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CAPÍTULO 1

Introducción

1. Definiciones y clasificación básica de procesos estocásticos

Un proceso estocástico es una colección de variables aleatorias (Xt)t∈T in-
dexadas por un conjunto T y definidas en algún espacio de probabilidad (Ω,F ,P).
Interpretamos al conjunto de ı́ndices T como un parámetro temporal; para nosotros
T será {0, . . . , n}, N, algún intervalo [0, t] ó [0,∞). Interpretamos a un proceso es-
tocástico como la evolución en el tiempo de algún fenómeno cuya dinámica se rige
por el azar. Un ejemplo sencillo de esto es la cantidad de soles que vamos acu-
mulando al participar en un juego de volados. Otro ejemplo es la evolución en el
tiempo de la reserva de una compañ́ıa de seguros. En el primer ejemplo, se puede
indexar al proceso por algún intervalo de naturales, en cuyo caso hablaremos de
un proceso estocástico a tiempo discreto. Además, dicho proceso toma valores
en los naturales, por lo que también se trata de un proceso con espacio de esta-
dos discreto. En el segundo caso, se puede pensar en un modelo indexado por un
subintervalo de [0,∞) y hablaremos de un proceso estocástico a tiempo continuo.
Además, en principio el valor de la reserva podŕıa ser cualquier real no-negativo y
por lo tanto hablamos de un proceso con espacio de estados continuo

Uno de los primeros resultados generales dentro de la teoŕıa de los procesos
estocásticos es el teorema de consistencia de Kolmogorov que nos permite construir
procesos estocásticos a partir de colecciones vectores aleatorios (que satisfacen la
condición técnica de ser consistentes). La prueba de este teorema se puede hacer
basándose en la existencia de una sucesión de variables aleatorias uniformes. Antes
de analizar por qué existe una sucesión de variables uniformes independientes,
ejemplificaremos cómo se pueden construir algunos de los procesos estocásticos
que analizaremos en este curso.

Ejemplo 1.1 (Caminatas aleatorias simples y el problema de la ruina). Imag-
inemos la siguiente situación: tengo un capital de 20 pesos al tiempo cero y cada
instante de tiempo apuesto un peso en un volado, ganándo si cae águila. ¿cómo
puedo estudiar matemáticamente a la evolución de mi capital en el tiempo? De par-
ticular interés es la variable aleatoria que nos indica el instante en que me arruino
por primera vez, misma que a priori podŕıa ser infinita si jamás me arruino.
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El modelo matemático es el siguiente: consideremos variables aleatorias

U1, U2, . . .

uniformes en (0, 1) e independientes. A la variable aleatoria 1Ui≤1/2, que toma los
valores cero y uno, la interpretaremos como indicándonos si el resultado del i-ésimo
volado es águila (cuando toma el valor uno) y por lo tanto, la variable 21Ui≤1/2−1
toma los valores 1 si cae águila y −1 si cae sol.

Ejercicio 1.1. Con el objeto de verificar que comprendemos la noción de
independencia, probar que las variables aleatorias 1U1≤1/2,1U2≤1/2, . . . son inde-
pendientes y con distribución Bernoulli de parámetro 1/2.

Finalmente, podemos definir

X0 = 20 y Xn+1 = Xn + 21Un+1≤1/2 − 1.

El siguiente código en R simula la evolución de mi fortuna.

C<-20 #C es un vector cuya entrada i será mi capital al tiempo i

aux <-C #Esta variable me dice cuál es el último valor de mi capital

while (aux >0) { #Mientras no me haya arruinado

aux <-aux+2*(runif (1) <1/2) -1 #actualizo mi capital al sumarle una variable

que toma valores -1 y 1 con probabilidad 1/2

C<-c(C,aux) #Agrego el último valor de mi fortuna al vector C

}

plot(C)

Listing 1.1. Ruina.R

En la Figura 1 podemos apreciar un ejemplo del resultado de correr el código
anterior.

Ejemplo 1.2 (Apostando con prisa). Modificaremos el ejemplo anterior como
sigue: tengo un capital de 20 pesos al tiempo cero y cada instante de tiempo
apuesto en un volado ya sea la mitad de mi fortuna si tengo más de 6 pesos o 2
pesos si mi fortuna es menor o igual a 6, ganando si cae águila.

Un modelo matemático es el siguiente: consideremos variables aleatorias U1,
U2, . . . uniformes en (0, 1) e independientes y definamos

X0 = 20 y Xn+1 = Xn +
(
2 ∗ 1Un+1≤1/2 − 1

){bXn/2c Xn > 6

2 Xn ≤ 6
.

El modelo anterior se puede implementar fácilmente en R con el códio siguiente.

C<-20 #C es un vector cuya entrada i será mi capital al tiempo i

fortuna <-C #Esta variable me dice cuál es el último valor de mi capital

while (fortuna >0){ #Mientras no me haya arruinado

monto <-2*(fortuna <=6)+floor(fortuna/2)*(fortuna >6) #Calculo el monto que

apostaré , que es la mitad de mi fortuna cuando tengo más de 6 pesos y

si no , dos pesos.
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Figura 1. Trayectoria de una caminata aleatoria simple que
comienza en 20 y es detenida al llegar a cero

fortuna <-fortuna+monto*(2*(runif (1) >1/2) -1) #actualizo mi capital al sumarle

una variable que toma valores -1 y 1 con probabilidad 1/2 multiplicada

por el monto de la apuesta

C<-c(C,fortuna) #Agrego el último valor de mi fortuna al vector C

}

plot(C)

Listing 1.2. Prisa.R

Por supuesto, esperamos que esta estrategia nos llege más rápido a la ruina. En la
Figura 2 podemos apreciar dos ejemplos de trayectorias simuladas de la evolución
de la fortuna bajo este esquema de apuestas.

Los dos ejemplos anteriores corresponden a procesos con tiempo y espacio
discreto. Ahora analizaremos un modelo a tiempo continuo y espacio discreto.

Ejemplo 1.3 (Contéos aleatorios ). Imaginemos que queremos modelar los
tiempos sucesivos en que cambiamos un foco en nuestro lugar de trabajo. Supon-
dremos que en cuanto se funde un foco lo cambiamos (instantáneamente) por uno
nuevo.

Es natural asumir que podemos modelar los tiempos de vida de los sucesivos
focos mediante una sucesión de variables aleatorias independientes. El supuesto
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Figura 2. Dos trayectorias que muestran la evlución de un cap-
ital al someterlo a un esquema de apuestas arriesgadas

adicional que impondremos es que éstas tienen distribución exponencial de tasa
λ > 0, donde la tasa es el rećıproco de la media. Sean U1, U2, . . . variables in-
dependientes de distribución uniforme en (0, 1) y definamos a Ti = − log(Ui) /λ.
Entonces T1, T2, . . . son variables aleatorias exponenciales independientes de tasa
λ. La variable Ti la interpretamos como el tiempo de vida del i-ésimo foco.

Puesto que la distribución exponencial está caracterizada por la propiedad de
pérdida de memoria

P(Si > t+ s |Si > t) = P(Si > s) ,

el suponer que el tiempo de vida de un foco tiene distribución exponencial puede
ser cuestionable puesto que debe haber un efecto de desgaste en su tiempo de vida.
Sin embargo, lo que se espera con el modelo es que capture la escencia del fenómeno
que queremos modelar.

El proceso estocástico de interés es el que va midiendo la cantidad de focos que
hemos cambiado en el intervalo de tiempo [0, t] que mediremos en años. Sean

T0 = 0, Tn+1 = Tn + Sn+1 y Nt =

∞∑
i=1

1Ti≤t.

Entonces se interpreta a Tn como el instante de tiempo en el que cambiamos el
n-ésimo foco y a Nt como la cantidad de focos que hemos cambiado en [0, t].

Se puede simular a la función aleatoria t 7→ Nt en el intervalo [0, 1] mediante
el siguiente código.

lambda =24*360/1000 # Media , en a\~nos , del tiempo de vida de un foco

xi=rexp(1,lambda) # xi representa el tiempo en el que se cambió el último

foco
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Figura 3. Los tiempos sucesivos en los que se cambia un foco a
lo largo de 1 y 8 años

T=c(0,xi) # El vector T irá acumulando los tiempos en que vamos

cambiando los focos

N=0 # N nos dirá cuantos focos hemos cambiado al final de un a~no

while(xi <1){ # Mientras no haya pasado un a~no

N<-N+1 # Aumentamos el número de focos cambiados en uno

xi<-xi+rexp(1,lambda) # Vemos el tiempo en el que debemos cambiar el

siguiente foco

T=c(T,xi) # Aumentamos un evento temporal

}

plot(T,c(1:(N+2)))

Listing 1.3. Poisson.R

En la Figura 3 podemos observar dos trayectorias con los tiempos en los que
se cambian los focos, primero en un año y luego en ocho. Podemos observar una
cierta regularidad, como si hubiera cierta tendencia determinista (una linea recta)
y unas fluctuaciones aleatorias que capturan los sucesivos tiempos de cambio de
foco.

Ejemplo 1.4 (Tiempos de espera). Imaginemos la fila de un banco. Supong-
amos que los clientes van llegando a tiempos aleatorios y que cada uno requiere un
servicio que es también una variable aleatoria. Lo que se quiere medir es: al correr
el sistema, si un cliente llega al momento t, ‘?Cuánto debe esperar para salir del
banco?

Un modelo posible se enfoca en los tiempos entre los arribos de los clientes
y supone que éstos son variables aleatorias exponenciales de algún parámetro λi.
Además, podemos suponer que los tiempos de servicio son variables aleatorias in-
dependientes con distribución común, que fijaremos como la exponencial de tasa
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λs para fijar ideas. Se supone que todas las variables en cuestón son independi-
entes. Este modelo, aunque sea criticable en su supuesto de pérdida de memoria
heredado de las variables exponenciales, tiene la particularidad de que se pueden
hacer cálculos expĺıcitos que no son posibles en modelos más generales. Además,
ejemplifica algunas caracteŕısticas de los modelos más generales.

Sean S1, S2, . . . variables exponenciales independientes de parámetro λi y ξ1,
ξ2, . . . variables exponenciales independientes (entre si y de las Si) de parámetro
λs. Si

T0 = 0, Tn+1 = Tn + Sn+1, Nt =

∞∑
n=1

1Tn≤t, R0 = 0 y Rn+1 = Rn + ξn+1,

definimos entonces los procesos

Xt = RNt
− t y Qt = Xt −min

s≤t
Xs.

Entonces Qt representa el tiempo de servicio necesario para atender a los clientes
que se encuentran presentes en el banco al tiempo t.

Por otra parte, podemos simular al modelo matemático de la cola mediante el
siguiente código en R.

li<-1 # Tasa interarribo

ls<-2 # Recı́proco de la media de servicio

T=8*60 # Tiempo de la simulación

t<-c(0,rexp(1,li)) # Inicialización del vector de eventos temporales

q<-c(0,rexp(1,ls)) # Inicialización del vector de estado de la cola

while(tail(t,1)<T){ # Mientras no haya sobrepasado el umbral temporal

taux=rexp(1,li) # Me fijo en cuánto falta para la llegada del próximo

cliente

if(taux <tail(q,1)){ # En particular si el próximo cliente llega antes de que

la cola se vacı́e

t<-c(t,tail(t,1)+taux) #En cuyo caso agrego el evento de llegada

q<-c(q,tail(q,1)-taux+rexp(1,ls)) # Junto con el tiempo de

servicio que requiere menos el que ya he realizado

}

else{ # Si el próximo cliente llega después de que la cola se vacı́e

t<-c(t,tail(t,1)+tail(q,1),tail(t,1)+taux) #Agrego dos eventos

temporales: cuando se vacı́a la cola y cuando llega el próximo

cliente

q<-c(q,0,rexp(1,ls)) #Agrego además un estado de cola=0 más el

servicio del próximo cliente que llega

}

}

plot(t,q)

Listing 1.4. Cola.R

Al ejecutar el código se obtienen gráficos como los de la Figura 4.
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Figura 4. Estado de la cola cuando λi = 1 y λs = 1, 2

2. La construcción fundamental de una sucesión de variables aleatorias
independientes

Como vimos en los ejemplos anteriores, y es cierto en gran generalidad, pode-
mos construir procesos estocásticos muy generales a partir de sucesiones de vari-
ables aleatorias inependientes. En cierto sentido, dichas sucesiones son los ejemplos
más sencillos de procesos estocásticos, en los que no hay realmente una evolución.
Al ser, sin embargo, los bloques fundamentales con los que se construyen todos los
demás, nos detendremos en su construcción matemática.

2.1. El modelo matemático de una sucesión de volados. Primero se
ejemplificará la construcción de una sucesión de variables aleatorias independientes
a partir de una sola variable.

Consideremos al espacio de probabilidad (Ω,F ,P) en el que Ω = (0, 1], F =
B(0,1] y P es la medida de Lebesgue restringida a Ω. Definamos a las variables
aleatorias dn : Ω→ R como sigue: a cada ω ∈ Ω, se le puede asignar su expansión
diádica con colas infinitas de tal forma que

ω =

∞∑
n=1

dn(ω)

2n
,

donde cada dn es cero o uno. Aunque la expansión diádica todav́ıa no esté bien
definida, puesto que por ejemplo a 1/2 se le podŕıa asociar ya sea (1, 0, 0, . . .) o
(0, 1, 1, . . .), la expansión diádica con colas infinitas, que es la segunda en nuestro
ejemplo, śı lo está. Más formalmente, definamos

d1(ω) =

{
0 si ω ∈ (0, 1/2]

1 si ω ∈ (1/2, 1]
.
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Notemos que si ω1 = 2ω − d1(ω), entonces ω1 ∈ (0, 1]; recursivamente, definimos

dn+1(ω) = d1(ωn) y ωn+1 = 2ωn − d1(ωn) ∈ (0, 1].

Es fácil ver que de hecho,

d2(ω) = 1(1/4,2/4] + 1(3/4,4/4],

d3(ω) = 1(1/8,2/8] + 1(3/8,4/8] + 1(5/8,6/8] + 1(7/8,8/8]

y en general

dn(ω) =

2n−1∑
i=1

1((2i−1)/2n,2i/2n].

Esto implica inmediatamente que si u1, . . . , un ∈ {0, 1} entonces el conjunto

{d1 = u1, . . . , dn = un}

es un intervalo de longitud 1/2n y que por lo tanto d1, . . . , dn son variables aleato-
rias independientes de distribución Bernoulli de parámetro 1/2.

