso x = y. Si y es transitorio entonces
]EU(TH) = oo y por lo tanto el enunciado es valido. Si por otra parte y es positivo
recurrente y nos concentramos en su clase de comunicacion, esta serd irreducible y
sabemos que P;(x,y) converge a v, donde v es la distribucién invariante dnica (en
la clase de comunicacién de y). Asi, los tiempos medios de ocupacién

1 t
Lt = */ ]_XS:y ds
t Jo

1 [t 1 [t
Ea(Ls) = 7/ Py (X, =) ds = 7/ Pu(z,y) ds 1o v,
0 0

satisfacen:

t t

Por otra parte, si TY = TV + Tgfl(X T") representa al tiempo del enésimo
retorno de la cadena al estado y, la propiedad de Markov fuerte nos dice que T;{
es una caminata aleatoria. Como T (XT1) se puede acotar en términos del tiempo
de visita a y por la cadena X1, 1,n,n > 0, que es finito por ser positivo recurrente,
vemos que E, (Ty) < 00, por lo que podemos aplicar la ley fuerte de los grandes
ntimeros y deducir que bajo P,, se tiene que T /n — E,(T¥). Por esto, observamos
que

Lig &4 +&n 1

T;{ Ty c(y) Ey (Ty)
donde & = Ti o 07y son variables exponenciales de pardmetro c(y) (a la cuales
también les aplicamos la ley fuerte de los grandes ndmeros). Finalmente, por
convergencia dominada vemos que
1
W EL(T,)’
lo cual prueba el resultado en este caso. O

E.(L:) —
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