2.2. Una sucesión de variables aleatorias uniformes independientes.
Ahora demostraremos que si (Xi)i≥1 son variables aleatorias independientes con

distribución Bernoulli de parámetro 1/2 (definidas en otro espacio de probabilidad)
entonces U =

∑
i≥1Xi/2

i tiene distribución uniforme. En efecto, puesto que

P(X1 = u1, . . . , Xn = un) = 1/2n = P(d1 = u1, . . . , dn = un) ,

vemos que

P

(
n∑
i=1

Xi/2
i < x

)
= P

(
n∑
i=1

di/2
i < x

)
.

Por otro lado,

U = lim
n

n∑
i=1

Xi/2
i,

y de hecho la sucesión de variables aleatorias es creciente. Por lo tanto U es variable
aleatoria y

P(U < x) = lim
n→∞

P

(
n∑
i=1

Xi/2
i < x

)
= lim
n→∞

P

(
n∑
i=1

di/2
i < x

)
= P((0, x]) = x.

Aśı, vemos que U es una variable uniforme.
Ahora utilizaremos lo anterior para mostrar que existe un espacio de probabil-

idad en el que están definidas una sucesión de variables aleatorias uniformes inde-
pendientes. De hecho el espacio de probabilidad que consideraremos es el mismo
(Ω,F ,P) que en la Subsección 2.1. Como Z+ y Z2

+ tienen la misma cardinalidad,



2. Variables uniformes independientes 9

consideremos una biyección de φ : Z2
+ → Z+. Definamos dni = dφ(n,i) y para cada

n ∈ Z+, sea

Un =
∑
i≥1

dni
2i
.

Como (dni )i≥1 son variables aleatorias independientes de distribución Bernoulli de

parámetro 1/2, se sique que Un tiene distribución uniforme para cada n ∈ N.
Se afirma ahora que las variables (Un)n≥1 son independientes. En efecto, esto es
consecuencia del siguiente lema, un tanto más general. Notemos que Un es medible
respecto de la σ-álgebra generada por (dni )i≥1, a la cual llamaremos Fn.

Lema 1. Sean Fn,i, i ≥ 1, n ≥ 1 σ-álgebras independientes y definamos

Fn = σ(Fn,1,Fn,2, . . .) .

Entonces Fn, n ≥ 1 son σ-álgebras independientes.

Demostración. Debemos mostrar que para todo A1 ∈ F1, . . . , An ∈ Fn, se
tiene que

(1) P(A1 ∩ · · · ∩An) = P(A1) · · ·P(An) .

Sea

Cn = {A1 ∩ · · · ∩Am : m ≥ 1 y Aj ∈ ∪i≥1Fn,i para j = 1, . . . ,m} .

Puesto que ⋃
i≥1

Fn,i ⊂ Cn ⊂ Fn,

vemos que

σ(Cn) = Fn.

Por otra parte, es fácil ver que Cn es un π-sistema.
Consideremos ahora la clase

M1 = {A ∈ Fk : P(A ∩B) = P(A)P(B) si B = B1 ∩ · · · ∩Bn con Bj ∈ Cj} .

Es fácil ver que Mk es un λ-sistema que contiene, por hipótesis a C1. Por lo tanto

M1 = F1.

Ahora consideramos a

M2 = {A ∈ F2 : P(A ∩B) = P(A)P(B)

si B = B1 ∩B3 ∩ · · · ∩Bn con B1 ∈ F1 y Bj ∈ Cj para j ≥ 3} .

Se prueba entonces que M2 es un λ-sistema que por hipótesis y la igualdad M1 =
F1 contiene a C2. Al aplicar este razonamiento sucesivamente, obtenemos la igual-
dad (1). �
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2.3. Una sucesión de variables aleatorias independientes con dis-
tribuciones arbitrarias. Ahora utilizaremos la construcción de la sucesión de
variables aleatorias uniformes independientes para demostrar el siguiente resul-
tado:

Teorema 1.1. Sean µn, n ≥ 1 medidas de probabilidad en R. Entonces ex-
iste un espacio de probabilidad (Ω,F ,P) y una sucesión de variables aleatorias
independientes Xn : Ω→ R, n ≥ 1 tales que la distribución de Xn es µn.

La herramienta principal de la construcción será el siguiente lema: (tomado
de Billingsley p. 190). Recordemos que una función F : R → [0, 1] es la función
de distribución de una variable aleatoria real si y sólo si es no decreciente, con-
tinua por la derecha (y con ĺımites por la izquierda) tal que limx→−∞ F (x) = 0 y
limx→∞ F (x) = 1.

Definición. La función de cuantiles de una función de distribución F es
la función φ : (0, 1)→ R dada por

φ(u) = inf {x ∈ R : u ≤ F (x)} .

La función de cuantiles satisface la igualdad

φ(u) ≤ x⇔ u ≤ F (x)

que se demostrará posteriormente. De esta igualdad se deduce la medibilidad de
φ.

Prueba del Teorema 1.1. Sabemos que existe un espacio de probabilidad
(Ω,F ,P) en el que existe una sucesión de variables aleatorias independientes
(Un)n≥1 uniformes en (0, 1). Sea Fn la función de distribución asociada a la medida
de probabilidad µn y φn la función de cuantiles de Fn. Como φn es una función
medible, Xn = φn(Un) es una variable aleatoria. Además, como las variables
Un, 6= 1 son independientes, también lo son las variables Xn, n ≥ 1:

{X1 ∈ A1, . . . , Xn ∈ An} =
{
U1,∈ φ−1

1 (A1) , . . . , Un,∈ φ−1
n (An)

}
.

Finalmente:

P
(
X−1
i ((−∞, x])

)
= P

(
U−1
i

(
φ−1
i ((−∞, x])

))
= P

(
U−1
i ((0, Fi(x)])

)
= Fi(x) ,

por lo que Xi tiene distribución µi. �

Ahora demostremos las propiedades de la función de cuantiles φ asociada a la
función de distribución F . Sea u ∈ (0, 1); entonces el conjunto {x ∈ R : u ≤ F (x)}
es no vaćıo y como F es no decreciente, es un intervalo ya sea de la forma [φ(u) ,∞)
o (φ(u) ,∞), ya que φ(u) es el ı́nfimo del conjunto considerado. La segunda opción
se descarta al notar que F es continua por la derecha. Por lo tanto, u ≤ F (x) si y
sólo si φ(u) ≤ x.



CAPÍTULO 2

Cadenas de Markov a tiempo discreto

La Figura 1 representa un laberinto. Imaginemos que colocamos una rata en la
esquina inferior izquierda y un plato de comida en la esquina superior derecha. Para
modelar la trayectoria que sigue la rata hasta encontrar la comida, supongamos
que cuando se encuentra en un cuarto del laberinto, la rata va a cualquier otro con
la misma probabilidad. Un modelo matemático para esta situación es el siguiente.
Enumeremos los cuartos del laberinto de izquierda a derecha, de abajo a arriba,
por lo que la rata comienza en el cuarto 1 y encuentra la comida en el cuarto 9.
Definamos Pi,j como la probabilidad con que la rata pasa del cuarto i al cuarto j;
por ejemplo, vemos que

P5,j =

{
1/4 j ∈ {2, 4, 6, 8}
0 j 6∈ {2, 4, 6, 8}

.

Figura 1. Laberinto para un experimento aleatorio
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Esta información se puede organizar de forma matricial de la siguiente manera:

P =



0 1/2 0 1/2 0 0 0 0 0
1/3 0 1/3 0 1/3 0 0 0 0
0 1/2 0 0 0 1/2 0 0 0

1/3 0 0 0 1/3 0 1/3 0 0
0 1/4 0 1/4 0 1/4 0 1/4 0
0 0 1/3 0 1/3 0 0 0 1/3
0 0 0 1/2 0 0 0 1/2 0
0 0 0 0 1/3 0 1/3 0 1/3
0 0 0 0 0 1/2 0 1/2 0


Entonces la probabilidad de que la rata siga la trayectoria 1, 4, 7, 8, 9 para encontrar
la comida es P1,4P4,7P7,8P8,9. Notemos que

(1) Pi,j ≥ 0 para todo i y j y
(2)

∑
j Pi,j = 1 para toda i.

A una matriz con estas dos caracteŕısticas se le llama matriz estocástica. La
segunda condición nos dice que Pi,1, . . . , Pi,9 es una distribución de probabilidad
sobre el conjunto {1, . . . , 9}. Si definimos a φi como la función de quantiles asoci-
ada, tendremos que φi(Uj) es una variable aleatoria con la misma distribución que
el cuarto al que pasa la rata si está en el cuarto j. Es por esto que si definitmos

X0 = 1 y Xn+1 = φXn
(Un+1) ,

las variables X0, X1, . . . nos modelan el movimiento de la rata por el laberinto. Para
poder obtener la trayectoria de la rata detenida hasta que encuentre la comida,
podŕıamos modificar la matriz P en

P̃ =



0 1/2 0 1/2 0 0 0 0 0
1/3 0 1/3 0 1/3 0 0 0 0
0 1/2 0 0 0 1/2 0 0 0

1/3 0 0 0 1/3 0 1/3 0 0
0 1/4 0 1/4 0 1/4 0 1/4 0
0 0 1/3 0 1/3 0 0 0 1/3
0 0 0 1/2 0 0 0 1/2 0
0 0 0 0 1/3 0 1/3 0 1/3
0 0 0 0 0 0 0 0 1


que difiere de P salvo en el último renglón, en el cual especificamos que una vez
que la rata llegue al cuarto 9 se quede ah́ı. Si φ̃i son las funciones de cuantiles
asociadas a los renglones de P̃ , podemos entonces modelar la trayectoria de la rata,
detenida cuando alcanza la comida mediante la sucesión

X̃0 = 1 y X̃n+1 = φ̃X̃n
(Un+1) .
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Se presenta a continuación un código en R para simular la trayectoria de la
rata.

P=matrix(c(0,1/2,0,1/2,0,0,0,0,0,1/3,0,1/3,0,1/3,0,0,0,0,0,1/2,0,0,0,1/2,0,0,0,1

/3,0,0,0,1/3,0,1/3,0,0,0,1/4,0,1/4,0,1/4,0,1/4,0,0,0,1/3,0,1/3,0,0,0,1/

3,0,0,0,1/2,0,0,0,1/2,0,0,0,0,0,1/3,0,1/3,0,1/3,0,0,0,0,0,1/2,0,1/2,0) ,9)

# Genera la matriz de transición para la rata en un laberinto

X<-1 # El vector X acumulará la trayectoria que sigue la rata; comienza

en el cuarto 1.

N<-0 # Paso en el que vamos

while(tail(X,1)!=9){ #Mientras la rata no encuentre la comida del cuarto 9

X<-c(X,sample(c(1:9) ,1,prob=P[tail(X,1) ,])) # Escogemos un cuarto al azar a

partir del que se encuentra

N<-N+1 # Especificamos que se ha dado un paso más

}

Listing 2.1. Rata.R

Como un ejemplo, se obtuvieron las siguientes dos trayectorias simuladas

• 1 2 3 2 1 2 1 2 1 4 1 4 1 4 1 2 3 6 5 6 5 2 3 2 3 6 3 2 3 6 3 2 1 2 1 2 3 6 9
• 1 4 5 6 3 6 9

A continuación presentamos una serie de preguntas para las cuales la teoŕıa sub-
secuente encuentra una respuesta.

• ¿Cuánto tarda la rata en promedio en encontra la comida si comienza en
el cuarto i?

• Si quitamos la comida y nada más seguimos la trayectoria de la rata,
¿Cuál es la probabilidad de que se encuentre en el cuarto j en el paso n si
comienza en i? Parte de la teoŕıa que veremos nos dice que la probabilidad
se estabiliza conforme n→∞.

• Si de nuevo seguimos sólamente la trayectoria sin comida, ¿estamos se-
guros de regresar al punto inicial?

• Si agregamos la comida, ¿Cuántas veces regresará la rata al cuarto inicial
antes de encontrar la comida?

A continuación daremos un marco teórico que permite generalizar al modelo
anterior. Se trata de las cadenas de Markov cuyo estudio abarcará este caṕıtulo.

Sea E un conjunto a lo más numerable al que llamaremos espacio de estados.
Consideremos a una colección numérica P = (Px,y)x,y∈E a la que pensaremos como

una matriz indexada por E. Supongamos que

(1) Px,y ≥ 0 para todo x y y y
(2)

∑
y Px,y = 1 para toda x.

A P le llamamos matriz estocástica. Consideremos también una distribución de
probabilidad π sobre E, que podemos pensar como un vector (digamos rengón)
π = (πx)x∈E .

Definición. Una cadena de Markov con matriz de transición P y dis-
tribución inicial π es un proceso estocástico (Xn)n∈N con valores en E tal que si
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x0, . . . , x1 ∈ E entonces

P(X0 = x0, . . . , Xn = xn) = πx0
Px0,x1

· · ·Pxn−1,xn
.

Teorema 2.1. Dada una matriz de transición P y una distribución inicial π
existe un espacio de probabilidad en el que están definidas una sucesión de variables
aleatorias (Xn)n∈N definidas en él que conforman una cadena de Markov con matriz
de transición P y distribución inicial π.

La demostración del teorema es importante pues nos provée de un algoritmo
de simulación para cadenas de Markov. Representa otra ilustración del hecho de
que cualquier proceso estocástico se puede construir mediante variables uniformes
independientes.

Demostración. Al enumerar a los elementos de E, podemos pensar que E =
{0, . . . , n} ó E = N. Sea φi la función de cuantiles asociada al renglón i de P , φ la
función de cuantiles de π y sea (Ω,F ,P) un espacio de probabilidad en el que están
definidas una sucesión (Ui)i∈N de variables uniformes independientes. Definimos a

X0 = φ(U0) y Xn+1 = φXn(Un+1) .

Por definición de función de cuantiles:

P(φx(Uj) = y) = Px,y,

por lo que se sigue que si x0, . . . , xn ∈ E entonces

P(X0 = x0, . . . , Xn = xn)

= P
(
φ(U0) = x0, φx0(U1) = x1, . . . , φxn−1(Un) = xn

)
= P(φ(U0) = x0)

∏
i = 1n−1P

(
φxi−1

(U1) = x1

)
= πx0

Px0,x1
· · ·Pxn−1,xn

.

�

Una de las caracteŕısticas principales de las cadenas de Markov es la propiedad
de Markov:

Proposición 2.1 (Propiedad de Markov). Sea X una cadena de Markov de
distribución inicial π y transición P . Si P(X0 = x0, . . . , Xn = xn) > 0 entonces

P(Xn+1 = xn+1 |X0 = x0, . . . , Xn = xn) = P(Xn+1 = xn+1 |Xn = xn) .

La interpretación es que la evolución futura de la cadena sólo depende del
pasado a través del presente.

Demostración. Calculemos el lado izquierdo:

P(X0 = x0, . . . , Xn+1 = xn+1) = πx0
Px0,x1

· · ·Pxn,xn+1

por lo cual

P(Xn+1 = xn+1 |X0 = x0, . . . , Xn = xn) = Pxn,xn+1
.
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Por otra parte, puesto que

{Xn = xn} =
⋃

x0,...,xn−1

{X0 = x0, . . . , Xn−1 = xn−1, Xn = xn}

donde la unión es disjunta, se sigue que

P(Xn = xn) =
∑

x0,...,xn

πx0Px0,x1 · · ·Pxn−1,xn

y que

P(Xn = xn, Xn+1 = xn+1) =
∑

x0,...,xn

πx0
Px0,x1

· · ·Pxn−1,xn
Pxn,xn+1

por lo que

P(Xn+1 = xn+1 |Xn = xn) = Pxn,xn+1
.

�

Esta misma técnica de descomposición del espacio de estados nos lleva a lo que
se conoce como las ecuaciones de Chapman-Kolmogorov.

Proposición 2.2. Sea X una cadena de Markov de distribución inicial π y
transición P . Si Pnx,y = P(Xn = y |X0 = x) entonces

Pn+m
x,z =

∑
y∈E

Pmx,yP
n
y,z.

La ecuación anterior recuerda mucho a la de multiplicación de matrices. En
efecto, lo que nos dice es que Pnx,y es la enésima potencia de la matriz de transición
P .

Demostración. Al generalizar la idea de la prueba anterior, vemos que si
definimos x0 = x y xn+m = z entonces

Pn+m
x,z

P(Xn+m = z |X0 = x)

=
∑

x1,...,xn+m−1∈E
Px0,x1

· · ·Pxn+m−1,xn+m

=
∑
y∈E

∑
x1,...,xm−1∈E

Px0,x1
· · ·Pxm−1,y

∑
xm+1,...,xn+m−1∈E

Py,xm+1
· · ·Pxn+m−1,z

=
∑
y∈E

Pmx,yP
n
y,z.

�
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Figura 2. 100, 1000 y 10000 pasos de una caminata aleatoria
simple con p = 1/4

Por supuesto, en general no es posible calcular expĺıcitamente las potencias
de la matriz de transición. Sin embargo, un paquete como R es capáz de realizar
este producto de manera numérica y aśı poder resolver problemas de orden práctico
que se modelen mediante cadenas de Markov. A continuación, se presentan algunos
ejemplos de cadenas de Markov.

Ejemplo 2.1. La caminata aleatoria simple es una cadena de Markov cuyo
espacio de estados es Z y es tal que Pi,i+1 = 1− Pi,i−1 = p para alguna p ∈ (0, 1).
Este es uno de los ejemplos introductorios. Basta entonces mencionar que se puede
simular una trayectoria de longitud fija n (de hecho 2 trayectorias) mediante el
siguiente código.

# Código para simular una trayectoria de n pasos de una caminata aleatoria

simple de parámetro p

p<-1/2

n<-10000

U<-runif(n)

Y<-2*(U<p)-1

X<-cumsum(Y)

plot(X[1:100] , type="l")

quartz () #usar x11() en UNIX y windows () en Windows , esto es para mac.

plot(X[1:1000] , type="l")

quartz ()

plot(X[1:10000] , type="l")

Listing 2.2. CAS1.R

Se pueden obtener entonces trayectorias como las de las Figuras 2 y 3 en las que
se examinan trayectorias de 100, 1000 y 10000 pasos respectivamente para los
parámetros 1/4 y 1/2. En la primera se aprecia la ley fuerte de los grandes números.

Por otra parte, se pueden calcular numéricamente las probabilidades de tran-
sición a n pasos mediante el código:

pa<-.5 #Probabilidad de ir de i a i+1

n<-6 #Cantidad de pasos que daremos



17

0 20 40 60 80 100

-2
5

-2
0

-1
5

-1
0

-5
0

Index

X
[1
:1
00
]

0 200 400 600 800 1000

-5
0

-4
0

-3
0

-2
0

-1
0

0

Index

X
[1
:1
00
0]

0 2000 4000 6000 8000 10000

-2
00

-1
50

-1
00

-5
0

0

Index

X
[1
:1
00
00
]

Figura 3. 100, 1000 y 10000 pasos de una caminata aleatoria
simple con p = 1/2

p<-matrix(0,n+1,2*n+1) #La entrada P[i,j] nos da la probabilidad de

encontrarnos en j-i al paso i-1

p[1,1] <-1 #Inicialización : comenzamos en 0 al paso 0 con probabilidad 1

for(i in 1:n){ #Con cada paso actualizamos nuestras probabilidades

p[i+1,]=(1-pa)*p[i,]+pa*c(0,0,p[i ,1:(2*n-1)])

}

Listing 2.3. CASnPasos.R

Podemos entonces obtener la matriz P tal que Pi,j nos da la probabilidad de que
una caminata aleatoria simple esté en el estado j− i al paso i−1. Para que cupiera
en la página sólo se corrió con n = 6, pero computacionalmente n = 1000 no
representa ningún problema. Una vez almacenados estos datos se pueden utilizar
para obtener numericamente la media, varianza, o la esperanza de alguna otra
función de la variable aleatoria que nos mide la posición después de n pasos.

1 2 3 4 5 6 7 8 9 10 11 12 13

1 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.50 0.00 0.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
3 0.25 0.00 0.50 0.00 0.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.12 0.00 0.38 0.00 0.38 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00
5 0.06 0.00 0.25 0.00 0.38 0.00 0.25 0.00 0.06 0.00 0.00 0.00 0.00
6 0.03 0.00 0.16 0.00 0.31 0.00 0.31 0.00 0.16 0.00 0.03 0.00 0.00
7 0.02 0.00 0.09 0.00 0.23 0.00 0.31 0.00 0.23 0.00 0.09 0.00 0.02

Ejemplo 2.2 (Cadena de nacimiento y muerte). Se trata de una cadena de
Markov cuyo espacio de estados es E = {0, . . . , n} ó N = {0, 1, 2, . . .} con probabil-
idades de transición son Pi,i+1 = p(i) y Pi,i−1 = q(i) donde 1− q(i) = p(i) ∈ [0, 1].
(Definimos q(0) = 0 y si E = {0, . . . , n} entonces p(n) = 0.)

Ejemplo 2.3 (Cadena de Ehrenfest). En este ejemplo hay dos urnas, con bolas
numeradas del 1 al n repartidas entre ambas. A cada instante de tiempo se escoge
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Figura 4. Trayectoria simulada de 1000 pasos de la cadena de
Ehrenfest con n = 1000

un número al azar entre 1 y n y la bola con ese número se cambia de urna. Lo que
se mide es la cantidad de bolas en la urna 1 (digamos). Esta será una cadena de
Markov con espacio de estados E = {0, . . . , n} y matriz de transición P dada por

P0,1 = 1 = Pn,n−1, Pi,i+1 = 1− i/n si i < n yPi,i−1 = i/n si i > 0.

Este es un caso particular de la cadena de nacimiento y muerte con espacio de
estados finito. Se puede simular la cadena mediante un código como el siguiente:

# Código para simular una trayectoria de m pasos de una cadena de Ehrenfest con

espacio de estados {0,...,n}.

n<-1000

m<-1000

U<-runif(m)

X<-n/2

for(i in 2:m){

aux <-tail(X,1)

if(aux ==0){X<-c(X,1)}

else if (aux==n){X<-c(X,n-1)}

else {X<-c(X,aux+1-2*(U[i]<aux/n))}

}

plot(X,type="l")

Listing 2.4. Ehrenfest.R

Con él, se obtuvo la Figura 4.

Como ejemplo final, el lector puede verificar la liga http://www.r-bloggers.

com/basics-on-markov-chain-for-parents/ a un blog en el que se interpreta
al juego de serpientes y escaleras en términos de cadenas de Markov con código en
R para simular el desarrollo del juego.

http://www.r-bloggers.com/basics-on-markov-chain-for-parents/
http://www.r-bloggers.com/basics-on-markov-chain-for-parents/
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1. Clases de comunicación

Sean P una matriz de transición sobre E y X una cadena de Markov con
matriz de transición P y distribución inicial ν tal que νx > 0 para toda x ∈ E.
Denotaremos por Px a P condicionada por X0 = x. Puesto que

Px(Xn = y) =
∑

i1,...,in−1∈E
Px(X1 = x1, . . . , Xn−1 = xn−1, Xn = y) ,

vemos que

Px(Xn = y) =
∑

i1,...,in

Px,x1
· · ·Pxn−1,y.

Por lo tanto, si se introducen a las potencias de la matriz de transición Pn, n ≥ 1
(y se define P 0

x,y = δx,y) vemos que

Px(Xn = y) = Pnx,y.

Sean x y y dos estados de E. Diremos que x conduce a y si existe n ≥ 0 tal
que Pnx,y > 0. Claramente esto ocurre si y sólo si existen x0, . . . , xn con x0 = x y
xn = y tales que Pxk−1,xk

> 0. Cuando x conduce a y y y conduce a x, diremos
que x y y se comunican y lo denotaremos mediante x ∼ y.

Proposición 2.3. La relación x ∼ y es una relación de equivalencia en E.

A las clases de equivalencia inducidas por la relación ∼ les llamaremos clases
de comunicación.

Demostración.

Reflexividad: Puesto que P 0
x,x = 1, vemos que x ∼ x.

Simetŕıa: Por definición x ∼ y si y sólo si x ∼ y.
Transitividad: Si x ∼ y y y ∼ z, sean m y n en N tales que Pmx,y > 0 y
Pny,z > 0. Puesto que

Pn+m
x,z ≥ Pnx,yPmy,z > 0,

vemos que x conduce a z y un argumento análogo muestra que entonces
x ∼ z.

�

Se dice que una cadena de Markov es irreducible si tiene una sola clase de
comunicación. A la clase de comunicación a la que pertenece el estado x ∈ E la
denotamos por Cx; expĺıcitamente:

Cx = {y ∈ E : x ∼ y} .

El concepto de clase de comunicación nos permite dar una primera descom-
posición del espacio de estados. Ésta se puede refinar al introducir el concepto
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de clase de comunicación abierta y cerrada. Este concepto es útil pues se puede
reducir el espacio de estados de una cadena de Markov a una clase de comunicación
cerrada.

Definición. Sea C un subconjunto del espacio de estados E. Decimos que C
es un conjunto cerrado si para toda y ∈ E \C, x no conduce a y. Un conjunto
abierto es aquel que no es cerrado.

2. La propiedad de Markov fuerte

La propiedad de Markov fuerte es una extensión de la propiedad de Markov a
ciertos tiempos aleatorios. Es una herramienta de gran utilidad. En particular nos
servirá para estudiar los conceptos de transitoriedad y recurrencia. Antes de pasar
a la propiedad de Markov fuerte, veamos la siguiente extensión de la propiedad de
Markov.

Proposición 2.4. Sea A cualquier subconjunto de En tal que P(A ∩ {Xn = y}) >
0. Entonces, condicionalmente a A ∩ {Xn = y}, el proceso (Xn+m,m ≥ 0) es una
cadena de Markov que comienza en y y tiene matriz de transición P .

Demostración. Al descomponer al conjunto A como unión de eventos ele-
mentales de la forma {(x0, . . . , xn−1)}, vemos que

P(A,Xn = y,Xn+1 = y1, . . . , Xn+m = ym)

=
∑

(x0,...,xn−1)∈A

P(X0 = x0, . . . , Xn−1 = xn−1, Xn = y,Xn+1 = y1, . . . , Xn+m = ym)

=
∑

(x0,...,xn−1)∈A

Px1,x1
· · ·Pxn−1,yPy,y1 · · ·Pym−1,ym

Aśı, se obtiene

P(Xn+1 = y1, . . . , Xn+m = ym |A,Xn = y) = Pxn−1,yPy,y1 · · ·Pym−1,ym .

�

Ahora verificaremos que la propiedad de Markov se extiende a ciertos tiempos
aleatorios. Un tiempo aleatorio es una variable aleatoria T : Ω → N ∪ {∞}.
Dicho tiempo aleatorio es finito si T (ω) ∈ N para toda ω ∈ Ω y es acotado si existe
K ∈ N tal que T (ω) ≤ K para todo ω ∈ Ω.

Definición. Un tiempo aleatorio T es un tiempo de paro si para toda n ∈ N
existe An ⊂ En+1 tal que

{T = n} = {(X0, . . . , Xn) ∈ An} .

Intuitivamente un tiempo de paro es un tiempo que obtenemos de observar la
trayectoria hasta que se cumpla una condición. El instante en que se cumple es el
tiempo de paro.
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Nuestro primer ejemplo de un tiempo de paro es el tiempo T1 en que una
cadena X regresa a su estado inicial. En otras palabras:

T1 =

{
∞ Xn 6= X0 para toda n

min {n ≥ 1 : Xn = X0} en otro caso
.

En efecto es un tiempo de paro puesto que

{T1 = 1} = {X1 = X0}
y para n ≥ 2

{T1 = n} = {X1 6= X0, . . . Xn−1 6= X0, Xn = X0} .
De igual manera, el tiempo Tn en que ocurre la enésima visita al estado inicial es
un tiempo de paro. Esto se prueba por inducción al notar que ya hemos verificado
la base inductiva n = 1 y por otro lado

{Tn+1 = m} =
⋃
l<m

{Tn = l} ∩ {Xl+1 6= X0, . . . , Xm−1 6= X0, Xm = X0} .

Otro ejemplo de un tiempo de paro es la primera vez HA en que la cadena accede
a un subconjunto A del espacio de estados. En otras palabras:

HA =

{
∞ Xn ∈ E \A para toda n

min {n ≥ 0 : Xn ∈ A} en otro caso
.

Teorema 2.2 (Propiedad de Markov fuerte). Sea A cualquier subconjunto
de En+1 tal que P(A,Xn = y, T = n) > 0. Entonces, condicionalmente a A ∩
{T = n,Xn = y}, el proceso (Xn+m,m ≥ 0) es una cadena de Markov que comienza
en y y tiene matriz de transición P .

Demostración. Sea An ⊂ En+1 tal que

{T = n} = {(X0, . . . , Xn) ∈ An} .
Al descomponer al conjunto A como unión de eventos elementales de la forma
{(x0, . . . , xn−1)}, vemos que

P(A, T = n,Xn = y,Xn+1 = y1, . . . , Xn+m = ym)

=
∑

(x0,...,xn)∈A∩An

P(X0 = x0, . . . , Xn−1 = xn−1, Xn = y,Xn+1 = y1, . . . , Xn+m = ym)

=
∑

(x0,...,xn)∈A∩An

Px1,x1
· · ·Pxn−1,yPy,y1 · · ·Pym−1,ym

Aśı, se obtiene

P(Xn+1 = y1, . . . , Xn+m = ym |A, T = n,Xn = y) = Pxn−1,yPy,y1 · · ·Pym−1,ym .

�
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3. Transitoriedad y recurrencia

Pasaremos ahora al análisis de dos conceptos que permiten hacer una distinción
entre los estados de una cadena de Markov, de acuerdo a si siempre serán revisitados
o no.

Sea x ∈ E. Definamos a la cantidad de visitas al estado x como la variable
aleatoria

Vx =

∞∑
n=0

1Xn=x.

Esta variable aleatoria podŕıa tomar el valor infinito. Sin embargo, un resultado
curioso es que si toma el valor infinito con probabilidad positiva, entonces toma el
valor infinito con probabilidad 1. En caso de que Vx sea infinita con probabilidad
1 bajo Px hablamos de un estado recurrente y en caso contrario de un estado
transitorio. Analicemos ahora por qué el conjunto {Vx =∞} tiene probabilidad
cero o uno. Para esto, definamos a T0, T1, . . . como los instantes sucesivos que X
visita al estado x. Bajo la medida Px,

T0 = 0, T1 = min {n > 0 : Xn = x}
y Tn+1 es la primera vez que la cadena de Markov (XTn+m,m ≥ 0) regresa a x.
Hemos visto que cada Tn es un tiempo de paro.

Notemos que

Vx =

∞∑
n=1

1Tn<∞.

Se afirma ahora que bajo Px, Vx es una variable aleatoria geométrica de parámetro
Px(T1 <∞). En efecto, por una parte se tiene que

{Vx ≥ n} = {Tn <∞}
y por otra,la propiedad de Markov fuerte nos permite afirmar que para cada n ≥ 1:

Px(Tn+1 <∞) = Px(Tn+1 <∞, Tn <∞) = Ex(1Tn<∞Px(T1 <∞)) ,

por lo cual
Px(Tn <∞) = Px(T1 <∞)

n
.

El caso en que Px(T1 <∞) = 1 ocurre si y sólo si Vx es infinita Px casi seguramente.
Si no, Vx es geométrica de parámetro Px(T1 <∞) y por lo tanto su esperanza
es finita. Esto nos proporciona una equivalencia, en términos de la matriz de
transición, para que un estado sea recurrente.

Proposición 2.5. El estado x es recurrente si y sólo si
∑
x P

n
x,x =∞.

Demostración. La afirmación se sigue de notar que

Ex(Vx) =
∑
n

Ex(1Xn=x) =
∑
n

Pnx,x.

�
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Ahora veremos que la transitoriedad o recurrencia es de hecho una propiedad
de clase.

Proposición 2.6. Si x y y se comunican entre si e x es transitorio entonces
y es transitorio.

Demostración. Sean m y n tales que Pmx,y > 0 y Pnx,y > 0. Entonces

Pm+l+n
x,x ≥ Pmx,yP ly,yPny,x.

Por lo tanto:
si
∑
n

Pm+l+n
x,x <∞ entonces

∑
n

P ly,y <∞.

�

La conclusión que obtenemos es que en una clase o todos los estados son re-
currentes o todos son transitorios y que por lo tanto podemos hablar de clases
recurrentes y de clases transitorias. Hay una forma fácil de saber si una clase
es transitoria.

Proposición 2.7. Sea C ⊂ E una clase abierta. Entonces C es transitoria.

Demostración. En efecto, puesto que C es una clase abierta, existe x ∈ C,
y ∈ E \ C y m ≥ 0 tal que Pmx,y > 0 mientras que Pny,x = 0 para toda n ≥ 0. Por
lo tanto

Ey(Vx) =

∞∑
n=0

Ey(1Xn=x) =

∞∑
n=0

Pny,x = 0

y puesto que Vx es una variable aleatoria no-negativa, entonces

Py(Vx = 0) = 1.

Aśı, vemos que

Px(Vx <∞) ≥ Px(Vx(Xm, Xm+1, . . .) = 0, Xm = y) = Pmx,y > 0

por lo que x es transitorio. �

Veremos ahora que la conclusiónes anteriores nos permiten clasificar a las clases
de cadenas de Markov con espacio de estados finito. En efecto,

Proposición 2.8. Si el espacio de estados es finito, una clase es recurrente si
y sólo si es cerrada.

Demostración. Sólo hace falta verificar que si C es cerrada entonces es re-
currente. Puesto que C es cerrada, vemos que para cualquier x ∈ C,

1 = Px(Xn ∈ C para toda n ≥ 0) .

Por otra parte, al ser E finito, lo anterior forza a que exista y ∈ C que se visita
infinitas veces bajo Px:

0 < Px(Vy =∞) .
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Si T denota a la primera visita a y, vemos que

0 < Px(Ty <∞)Py(Vy =∞)

de acuerdo a la propiedad de Markov fuerte. Por lo tanto, vemos que y es recurrente
y que aśı la clase C es recurrente. �

La primera conclusión es que una cadena irreducible con espacio de estados
finitos tiene a todos los estados recurrentes. Un ejemplo muy concreto seŕıa el
de la cadena de Ehrenfest. Aún más, en una cadena irreducible y recurrente, de
cualquier estado se accede a cualquier otro.

Proposición 2.9. Si la cadena es irreducible entonces Px(Vy =∞) = 1 para
toda x, y ∈ E

En particular, si recordamos la cadena de Markov que modela el movimiento
de una rata por el laberinto ilustrado en la Figura 1, si colocamos comida en algúna
celda, entonces la rata la encontrará con probabilidad 1.

Demostración. Recordemos que Py(Vy =∞) = 1 para toda y ∈ E. Por otra
parte, al aplicar la propiedad de Markov al instante n, vemos que

1 = Py(Vy =∞) =
∑
x∈E

Pny,xPx(Vy =∞) .

Del lado derecho tenemos un promedio ponderado de las cantidades Px(Vy =∞) ≤
1. El promedio es igual a 1 si y sólo śı Px(Vy =∞) = 1 para toda y tal que
Pny,x > 0. Por irreducibilidad, para toda y existe n tal que Pny,x > 0 y por lo tanto
Px(Vy =∞) = 1 para toda x, y ∈ E. �

Para la cadena de la ruina del jugador, donde el espacio de estados es {0, . . . , N}
y la matriz de transición es

Pi,j =


p i < N, j = i+ 1

1− p i > 0, j = i− 1

1 i = 0, N

,

vemos que 0 y N son absorbentes y que de cualquier estado se accede a 0 y a N .
Hay por lo tanto 3 clases de comunicación: {0} , {1, . . . , N − 1} , {N}. La primera y
la última son cerradas y por lo tanto recurrentes mientras que la segunda es abierta
y por lo tanto transitoria. Cabe la pregunta de si en esta cadena alcanzamos alguno
de los estados 0 y N con probabilidad 1. La respuesta es por supuesto afirmativa
y se puede generalizar como sigue:

Proposición 2.10. Sean

A = {x ∈ E : Cx es abierta} , C = {x ∈ E : Cx es cerrada}
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y

HC =

{
∞ si {n ∈ N : Xn ∈ C} = ∅
min {n ≥ 0 : Xn ∈ C} en caso contrario

.

Si A es finita entonces para todo x ∈ E, Px(HC <∞) = 1.

Demostración. Si x ∈ C entonces 1 = Px(HC = 0) ≤ Px(HC <∞).
Por la propiedad de Markov fuerte, si x ∈ E y y ∈ A, se tiene que

Px(Vy =∞) = Px(Ty <∞)Py(Vy =∞) .

El segundo factor del lado derecho es cero puesto que y es transitorio. Puesto que

E es finito, se concluye que Px
(∑

y∈A Vy =∞
)

= 0 para todo x, y ∈ A.

Por otra parte, ya que
∑
y∈E Vy =∞, se deduce que para x ∈ A:

Px

∑
y∈C

Vy =∞

 = 1.

Como

Px(HC <∞) ≥ Px

∑
y∈C

Vy =∞

 ,

se deduce el resultado deseado. �

El análisis de recurrencia y transitoriedad de cualquier cadena con espacio de
estados finito es como el de los dos ejemplos anteriores. Sin embargo, cuando el
espacio de estados es infinito, el análisis de recurrencia y transitoriedad es mucho
más delicado. Se presenta un ejemplo célebre de este tipo de análisis. Para más
ejemplos, necesitaremos profundizar en la relación entre la propiedad de Markov y
las relaciones de recurrencia, en la siguiente sección.

Ejemplo 2.4 (Recurrencia y transitoriedad de la caminata aleatoria simple y
el teorema de Pólya). Sea P dada por Pi,i+1 = p = 1 − Pi,i−1 para i ∈ Z, donde
p ∈ (0, 1) y sea S = (Sn) una cadena de Markov con esta matriz de transición.

Esta cadena es irreducible y por lo tanto, basta ver la recurrencia o transito-
riedad del cero y los demás estados compartirán esta caracteŕıstica.

Si p 6= 1/2, la ley fuerte de los grandes números nos dice que Sn/n → 2p − 1
conforme n→∞ casi seguramente. Por lo tanto, para ε < p ∧ 1− p, existe N tal
que para toda n ≥ N , se tiene que (2p− 1− ε)n < Sn < (2p− 1 + ε)n. Vemos
que entonces el número de visitas al estado cero es finito casi seguramente y por lo
tanto 0 es transitorio. Note que este argumento no es válido cuando p = 1/2.

Si p = 1/2, entonces se puede calcular expĺıcitamente P 2n
0,0 =

(
2n
n

)
2−2n. Ahora

utilizamos la fórmula de Stirling, la cual afirma que

lim
n→∞

n!

nne−n
√

2πn
= 1,
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vemos que
Pn0,0

1/
√
πn

.

Por lo tanto ∑
n

Pn0,0 =∞

y aśı vemos que S es una cadena recurrente.
Consideremos ahora una caminata aleatoria simple y simétrica en dimensión d,

que tomaremos igual a 2 ó 3. Si i, j ∈ Zd, definiremos Pi,j = 1/2d si
∑
l |il − jl| =

1. Mediante un argumento combinatorio y la fórmula de Stirling, se puede probar
que Pn0,0/n

d/2 → Cd donde Cd ∈ (0,∞). Entonces, vemos que si d = 2 la caminata
aleatoria simple y simétrica es recurrente mientras que si d = 3, es transitoria.
Éste último resultado se conoce como Teorema de Pólya para la caminata aleatoria
simple.

4. Ejemplos de utilización de la propiedad de Markov

Ejemplo 2.5 (El problema de la ruina). Consideremos la matriz de transición
Pi,i+1 = 1 − Pi,i−1 = p ∈ (0, 1) que da lugar a una caminata aleatoria simple en
Z. Sea X una cadena de Markov con transición P y tal que comienza en i bajo
Pi. Consideremos N ≥ 2 y m ∈ {1, . . . , N − 1}. Definamos al siguiente tiempo de
paro:

T = min {n ≥ 0 : Xn ∈ {0, N}} .
El objetivo del ejemplo es utilizar la propiedad de Markov, mediante el llamado
análisis del primer paso para calcular la probabilidad siguiente:

(2) Pm(XT = N) .

La interpretación es la siguiente: un jugador tiene un capital inicial de m pesos
y se enrola en un juego de volados en el que gana un peso con probabilidad p
(y los juegos son independientes). No deja de jugar hasta que pasan dos cosas:
acumula un capital objetivo de N pesos o pierde toda su fortuna. Lo que se quiere
determinar es la probabilidad de que termine de jugar con N pesos. Claramente,
para este problema, es igual trabajar con la caminata aleatoria simple, y su espacio
de estados infinito, que con la caminata aleatoria con absorción en 0 y en N que
tiene espacio de estados {0, . . . , n} y matriz de transición Q dada por

Q0,0 = QN,N = 1 , Qi,i+1 = p = 1−Qi,i−1 si 1 ≤ i ≤ N − 1.

La cantidad Qlm, 0 nos da la probabilidad haber llegado a cero antes del instante
l y de visitar el estado N . El siguiente código R permite hacer un cálculo de esta
cantidad cuando N = 10, l = 26, m = 5 y p = 5/11.

# Objetivo: encontrar , numéricamente , las probabilidades de transicion y de

ruina para la cadena de la ruina del jugador
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N<-10 #Capital objetivo

p<- 5/11 #Probabilidad de ir hacia arriba

m<-floor(N/2) #Capital inicial

P<-matrix(0,N+1,N+1) #Matriz de transicion

P[1,1] <-1

P[N+1,N+1] <-1

for(i in 2:N) {P[i,(i-1):(i+1)]<-c(1-p,0,p)}

p<-matrix(0,1,N+1) #Distribucion inicial

p[m+1] <-1

aux <-p

l<-26 # Cantidad de pasos que se haran

M<-matrix(0,l+1,N+1)

M[1,]<-aux

for(i in 1:l){

aux <-aux%*%P

M[i+1,]<-aux

}

library(xtable) #Cargar el paquete que genera la tabla

print(xtable(M),type="latex",file="Ruina2.tex") #Genera el TeX de la tabla

Listing 2.5. Ruina2.R

Se escogió n pequeño para poder presentar los resultados en la Tabla 1. Sólo se
imprimen dos decimales.

Antes que nada, probaremos que T < ∞ Pm casi seguramente. Al notar que
si hay N incrementos de X igual a 1 (lo cual sucede con probabilidad pN > 0,
entonces T <∞). Sin embargo, como bajo Pm los incrementos son independientes
y toman el valor 1 con probabilidad p, esto sucedera casi seguramente (como se ve
por ejemplo al utilizar Borel-Cantelli).

Escribamos

qm = Pm(XT = N)

y determinemos ahora el valor de qm. Hay dos casos sencillos:

q0 = 0 y qn = 1.

Por otro lado, observamos que si m ≤ n− 2 entonces 1 < T por lo que

qm = pqm+1 + (1− p) qm−1.

Aśı, la probabilidad de interés queda determinada por una relación de recurrencia
con valores de frontera.

Afortunadamente, la solución a la relación de recurrencia se conoce. En efecto,
escribamos la relación de recurrencia en la forma

pqm + qqm = pqm+1 + qqm−1 ó pqm + qqm = pqm+1 + qqm−1
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1 2 3 4 5 6 7 8 9 10 11
1 0.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00 0.00 0.00 0.00
2 0.00 0.00 0.00 0.00 0.55 0.00 0.45 0.00 0.00 0.00 0.00
3 0.00 0.00 0.00 0.30 0.00 0.50 0.00 0.21 0.00 0.00 0.00
4 0.00 0.00 0.16 0.00 0.41 0.00 0.34 0.00 0.09 0.00 0.00
5 0.00 0.09 0.00 0.30 0.00 0.37 0.00 0.20 0.00 0.04 0.00
6 0.05 0.00 0.20 0.00 0.34 0.00 0.28 0.00 0.12 0.00 0.02
7 0.05 0.11 0.00 0.27 0.00 0.30 0.00 0.19 0.00 0.05 0.02
8 0.11 0.00 0.20 0.00 0.29 0.00 0.24 0.00 0.12 0.00 0.04
9 0.11 0.11 0.00 0.25 0.00 0.26 0.00 0.17 0.00 0.05 0.04

10 0.17 0.00 0.19 0.00 0.26 0.00 0.21 0.00 0.11 0.00 0.07
11 0.17 0.10 0.00 0.22 0.00 0.23 0.00 0.16 0.00 0.05 0.07
12 0.22 0.00 0.17 0.00 0.23 0.00 0.19 0.00 0.10 0.00 0.09
13 0.22 0.09 0.00 0.20 0.00 0.21 0.00 0.14 0.00 0.04 0.09
14 0.27 0.00 0.15 0.00 0.21 0.00 0.17 0.00 0.09 0.00 0.11
15 0.27 0.08 0.00 0.18 0.00 0.19 0.00 0.13 0.00 0.04 0.11
16 0.32 0.00 0.14 0.00 0.18 0.00 0.15 0.00 0.08 0.00 0.13
17 0.32 0.07 0.00 0.16 0.00 0.17 0.00 0.11 0.00 0.04 0.13
18 0.36 0.00 0.12 0.00 0.17 0.00 0.14 0.00 0.07 0.00 0.14
19 0.36 0.07 0.00 0.15 0.00 0.15 0.00 0.10 0.00 0.03 0.14
20 0.40 0.00 0.11 0.00 0.15 0.00 0.12 0.00 0.06 0.00 0.16
21 0.40 0.06 0.00 0.13 0.00 0.13 0.00 0.09 0.00 0.03 0.16
22 0.43 0.00 0.10 0.00 0.13 0.00 0.11 0.00 0.06 0.00 0.17
23 0.43 0.05 0.00 0.12 0.00 0.12 0.00 0.08 0.00 0.03 0.17
24 0.46 0.00 0.09 0.00 0.12 0.00 0.10 0.00 0.05 0.00 0.18
25 0.46 0.05 0.00 0.11 0.00 0.11 0.00 0.07 0.00 0.02 0.18
26 0.48 0.00 0.08 0.00 0.11 0.00 0.09 0.00 0.05 0.00 0.19
27 0.48 0.04 0.00 0.09 0.00 0.10 0.00 0.07 0.00 0.02 0.19

Tabla 1. El renglón i representa la distribución en el i-ésimo paso
de la cadena de la ruina del jugador

ó inclusive

(qm − qm+1) = (q/p) (qm−1 − qm) .

Se sigue entonces que

qm − qm+1 = −q1 (q/p)
m

y por lo tanto

qm =

{
q1

1−(q/p)m

1−(q/p) si q 6= p

q1m si q = p = 1/2
.



4. Ejemplos de utilización de la propiedad de Markov 29

Al utilizar la igualdad qn = 1 obtenemos finalmente

qm =

{
1−(q/p)m

1−(q/p)N
si q 6= p

m/N si q = p
.

Cuando p = q = 1/2, podemos adicionalmente calcular vm = Em(T ). En
efecto, por la propiedad de Markov y el hecho de que T ◦ θ1 = 1T≥1 + T , vemos
que

v0 = vN = 0 y 2vm = 2 + vm+1 + vm−1.

La última ecuación se puede escribir, definiendo dm = vm−vm−1 como una igualdad
matricial: (

dm+1

−2

)
=

(
1 1
0 1

)(
dm
−2

)
,

por lo que (
dm+1

−2

)
=

(
1 1
0 1

)m(
d1

−2

)
.

La potencia de la matriz resultante se puede calcular y nos devuelve

dm+1 = d1 − 2m.

Puesto que d1 = v1 y v0 = 0, vemos que

vm = d1 + · · ·+ dm = v1 − v1 − 2− · · · − v1 − 2 (m− 1) = mv1 −m (m− 1) .

Al utilizar vN = 0, vemos que

v1 = N − 1

y que por lo tanto

vm = m (N −m) .

Ejemplo 2.6 (Recurrencia y transitoriedad de una caminata aleatoria simple
con barrera absorbente). El ejemplo anterior nos permite establecer la recurrencia
o transitoriedad de una cadena de Markov con espacio de estados infinito que está
ligada a la caminata aleatoria simple. Sea Pi,i+1 = p y Pi,i−1 = q si i ≥ 1 y
P0,1 = 1. Sea X una cadena de Markov con transición P tal que comienza en i
bajo Pi. Notemos que P se comporta como una caminata aleatoria si se encuentra
en i ≥ 1, pero si llega a cero automáticamente pasa a 1. Puesto que esta cadena y
la del ejemplo anterior tienen el mismo comportamiento hasta que llegan a cero o
a n, vemos que si p 6= q:

Pi(Tn < T0) =
1− (q/p)

i

1− (q/p)
n .

Al tomar el ĺımite conforme n→∞, obtenemos

Pi(T0 =∞) =

{
1− (q/p)

i
q < p

0 q ≥ p
.
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Aśı, la caminata aleatoria simple con barrera reflejante en cero es transitoria si
p > 1/2 y recurrente si p ≤ 1/2.

Ejemplo 2.7 (Cadenas de nacimiento y muerte). Para una sucesión de proba-
bilidades de éxito pi ∈ (0, 1) (con qi = 1−pi), sea (Pi, i ≥ 0) la familia markoviana
asociada a un proceso de nacimiento y muerte con matriz de transición deterninada
por Pi,i+1 = pi. Haremos un análisis de primer paso para calcular hi = Pi(T0 <∞).
Notemos que h0 = 1.

De nuevo, la propiedad de Markov nos permite obtener la siguiente relación de
recurrencia para i ≥ 1:

hi = pihi+1 + qihi−1.

De nueva cuenta, si escribimos di = hi − hi+1, se tiene que

pidi = qidi−1

y sabemos que d0 = 1− h1. Vemos que entonces

di = γid0 donde γi =
pi · · · p1

qi · · · q1
.

Aśı, podemos escribir

d0 (1 + γ1 + · · ·+ γi−1) = d0 + · · ·+ di−1 = 1− hi.

Ahora debemos hacer un análisis más preciso para determinar a la constante fal-
tante d0.

Si
∑
i γi = ∞, puesto que 1 − hi ∈ [0, 1], vemos que d0 = 1 − h1 = 0 y por lo

tanto hi = 1 para toda i ≥ 1.
Si
∑
i γi <∞, definamos

h̃0 = 1 y h̃i = 1− a (1 + γ0 + · · ·+ γi) ,

por lo que h̃i ∈ [0, 1] y

h̃i = pih̃i+1 + qih̃i−1 si i ≥ 1.

Vemos que entonces

h̃i = Ei
(
h̃Xn

)
para toda n ≥ 1. Sin embargo:

Ei
(
h̃Xn

)
= Pi(T0 ≤ n) + Ei

(
h̃Xn

1n<T0

)
≥ Pi(T0 ≤ n) .

Como lo anterior es válido para toda n, vemos que

h̃i ≥ hi.

Aśı, hi es la mı́nima solución no-negativa a la relación de recurrencia y por lo tanto
d0 = 1/(1 +

∑
i γi). Vemos que por lo tanto hi < 1 para toda i ≥ 1.
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Ejemplo 2.8 (Tiempos de arribo para la caminata aleatoria simple unidimen-
sional). Sea (Pk, k ∈ Z) la familia Markoviana asociada a la caminata aleatoria
simple con matriz de transición Pi,i+1 = 1 − Pi,i−1 = p ∈ (0, 1). Sea T0 el primer
arribo a cero dado por

T0 = min {n : Xn = 0} .
Nuestro objetivo será determinar a

φ(s) = E1

(
sT0
)
.

Comenzando en 2, la caminata aleatoria simple debe pasar por uno para llegar
a cero, y la trayectoria de 2 a 1 tiene la misma distribución que la de 1 a cero. Por
lo tanto:

E2

(
sT0
)

= φ(s)
2
.

Por otra parte, la propiedad de Markov al instante 1 nos dice que

φ(s) = E1

(
sT0
)

= (1− p)s+ psE2

(
sT0
)

= (1− p) s+ psφ(s)
2
.

Aśı, puesto que φ(s) ∈ (0, 1) para s ∈ (0, 1), vemos que

φ(s) =
1−

√
1− 4p (1− p) s2

2ps
.

Esto tiene varias implicaciones. La primera es que

E1(T0 <∞) = lim
s→1

E1

(
sT0
)

=
1− |1− 2p|

2p
=

{
1 p < 1/2
q
p p ≥ 1/2

.

La segunda es el cálculo, para p ≤ 1/2 de la esperanza de T0: al derivar la ecuación
que satisface φ vemos que

0 = 1− (2p− 1)φ′(1−)

Ejemplo 2.9 (El mı́nimo de caminatas aleatorias skip-free). Sea Pk, k ∈ Z la
familia markoviana asociada a una caminata aleatoria cuyos saltos pertenecen a
{−1, 0, 1, . . .}. Dichas caminatas se llaman sin saltos a la izquierda (skip-free to the
left) aunque el punto es que el mı́nimo acumulativo tiene como imagen un intervalo
de enteros. Sea

−I = min
n≥0

Xn.

Obviamente I = 0 si P0(X1 = −1) = 0. Supongamos por lo tanto que este no es el
caso. Veamos que entonces bajo P0, I es una variable aleatoria geométrica (aunque
posiblemente degenerada en infinito). Recordemos que las variables geométricas
están caracterizadas por la propiedad de pérdida de memoria, por lo que es sufi-
ciente verificar que

P0(I ≥ m+ n) = P0(I ≥ n)P0(I ≥ m) .
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Sin embargo, notemos primero que si

T−m = min {n ∈ N : Xn = −m} ,

entonces {I ≥ m} = {T−m <∞}. Segundo, sobre el conjunto {T−m <∞} se tiene
que I = I ◦ θT−m

. La propiedad de Markov fuerte nos permite afirmar que

P0(I ≥ m+ n) = P0(I ≥ m)P−m(I ≥ n+m) .

Finalmente, puesto que P0 es la distribución de X +m bajo P−m, vemos que

P−m(I ≥ n+m) = P0(I ≥ n) .

Ahora determinemos el parámetro de la distribución de I, al que denotaremos
por p y escribimos q = 1−p. Al aplicar la propiedad de Markov al tiempo 1, vemos
que

q = P0(I ≥ 1) = P0(PX1(I ≥ 1)) = E0

(
q1+X1

)
.

Si φ denota a la función generadora de la distribución de salto, vemos que

1 = φ(q) .

Por la desigualdad de Hölder, es fácil ver que la función φ
(
e−λ

)
es log-convexa. Por

lo tanto la ecuación φ(s) = 1 sólo se satisface cuando s = 1 si φ′(1−) = E0(X1) ≤ 0
(lo cual dice que I es casi seguramente infinito) mientras que admite dos soluciones,
digamos q̃ y 1 si E0(X1) > 0. Ahora veremos que q̃ = q en este último caso. Basta
mostrar que q ≤ q̃. Puesto que

Ek
(
q̃X1
)

= q̃kE0

(
q̃X1
)

= q̃kφ(q̃) = q̃k,

la propiedad de Markov nos permite probar que

Ek
(
q̃Xn

)
= q̃k.

Por lo tanto, al utilizar la propiedad de Markov

q̃ = E0

(
q̃1+Xn

)
=

n∑
k=0

E0

(
1T−1=kE−1

(
q̃1+Xn−k

))
+ E0

(
1T−1>nq̃

1+Xn
)

= P0(T1 ≤ n) + E0

(
1T−1>nq̃

1+Xn
)

≥ P0(T1 ≤ n) .

Al tomar el ĺımite conforme n → ∞, vemos que q̃ ≥ q y por lo tanto, q es la
solución mı́nima en [0, 1] a la ecuación φ(s) = 1.

Ejemplo 2.10 (El principio de reflexión). Consideremos la familia markoviana
(Pk)k∈Z asociada a la caminata aleatoria simple y sea

Tm = min {n ∈ N : Xn = m} .
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Definamos

X̃n =

{
Xn si n ≤ Tm
2m−Xn si n > Tm

.

El principio de reflexión, que ahora demostaremos, afirma que la distribución de
X̃ bajo P0 es precisamente P0. En efecto, el principio de reflexión es consecuencia
de la propiedad de Markov fuerte y el hecho de que la distribución de −X bajo P0

es también P0.
Como una aplicación, notemos que si k ≥ 0 entonces

P0(Tm ≤ n) = P0(Tm ≤ n,Xn ≥ m) + P0(Tm ≤ n,Xn < m) .

Puesto que {Tm ≤ n} ⊂ {Xn ≥ m} y

{Tm ≤ n,Xn ≤ m} =
{
X̃n ≥ m

}
,

se deduce que

P0(Tm ≤ n) = P0(Xn = m) + 2P0(Xn > m) .

5. Medidas y distribuciones invariantes

Comenzaremos con un sistema lineal importante que se obtiene de una apli-
cación de la propiedad de Markov fuerte.

Ejemplo 2.11 (Cantidad esperada de visitas antes de la recurrencia). Consid-
eremos de nuevo a los tiempos de primera visita

Ty = min {n ∈ N : Xn = y} .

Fijemos a x ∈ E y definamos

νxx = 1 y νxy = Ex

(
Tx∑
i=0

1Xn=y

)
para y 6= x.

Teorema 2.3. Para una cadena irreducible y recurrente, νx satisface νxx = 1,
0 < νxy <∞ y

(3)
∑
z∈E

νzyPy,z = νxz .

Una medida invariante es un vector renglón νy, y ∈ E con entradas no-
negativas tal que νP = ν o más expĺıcitamente,∑

z∈E
νzyPy,z = νz.

Por lo tanto, el vector νx representa una construcción probabiĺıstica de una medida
invariante.
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Demostración. Claramente νxx = 1. Para ver que νx satisface (3), utilizamos
la propiedad de Markov de manera similar al análisis del primer paso. Supongamos
primero que y 6= x. Entonces, puesto que Tx es finito Px casi seguramente

Ex

(∑
n<Tx

1Xn=y

)
= Ex

∑
n≤Tx

1Xn=y

 =

∞∑
n=1

Ex(1Xn=y1Tx≤n) .

El sumando n = 1 es fácil de calcular puesto que bajo Px, Tx ≥ 1:

Ex(1X1=y1Tx≥1) = Ex(1X1=y) = Px,y.

Para los sumandos con n ≥ 2, aplicamos la propiedad de Markov al instante n− 1
(haciendo una especie de análisis de último paso), notando que {T ≤ n} ∈ Fn−1:

Ex(1Xn=y1Tx≤n) =
∑
z 6=x

Ex
(
1Xn−1=z1Xn=y1Tx≤n

)
∑
z 6=x

Ex
(
1Xn−1=z1Tx≤n

)
Pz,y.

Aśı, vemos que

νxy = Ex

(∑
n<Tx

1Xn=y

)
= Px,y +

∑
z 6=x

∞∑
n=1

Ex(1Xn=y1Tx>n)Pz,y

= νxxPx,y +
∑
z 6=x

Ex

(
Tx−1∑
n=0

1Xn=y

)
Pz,y

=
∑
z∈E

νxzPz,y.

Ahora veremos que 1 = νxx =
∑
νxyPy,x. En efecto, basta descomponer respecto al

valor de Tx y de XTx−1, recordando que Tx es finito Px casi seguramente:

1 =

∞∑
n=1

Px(Tx = n)

= Px,x +

∞∑
n=2

∑
y 6=x

Px(Tx = n,Xn−1 = y)

= Px,x +

∞∑
n=2

∑
y 6=x

Px(Tx ≥ n− 1, Xn−1 = y)Px,y

= Px,x +
∑
y 6=x

νxyPx,y.
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Finalmente, si consideramos m tal que Pmx,y > 0 y n tal que Pny,x > 0 entonces por
una parte

νxy =
∑
z

νxzP
m
z,y ≥ Pmx,y > 0

y por otra

1 = νxx =
∑
z

νxzP
n
x,z ≥ νxyPnx,y

implica que νxy <∞. �

Definición. Un estado x de una cadena de Markov es positivo recurrente
si Ex(Tx) < ∞. Denotamos por mx a dicha cantidad, a la que nos referiremos
como tiempo medio de recurrencia de x.

Notemos que, de acuerdo a nuestra definición de νx, se tiene que∑
y

νxy = Ex

(∑
y

∑
n<Tx

1Xn = y

)
= Ex(Tx) .

Si x es positivo recurrente, podemos entonces definir al vector πx =
(
νxy /Ex(Tx)

)
que satisface

πxy ≥ 0,
∑
y

πxy = 1 y
∑
y∈E

πxyPy,z = πxz .

Una distribución invariante es un vector renglón que satisface las 3 condiciones
anteriores. Una propiedad importante y útil de una distribución invariante es que
si X0 tiene distribución π, entonces Xn tendrá distribución π para toda n. Por otra
parte, en espacio de estados finito es fácil ver que existen distribuciones invariantes.

Corolario 1. En una cadena irreducible con espacio de estados finito, todos
los estados son positivo recurrentes.

Demostración. Sea x cualquier estado de la cadena. Por el teorema anterior
νxy <∞ para toda y y como E es finito, entonces

Ex(Tx) =
∑
y∈E

νxy <∞. �

En caso de que exista un único vector de probabilidad invariante, se pueden
calcular tiempos medios de recurrencia al resolver un sistema de ecuaciones. A
continuación profundizaremos en esta idea.

Teorema 2.4. Si ν es una medida invariante para una matriz de transición
irreducible P y νx = 1 entonces ν ≥ νx. Si además P recurrente entonces ν = νx.

Demostración. Al aplicar la invariancia de ν se obtiene

νy =
∑
y1∈E

νy1Py1,y = νxPx,y +
∑
y1 6=x

νy1Py1,x = Px,y +
∑
y1 6=x

νy1Py1,y.
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Al volverla a aplicar se obtiene

νy = Px,y +
∑
y1 6=x

Px,y1Py1,y +
∑

y1,y2 6=x

νy2Py2,y1Py1,y

y al continuar repetidamente, vemos que

νy = Px,y +
∑
y1 6=x

Px,y1Py1,y + · · ·+
∑

y1,...,yn 6=x

Px,ynPyn,yn−1 · · ·Py2,y1Py1,y

+
∑

y1,··· ,yn+1 6=x

νyn+1Pyn+1,yn · · ·Py2,y1Py1,x.

Si y 6= x, encontramos la cota

νy ≥
n∑

m=0

Px(Xm = y, Tx ≥ m)

y el lado derecho converge conforme n→∞ a νxy , por lo que

νy ≥ νxy .

Por otra parte, si la cadena es recurrente además de irreducible entonces νx

es invariante, por lo cual µ = ν − νx es una medida invariante con µx = 0. Por
irreducibilidad, para toda y ∈ E existe n ≥ 0 tal que Pny, x > 0 y entonces

0 = µx =
∑
z

µzP
n
z,x ≥ µyPnx,y,

por lo que µy = 0. �

Teorema 2.5. Para una cadena irreducible las siguientes condiciones son
equivalentes.

(1) Todos los estados son positivo recurrentes
(2) Algún estado es positivo recurrente
(3) La cadena admite una distribución invariante.

En este caso, la distribución invariante es única y asigna a x el rećıproco de su
tiempo medio de recurrencia.

Demostración. Primero probaremos que si la cadena admite una distribución
invariante ν entonces todos los estados son positivo recurrentes. Para esto, note-
mos primero que νx > 0 para toda x ∈ E. En efecto, lo debe ser para alguna x y
al utilizar la irreducibilidad para encontrar n tal que Pny,x > 0, vemos que

νy =
∑
z∈E

Pnz,yνz ≥ νxPnx,y > 0.
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Si x ∈ E, entonces ν/νx es una medida invariante que asigna 1 a x, por lo cual
ν/νx ≥ νx. Puesto que ν es una distribución:

mx = Ex(Tx) =
∑
y

νxy ≤
∑
y

νy
νx

=
1

νx
<∞.

Aśı, todos los estados son positivo recurrentes. Al ser en particular recurrentes,
hemos visto que νx = νxx = mx y como νx es una distribución entonces mx < ∞.
Esto termina la demostración de las implicaciones y además nos produce la fórmula
requerida para la distribución invariante. �

Ejemplo 2.12 (La cadena de Ehrenfest). Sea E = {0, . . . , N} y Pi,i+1 =
1 − i/N = 1 − Pi,i−1. Esta cadena es irreducible y con espacio de estados finito,
por lo que todos los estados son positivo recurrentes y por lo tanto existe un único
vector de probabilidad invariante π. Además, πx = 1/Ex(Tx). El siguiente código
nos permite obtener numéricamente estas cantidades.

N<-10 #Cantidad de bolas para la cadena de Ehrenfest

P<-matrix(0,N+1,N+1)

P[1,2] <-1

P[N+1,N]<-1

for(i in 2:N){

P[i,i+1] <-1-(i-1)/N

P[i,i-1] <-(i-1)/N

}

I<-diag(1,N+1,N+1)

Null <-function(M) #Calcula una base del kernel de la matriz M mediante

factorizacion QR

{

tmp <- qr(M)

set <- if(tmp$rank == 0) 1:ncol(M) else - (1: tmp$rank)

qr.Q(tmp , complete = TRUE)[, set , drop = FALSE]

}

v<-t(Null(I-P)) # El kernel de I-P tiene dimension 1 por ser la cadena

irreducible y finita

v<-v/sum(v) #Se obtiene el vector de probabilidad invariante

m<-1/v #Se obtienen los tiempos medios de recurrencia

library(xtable) #Cargar el paquete que genera tablas en TeX

print(xtable(v),type="latex",file="EhrenfestInvariantDist.tex") #Genera el TeX

de la tabla

print(xtable(m),type="latex",file="EhrenfestMeanRecurrence.tex") #Genera el TeX

de la tabla

Listing 2.6. EhrenfestMatrix.R

El resultado se puede visualizar en las tablas siguientes

1 2 3 4 5 6 7 8 9 10 11
1 0.00 0.01 0.04 0.12 0.21 0.25 0.21 0.12 0.04 0.01 0.00
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1 2 3 4 5 6 7 8 9 10 11
1 1024.00 102.40 22.76 8.53 4.88 4.06 4.88 8.53 22.76 102.40 1024.00

Por otra parte, para esta cadena particular, podemos calcular expĺıcitamente el
vector de probabilidad invariante y por lo tanto los tiempos medios de recurrencia.
En efecto, sea πj =

(
N
j

)
2−N y notemos que si j ∈ {1, . . . , N − 1} entonces∑

i

πiPi,j = πj−1Pj−1,j + πj+1Pj+1,j

=

(
N

j − 1

)
2−N

N − j + 1

N
+

(
N

j + 1

)
2−N

j + 1

N

= 2−NN !

[
1

(j − 1)! (N − j + 1)!

N − j + 1

N
+

1

(j + 1)! (N − j − 1)!

j + 1

N

]
= 2−N

N !

(j − 1)! (N − j − 1)!

[
1

N (N − j)
+

1

jN

]
= 2−N

N !

(j − 1)! (N − j − 1)!

[
1

j (N − j)

]
= 2−N

(
N

j

)
= πj .

Por lo tanto la distribución binomial de parámetros N y 1/2 es invariante para la
cadena de Ehrenfest con espacio de estados (0, . . . , N). Como ésta es irreducible,
los tiempos medios de recurrencia son

mi =
2N(
N
i

) .
Si ahora utilizamos la fórmula de Stirling, notamos que conforme N →∞

mN/2 ∼
1√
πN

pero m0 = 2N .

6. Comportamiento a tiempos grandes

El objetivo de esta sección es estudiar cómo se comporta una cadena de Markov
recurrente cuando la dejamos correr un tiempo grande. Una aplicación de este
tipo de ideas sirve para desplegar el resultado de una búsqueda en Google en
orden descendiente de importancia de las páginas. Para describir cómo se define la
importancia de una página, podemos pensar en la siguiente situación: se considera
a la red como un conjunto de nodos (páginas web) y aristas (hiperv́ınculos) que
los conectan. Si Nv denota la cantidad de hiperv́ınculos que hay en la página v, se
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puede definir la importancia de una página v como la cantidad Iv que satisface el
sistema de ecuaciones:

Iv =
∑ Iu

Nu
,
∑
v

Iv = 1.

La interpretación es que una página importante transmite su importancia a cada
una de las ligas que está presente en la página y que la suma de las importancias
es 1. Esta es la base del algoritmo PageRank de Google. Para interpretar lo
anterior en términos de cadenas de Markov, consideremos la siguiente estrategia
para navegar en esta red: al encontrarme en la página web, escojo un hiperv́ınculo
al azar y lo recorro. Entonces mi trayectoria por la red será una cadena de Markov
con matriz de transición

Pu,v =


1
Nu

si existe hiperv́ınculo de u a v
1

Total de páginas no hay hiperv́ınculos en u

0 otro caso

.

Notemos que la importancia de una página es simplemente una solución I a la
ecuación I = IP . Por otra parte, mediante la estrategia de navegación postulada,
podŕıamos pensar a la importancia de una página web como la fracción de tiempo
asintótica que le dedico cuando recorro la web al azar. En esta sección veremos
que de hecho, son la misma idea. En la página http://www.nd.edu/~networks/

resources.htm el los autores Albert, Jeong y Barabási proporcionan sus datos
sobre la estructura de la red que recopilaron para un estudio de 1999. Por supuesto
ha crecido mucho desde entonces, pero es un buen ejemplo de datos que se han
hecho de acceso público. Un pequeño detalle es que los fundadores de Google
se dieron cuenta de cuestiones numéricas que aparecen al tratar de encontrar la
importancia de una página, por lo que modificaron la definición de importancia a:

Iv = α
∑ Iu

Nu
+

1− α
N

,

donde α ∈ [0, 1] y N es la cantidad de páginas web que hay. La interpretación en
términos de estrategia de navegación es que, con probabilidad α sigo la estrategia
de navegación anterior y con probabilidad 1 − α salto a una página al azar. Aśı,
se estará considerando la matriz de transición

Pα =


α
Nu

si existe hiperv́ınculo de u a v
1

total de páginas no hay hiperv́ınculos en u
1−α
N otro caso

El valor utilizado por Google es α = .85. La diferencia entre P y Pα es que la
segunda es irreducible y aperiódica mientras la primera no tiene por qué serlo.

Como ejemplo concreto utilicemos la gráfica que, el 21 de Mayo del 2012,
se encuentra en la página de Wikipedia de PageRank. Los vértices son serán
etiquetados del 1 al 11 y la gráfica se presenta en la Figura 5. Con α = .85, la

http://www.nd.edu/~networks/resources.htm
http://www.nd.edu/~networks/resources.htm
http://en.wikipedia.org/wiki/PageRank
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2

3

4

1

5

6

7 8 91011

Figura 5. Ilustración sobre la definición de importancia de
páginas web

matriz de transición es

100∗Q =



9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09 9.09
1.36 1.36 86.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36
1.36 86.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36
43.8 43.8 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36 1.36
1.36 29.70 1.36 29.70 1.36 29.70 1.36 1.36 1.36 1.36 1.36
1.36 43.8 1.36 1.36 43.8 1.36 1.36 1.36 1.36 1.36 1.36
1.36 43.8 1.36 1.36 43.8 1.36 1.36 1.36 1.36 1.36 1.36
1.36 43.8 1.36 1.36 43.8 1.36 1.36 1.36 1.36 1.36 1.36
1.36 43.8 1.36 1.36 43.8 1.36 1.36 1.36 1.36 1.36 1.36
1.36 1.36 1.36 1.36 86.3 1.36 1.36 1.36 1.36 1.36 1.36
1.36 1.36 1.36 1.36 86.3 1.36 1.36 1.36 1.36 1.36 1.36


El vector de probabilidad invariante, que nos da la importancia de cada página,

es

100 ∗ π = (3.28, 38.44, 34.29, 3.91, 8.09, 3.91, 1.62, 1.62, 1.62, 1.62, 1.62)

Como comentamos, otra manera de pensar a la importancia de un vértice es
mediante la fracción de tiempo que paso en el. La fracción esperada de tiempo que
paso en j comenzando en i después de n pasos es

1

n

n∑
l=0

Qni,j .
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Sin embargo, al calcular numéricamente la entrada 50 de la cadena, vemos que es
igual a

Q50 =



3.28 38.44 34.29 3.91 8.09 3.91 1.62 1.62 1.62 1.62 1.62
3.28 38.43 34.30 3.91 8.09 3.91 1.62 1.62 1.62 1.62 1.62
3.28 38.45 34.28 3.91 8.09 3.91 1.62 1.62 1.62 1.62 1.62
3.28 38.45 34.28 3.91 8.09 3.91 1.62 1.62 1.62 1.62 1.62
3.28 38.44 34.29 3.91 8.09 3.91 1.62 1.62 1.62 1.62 1.62
3.28 38.45 34.28 3.91 8.09 3.91 1.62 1.62 1.62 1.62 1.62
3.28 38.45 34.28 3.91 8.09 3.91 1.62 1.62 1.62 1.62 1.62
3.28 38.45 34.28 3.91 8.09 3.91 1.62 1.62 1.62 1.62 1.62
3.28 38.45 34.28 3.91 8.09 3.91 1.62 1.62 1.62 1.62 1.62
3.28 38.44 34.29 3.91 8.09 3.91 1.62 1.62 1.62 1.62 1.62
3.28 38.44 34.29 3.91 8.09 3.91 1.62 1.62 1.62 1.62 1.62


Vemos que desde el punto de vista numérico, Q50 es ya una matriz cuyos renglones
son iguales al vector de probabilidad invariante. Esto no es ninguna coincidencia y
uno de nuestros objetivos será explicarlo. Se utilizó el siguiente código para generar
a la distribución invariante y a la potencia 50 de la matriz.

N<-11

A=matrix(c(

1,1,1,1,1,1,1,1,1,1,1,

0,0,1,0,0,0,0,0,0,0,0,

0,1,0,0,0,0,0,0,0,0,0,

1,1,0,0,0,0,0,0,0,0,0,

0,1,0,1,0,1,0,0,0,0,0,

0,1,0,0,1,0,0,0,0,0,0,

0,1,0,0,1,0,0,0,0,0,0,

0,1,0,0,1,0,0,0,0,0,0,

0,1,0,0,1,0,0,0,0,0,0,

0,0,0,0,1,0,0,0,0,0,0,

0,0,0,0,1,0,0,0,0,0,0),N,N,byrow=TRUE) #Define la matriz de adyacencia de la

grafica

P=A/rowSums(A) #Normaliza los renglones para obtener una matriz estocastica

a=.85

Pa=a*P+(1-a)/N #Se produce la matriz irreducible

l<-50

aux <-Pa

for(i in 1:l){ #Se calcula la potencia 50 de la matriz de transicion

aux <-aux%*%Pa

}

I<-diag(1,N,N)

tmp <- qr(I-Pa) # Se obtiene la factorizacion QR

set <- if(tmp$rank == 0) 1:ncol(M) else - (1: tmp$rank)

Null <-qr.Q(tmp , complete = TRUE)[, set , drop = FALSE]

v<-t(Null) # El kernel de I-P tiene dimension 1 por ser la cadena irreducible y

finita
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v<-v/sum(v) #Se obtiene el vector de probabilidad invariante

library(xtable) #Cargar el paquete que genera tablas en TeX

print(xtable(Pa),type="latex",file="PageRankMatrix") #Genera el TeX de la tabla

print(xtable(v),type="latex",file="PageRankInvariantDistribution.tex")

print(xtable(aux),type="latex",file="PageRankMatrixPower.tex")

Listing 2.7. PageRank.R

Vale la pena comparar lo anterior con la cadena de Ehrenfest: con N = 10, a
continuación se presentan las potencias 50 y 51 de la matriz de transición:

1000 ∗ P 50 =



2 0 88 0 410 0 410 0 88 0 2
0 20 0 234 0 492 0 234 0 20 0
2 0 88 0 410 0 410 0 88 0 2
0 20 0 234 0 492 0 234 0 20 0
2 0 88 0 410 0 410 0 88 0 2
0 20 0 234 0 492 0 234 0 20 0
2 0 88 0 410 0 410 0 88 0 2
0 20 0 234 0 492 0 234 0 20 0
2 0 88 0 410 0 410 0 88 0 2
0 20 0 234 0 492 0 234 0 20 0
2 0 88 0 410 0 410 0 88 0 2



1000 ∗ P 51 =



0 20 0 234 0 492 0 234 0 20 0
2 0 88 0 410 0 410 0 88 0 2
0 20 0 234 0 492 0 234 0 20 0
2 0 88 0 410 0 410 0 88 0 2
0 20 0 234 0 492 0 234 0 20 0
2 0 88 0 410 0 410 0 88 0 2
0 20 0 234 0 492 0 234 0 20 0
2 0 88 0 410 0 410 0 88 0 2
0 20 0 234 0 492 0 234 0 20 0
2 0 88 0 410 0 410 0 88 0 2
0 20 0 234 0 492 0 234 0 20 0


Casi lo mismo se repite al calcular potencias superiores. En este caso, paraceŕıa
haber convergencia de las potencias pares y de las potencias impartes a un ĺımite
distinto. La diferencia entre la matriz de transición de PageRank y la de la cadena
de Ehrenfest se encuentra en el siguiente concepto.

Definición. Sea P una matriz de transición. Definimos al periodo de un
estado x como el máximo común divisor de

{
n ≥ 0 : Pnx,x > 0

}
. Decimos que la

cadena es aperiódica si el periodo de todo estado es 1.

Si x tiene periodo d, entonces P kdx,x > 0 salvo para una cantidad finita de ı́ndices

k mientras que P kd+1
x,x = · · · = P

kd+(d−1)
x,x = 0.
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Es fácil verificar que el periodo es el mismo para todos los elementos de una
clase de comunicación. Entonces, para verificar que una cadena irreducible es
aperiódica, basta verificar que un algún estado tiene periodo 1.

Cuando el espacio de estados es finito, una cadena es irreducible y aperiódica
si y sólo si existe N > 0 tal que PNx,y > 0 para todo x, y ∈ E.

Definición. Decimos que una cadena finita es regular si existe una potencia
de la matriz de transición con todas las entradas positivas.

Puesto que la matriz PageRank con α < 1 tiene todas las entradas positivas,
entonces es regular. Sin embargo, la cadena de Ehrenfest tiene periodo 2, por lo
que no es regular. Esta es la gran diferencia entre ambos tipos de cadenas.

El resultado más importante que relaciona a las potencias de la matriz de
transición con el vector de probabilidad invariante es el siguiente.

Teorema 2.6 (Teorema fundamental de convergencia). Si P es la matriz de
transición de una cadena de Markov irreducible, aperiódica y positivo recurrente y
π es la única distribución invariante de P entonces

∑
y

∣∣Pnx,y − πy∣∣ → 0 conforme
n→∞.

Utilizando el hecho de que si una sucesión converge también converge la sucesión
de sus promedios, vemos

lim
n→∞

1x=y + Px,y + · · ·+ Pnx,y
n

= πy.

Por lo tanto la entrada y del vector de probabilidad también se puede interpretar
como la fracción esperada asintótica de veces en que la cadena se encuentra en el
estado y, independientemente de dónde comenzó.

Hay dos tipos de prueba muy distintos para este resultado. El primero se
enfoca en espacio de estado finito y utiliza el hecho de que la matriz de transición
de la cadena será regular, aśı como un argumento de punto fijo. El segundo se
basa en una idea probabiĺıstica conocida como acoplamiento, en el que se prueba
que para dos cadenas de Markov independientes que satisfacen las hipótesis del
teorema toman el mismo valor en un tiempo aleatorio y finito.

A continuación exploraremos la prueba del teorema fundamental de conver-
gencia en el caso de espacio de estados finito. Comenzaremos con el caso en que
no sólo P es regular sino que además P tiene todas las entradas positivas.

Definimos a

ρ = min
x,y∈E

Px,y.

Puesto que el espacio de estados es finito, el mı́nimo anterior está definido y es
positivo. Sea y un vector columna. Probaremos a continuación que las entradas de
Pny se van acercando entre si conforme n crece. Para esto, seanmn el mı́nimo de las
entradas de Pny y Mn el máximo. Primero mostraremos que m0 ≤ m1 ≤M1 ≤M0

y que M1 −m1 ≤ (1− 2ρ) (M0 −m0). La idea, que se puede justificar con cálculo
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diferencial, es que para maximizar el promedio
∑
j Pi,jyj sujeto a la restricción de

que maxj yj = M0 y minj yj = m0 formamos un vector con todas sus coordenas
iguales a M0 salvo una, que será igual a m0 y que colocamos con el menor peso
posible, es decir, en la coordenada j tal que Pi,j = minj Pi,j ≥ ρ. Aśı, obtendremos∑

j

Pi,jyj ≤M0(1− Pi,j) +m0Pi,j ≤M0 (1− ρ) +m0ρ.

Con un argumento similar se obtiene∑
j

Pi,jyj ≥ m0(1− ρ) +M0ρ

y por lo tanto

M1 −m1 ≤ (1− 2ρ) (M0 −m0)

como se anunció.
Al aplicar lo anterior con Pn−1y en vez de y, vemos que m0 ≤ m1 ≤ · · · ≤

mn ≤Mn ≤ · · · ≤M1 ≤M0 y que

(Mn −mn) ≤ (1− 2ρ)
n

(M0 −m0)→ 0.

Por lo tanto, Pny converge a un vector con todas sus entradas iguales.
Si aplicamos lo anterior al vector ej que tiene 1 en la entrada j y cero en

cualquier otra entradas, vemos que (Pnej)i (la i-ésima entrada de Pnej) es igual a
Pni,j que esta cantidad converge a uj para cualquier i. Notemos además que m1 > 0
y por lo tanto uj > 0 para toda j. Aśı, la matriz Pn converge a una matriz cuyos
renglones son todos iguales al vector cuya entrada j es uj . Finalmente, notamos
que u es una distribución invariante. Es una distribución pues, como el espacio de
estados es finito, entonces

1 = lim
n→∞

∑
j

Pni,j =
∑
j

lim
n→∞

Pni,j =
∑
j

uj .

Por otro lado, puesto que Pn+1 = PnP , vemos que

uj = lim
n→∞

Pn+1
i,j = lim

n→∞
(PnP )i,j = lim

n→∞

∑
k

Pni,kPk,j =
∑
k

ukPk,j .

Finalmente, aprovechamos la ocasión para dar otra prueba de por qué en este
caso, hay a lo más una distribución invariante. Si v es una distribución invariante
entonces vPn = v y por otro lado

vj = (vPn)j =
∑
i

viP
n
i,j →

∑
i

viuj = uj .

Por lo tanto u = v.
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Figura 6. Histograma de una muestra del tiempo de aparición
de la palabra 101

7. Cadenas absorbentes

Consideremos el siguiente problema: se tiene un abecedario fijo (digamos para
fijar ideas igual a {0, 1}) con cuyos elementos conformamos palabras (como podŕıa
ser 1001). Si se extraen las letras del abecedario con igual probabilidad y con
independencia entre las extracciones, ¿Cuánto se debe esperar para que aparezca
la palabra escogida? Más generalmente: ¿con qué probabilidad aparece la palabra
por primera vez al observar n letras? Un caso particular de este problema es cuando
la palabra tiene sólo una letra (digamos p); el tiempo de aparición de la palabra es
entonces geométrico de parámetro p.

El siguiente código toma una muestra de tamaño 10000 de la distribución
del tiempo de aparición de la palabra 101 cuando las letras 1 y 0 aparencen con
probabilidades 2/3 y 1/3. Se obtiene el histograma de la muestra (ver la Figura 6)
aśı como la media emṕırica, que resultó ser de 8.26.

# Obtener una muestra de tama~no 10000 del tiempo de aparición de la palabra 101.

# 1 aparece con probabilidad 2/3

p<-2/3 #Probabilidad de que salga 1

N<-10000 #Tama\~no de muestra

llevo <-0 #Cu\’antas simulaciones llevo

apariciones <-c() #En que tiempos aparecen las palabras

while(llevo <N){ #Mientras no lleve N simulaciones

llevo <-llevo+1 #Realizo una mas

n<-0 #Inicializando a $n$ en cero

palabraAleatoria <-c() #Con un nuevo repositorio de letras

aux <-0 #Y una variable que indica si ya he visto la palabra

while(aux ==0){ #Mientras no haya visto la palabra

n<-n+1 #Espero una unidad de tiempo

palabraAleatoria <-c(palabraAleatoria ,rbinom(1,size=1,prob=2/3)) #Obtengo

una letra nueva
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if(n>2){if(palabraAleatoria[n -2]==1 & palabraAleatoria[n -1]==0 &

palabraAleatoria[n]==1){ aux <-1 }}

} #Si he visto la palabra , la variable aux nos sacar\’a del ciclo

apariciones <-c(apariciones ,n) #Agrego el nuevo tiempo de aparici\’on

}

hist(apariciones)

mean(apariciones)

Listing 2.8. Palabra.R

Consideremos otro problema similar: para el laberinto de la Figura 1, si la rata
comienza su trayectoria en el cuarto i, ¿Cuál es la cantidad de tiempo esperada
para que llegue a la celda 9? Estas preguntas pueden responderse con la teoŕıa de
cadenas de Markov absorbentes. Ya hemos discutido por qué el segundo problema
está relacionado con cadenas de Markov, en particular con una cadena de Markov
en la que el estado 9 es absorbente. El primero pareceŕıa no estarlo. Sin embargo,
asociemos una cadena de Markov a nuestro ejemplo particular.

El espacio de estados es {0, 1, 2, 3, 4} donde el estado i representa que han
aparecido i letras correctas de la palabra 1001. El estado 4 será absorbente y
nos señalará que ya ha aparecido por primera vez la palabra. Si p representa la
probabilidad de que la enésima letra sea 1 y q = 1− p, la matriz de transición de
la cadena será

P =


q p 0 0 0
p 0 q 0 0
p 0 0 q 0
q 0 0 0 p
0 0 0 0 1


Si por ejemplo tuvieramos la palabra 11011, la matriz de transición seŕıa

q p 0 0 0 0
q 0 p 0 0 0
0 0 p q 0 0
q 0 0 0 p 0
q 0 0 0 0 p
0 0 0 0 0 1


puesto que si tengo 2 letras correctas es por que estoy viendo la palabra 11; si sale
1 seguiré observando 11 mientras que si sale 0, observaré 110.

Ahora interpretemos una entrada particular de la matriz de transición: Pn0,4,
para la palabra 1001. Es la probabilidad de que la cadena se encuentre en el estado
al tiempo n, que equivale a que la cadena se haya absorbido en 4 antes del tiempo
n, que significa a su vez que haya aparecido la palabra a lo más en la enésima
extracción.

Pasemos a la abstracción común de ambos problemas.
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Definición. Una cadena absorbente es una cadena absorbente con espacio
de estados finito, que tiene al menos un estado absorbente y que desde cualquier
estado se puede acceder a un estado absorbente.

Los estados de una cadena absorbente los podemos dividir en no-absorbentes
(T , pues son transitorios) y absorbentes (A). Si los enumeramos del 1 al n y
ponemos al final a los absorbentes, la matriz de transición tomará la forma

P =

(
Q R
0 I

)
,

donde Q es una matriz de tamaño m×m (m < n) en donde se encuentran las prob-
abilidades de transición entre estados no-absorbentes, R es una matriz de tamaño
m×n correspondiente a las probabilidades de transición de estados no-absorbentes
a absorbentes, mientras que I es la matriz identidad de tamaño (n−m)×(n−m).
Si i es no-absorbente y j es absorbente, la entrada Pni,j representa la probabilidad
de que comenzando en i la cadena se haya absorbido por el estado j antes del
instante n, mientras que

∑
j≤mQ

n
i,j representa la probabilidad de que comenzando

en i, la cadena todav́ıa no se haya absorbido en el instante n. Es usual escribir∑
j≤m

Qni,j = Qn1

donde 1 es un vector columna de longitud m y entradas iguales a 1.

Proposición 2.11. Sea

T =

{
∞ {n ≥ 0 : Xn ∈ A} = ∅
min {n ≥ 0 : Xn ∈ A} en otro caso

el tiempo de absorción de una cadena absorbente. Entonces Pi(T <∞) = 1 para
toda i ∈ E y limn→∞Qn = 0.

En el enunciado anterior, 0 es una matriz de m×m cuyas entradas son iguales
a cero.

Demostración. En la Proposición 2.10 hemos probado que Pi(T <∞) = 1
puesto que T es una clase abierta y finita. Por otra parte, si i, j ≤ m:

0 = Pi(T =∞) = lim
n→∞

Pi(T ≥ n) ≥ lim
n→∞

Pi(, Xn = j, T ≥ n) = lim
n→∞

Qni,j .

�

Ahora mostraremos un resultado que nos permite encontrar la cantidad esper-
ada de visitas a los diversos estados absorbentes.

Proposición 2.12. La matriz I−Q es invertible. Si M = (I −Q)
−1

entonces

Mi,j = I +Q+Q2 +Q3 + · · · = Ei

( ∞∑
n=0

1Xn=j

)
.
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Si ti = Ei(
∑∞
n=0 1Xn∈T ) entonces

t = M1.

Si Bi,j = Pi(XT = j) entonces

B = MR.

Demostración. Debemos mostrar que si (I −Q)x = 0 entonces x = 0. Sin
embargo, si x = Qx entonces x = Qnx → 0, por lo que x = 0. Por otra parte,
puesto que

(I −Q)
(
1 +Q+Q2 + · · ·+Qn

)
= I −Qn+1,

al multiplicar por M = (I −Q)
−1

vemos que

1 +Q+Q2 + · · ·+Qn = M
(
I −Qn+1

)
y al tomar el ĺımite conforme n→∞, vemos que

Mi,j = I +Q+Q2 +Q3 + · · · .

Al utilizar el teorema de convergencia dominada, vemos que

∑
n

Qni,j =
∑
n

Ex(1Xn=j) = Ex

(∑
n

1Xn=j

)
.

Notemos que ∑
j∈T

∑
n

1Xn=j =
∑
n

1Xn∈T

es la cantidad de veces que X está en el conjunto T , que es igual al tiempo de
absorción. Al sacar esperanza, vemos que

ti = Ei(T ) =
∑
j

Mi,j = M1.

Finalmente, notemos que

Pi(XT = j) =
∑
n

∑
j∈T

Pi(XT = j, T = n,Xn−1 = z)

=
∑
n

∑
k∈T

Pn−1
i,k Pk,j

=
∑
k∈T

Mi,kPk,j .

�
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Apliquemos ahora la proposición anterior al tiempo de aparición de la palabra
101 cuando p = 2/3. La matriz de transición y la matriz Q asociadas son:

P =


1/3 2/3 0 0
0 2/3 1/3 0

1/3 0 0 2/3
0 0 0 1

 y Q =

1/3 2/3 0
0 2/3 1/3

1/3 0 0

 .

El siguiente código nos permite calcular numéricamente la matriz fundamental, la
matriz B y el vector t.

P=matrix (0,4,4)

P[c(1,3,10)]<-1/3

P[c(5,6,15)]<-2/3

P[4,4] <-1

Q=P[1:3 ,1:3]

R=P[1:3 ,4]

I=diag (1,3,3)

M=solve(I-Q)

uno=matrix (1,3,1)

t=M%*%uno

B=M%*%R

Listing 2.9. PalabraFundamental.R

Se obtiene

M =

2.25 4.50 1.50
0.75 4.50 1.50
0.75 1.50 1.50

 y t =

8.25
6.26
3.75

 ,

mientras que la matriz B tiene obviamente las entradas iguales a 1. Notemos que
el tiempo esperado para la aparición de la palabra coincide (a nivel numérico) con
el obtenido por simulación con el código Palabra.R.

En el caso de la rata y el laberinto de la Figura 1, se utilizó el código siguiente
para determinar la matriz fundamental M y al vector t.

P=t(matrix(c(0,1/2,0,1/2,0,0,0,0,0,1/3,0,1/3,0,1/3,0,0,0,0,0,1/2,0,0,0,1/

2,0,0,0,1/3,0,0,0,1/3,0,1/3,0,0,0,1/4,0,1/4,0,1/4,0,1/4,0,0,0,1/3,0,1/

3,0,0,0,1/3,0,0,0,1/2,0,0,0,1/2,0,0,0,0,0,1/3,0,1/3,0,1/3,0,0,0,0,0,1/2,0,1

/2,0) ,9) )

P[9,6] <-0

P[9,8] <-0

P[9,9] <-1 # Genera la matriz de transici\’on (absorbente) para la rata en un

laberinto

Q=P[1:8 ,1:8]

I=diag (1,8,8)

M=solve(I-Q)

uno=matrix (1,8,1)

t=M%*%uno

Listing 2.10. LaberintoFundamental.R
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Se obtuvieron los siguientes resultados numéricos:

M =



3.00 3.00 1.50 3.00 3.00 1.50 1.50 1.50
2.00 3.62 1.75 2.37 3.00 1.62 1.25 1.37
1.50 2.62 2.50 1.87 2.50 1.87 1.00 1.12
2.00 2.37 1.25 3.62 3.00 1.37 1.75 1.62
1.50 2.25 1.25 2.25 3.50 1.50 1.25 1.50
1.00 1.62 1.25 1.37 2.00 2.12 0.75 0.87
1.50 1.87 1.00 2.62 2.50 1.12 2.50 1.87
1.00 1.37 0.75 1.62 2.00 0.87 1.25 2.12


y t =



18.00
17.00
15.00
17.00
15.00
11.00
15.00
11.00





CAPÍTULO 3

Procesos de renovación

Retomaremos el ejemplo de contéos aleatorios del Caṕıtulo 1 (Ejemplo 1.3).
Consideremos variables aleatorias independientes e idénticamente distribuidas

S1, S2, . . . con valores estŕıctamente postivos. Podemos pensar en que Si es el
tiempo de vida de un componente crucial para el funcionamiento de cierto sistema
y que al fallar se debe reemplazar. Los tiempo de reemplazo serán

T0 = 0, T1 = S1, T2 = S1 + S2, . . . .

Por otra parte la cantidad de componentes que han fallado hasta el tiempo t seŕıa

Nt = min {n : Tn > t} =

∞∑
n=0

n1Tn≤t<Tn+1
.

A este modelo general se le llama modelo de renovación. La sucesión S será la
sucesión de tiempos de vida, la sucesión T la de tiempos de renovación y
la sucesión N será el proceso de contéo asociado.

Hay un par de procesos adicionales que son útiles e interesantes: el proceso de
tiempo residual (hasta el próximo reemplazo) es

Rt = TNt+1 − t,

el proceso de edad es

At = t− TNt .

Su suma es el proceso de tiempos totales

Lt = SNt+1.

En la Figura 1 se ilustran las definiciones asociadas a los procesos de renovación.
Imaginemos ahora que en vez de cambiar al componente crucial en cuanto falla,

se realiza una revisión diaria en la que se ve si se cambia o no. Entonces es más
conveniente medir el tiempo en d́ıas en vez de continuamente. En términos del
modelo, se puede imponer simplemente que el tiempo de vida Si sea una variable
aleatoria con valores en {1, 2, . . .} y las definiciones tienen sentido como las hemos
puesto, salvo que Rn, An y Ln, con n ∈ N, toman valores en N y determinan a los
procesos R,A y L. En este caso hablamos de un proceso de renovación aritmético.

51
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Figura 1. Ilustración de las definiciones de proceso de renovación

En este caṕıtulo se hará una introducción a los procesos de renovación. Se
enunciarán los resultados tanto en el caso general como en el aritmético, pero las
justificaciones se harán en general en el caso aritmético.

Ejemplo 3.1. Imaginemos la trayectoria de la rata en el laberinto de la Figura
1, que hemos modelado mediante una cadena de Markov. Supongamos que inicial-
mente le damos de comer a la rata en la casilla central y que, al terminar, la rata
se va a dar un paseo aleatorio. Cuando regresa a la casilla central, encontrará la
comida de nuevo dispuesta. En este caso, nuestros tiempos entre sucesos Si serán
la cantidad de pasos entre dos comidas de la rata y nuestros tiempos de reemplazo
(o de renovación) serán los instantes de las visitas sucesivas de la rata a la casilla
central. La variable Rn se puede interpretar como la cantidad de tiempo que le
falta a la rata, después de n pasos, para volver a comer. La variable An es la
cantidad de tiempo que lleva la rata sin comer al paso n mientras que Ln es la
cantidad total de pasos que pasará la rata sin comer desde la última vez que comió
anterior al paso n, hasta la siguiente vez que lo hará. No es completamente trivial
verificar que la situación descrita corresponde a un fenómeno de renovación, pues
no hemos discutido por qué los tiempos entre las visitas sucesivas de la rata a la
casilla central conforman una sucesión de variables independientes e idénticamente
distribuidas. Sin embargo, la propiedad de Markov fuerte nos permite ver que aśı
es.
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El tipo de preguntas a las que responde la teoŕıa de renovación en este contexto
son las siguientes: Al instante n: ¿cuántas veces ha comido la rata? ¿ Qué pasa
conforme n → ∞? ¿ Qué pasa en promedio? ¿ Cuál es la distribución del tiempo
que le falta para volver a comer (Rn)? ¿ Qué le pasa a esta distribución conforme
n → ∞? ¿Cuál es la probabilidad de que al paso n la rata coma? ¿Qué pasa con
dicha probabilidad conforme n→∞?

El ejemplo anterior es caso particular de uno mucho más general: si 0 = T0 <
T1 < · · · son los instantes sucesivos en que una cadena de Markov recurrente visita
a su estado inicial, que fijamos igual a x, entonces las variables Ti − Ti−1 son
independientes e idénticamente distribuidas por lo que conforman un fenómeno
de renovación. Si X0 = y 6= x, entonces la distribución de S1 es distinta a la
de S2, S3, . . ., aunque aún aśı son iid. En este caso hablamos de un proceso de
renovación demorado.

Ejemplo 3.2 (El proceso Bernoulli). Se trata de un proceso de renovación
aritmético en el cual los tiempos entre sucesos tienen distribución geométrica:

P(Si = k) = p (1− p)k−1

para k = 1, 2, . . .. En este caso particular se pueden calcular las distribuciones de los
procesos asociados al fenómeno de renovación. Además, admite una interpretación
adicional: sean B1, B2, . . . variables aleatorias Bernoulli de parámetro p y sean

T0 = 0 y Tn+1 = min {i > Tn : Bi = 1} .
Entonces T es un proceso Bernoulli en el sentido de que la sucesión (Tn+1 − Tn)
es iid con distribución geométrica (concentrada en {1, 2, . . .}) de parámetro p.

Comencemos con la distribución de Tn: de acuerdo a nuestra interpretación,
Tn es el tiempo en el que ocurre el enésimo éxito de la sucesión Bernoulli B, por
lo que Tn es binomial negativa de parámetros n y p con valores en {n, n+ 1, · · · },
es decir:

P(Tn = k) =

(
k − 1

k − n

)
pk (1− p)k−n .

Al proceso de contéo asociado también se le puede calcular la distribución
exacta: notemos que Nn es la cantidad de unos en la sucesión B1, . . . , Bn, y como
estas variables toman los valores cero y uno, pues Nn =

∑n
i=1Bi. Aśı, Nn tiene

distribución binomial de parámetros n y p. Esto además implica que E(Nn) = p/n
y por lo tanto E(Nn/n) → p conforme n → ∞, que es un caso particular del
teorema de renovación elemental que demostraremos más adelante.

Respecto al proceso de tiempos resiguales, notemos que

{Rn = k} = {Bn+1 = 0, . . . , Bn+k−1 = 0, Bn+k = 1}
de donde concluimos que

P(Rn = k) = p (1− p)k−1
k = 1, 2, . . . .
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En otras palabras, Rn es geométrica de parámetro p con valores en {1, 2, . . .}.
Un argumento similar funciona para el proceso de edad pues

{An = k} = {Bn = 0, Bn−1 = 0, . . . , Bn−k+1 = 0, Bn−k = 1}

por lo que

P(An = k) = p (1− p)k k = 0, 1, . . . .

En otras palabras, An es geométrica de parámetro p con valores 0, 1, 2, . . ..
De hecho, las variables An y Rn son independientes pues al ser las Bi indepen-

dientes vemos que

P(An = j, Rn = k)

= P(Bn = 0, . . . , Bn−j−1 = 0, Bn−j = 1, Bn+1 = 0, . . . , Bn+k−1 = 0, Bn+k = 1)

= P(Bn = 0, . . . , Bn−j−1 = 0, Bn−j = 1)P(Bn+1 = 0, . . . , Bn+k−1 = 0, Bn+k = 1)

= P(An = j)P(Rn = k)

Finalmente, la distribución del proceso de tiempos totales se puede entonces
calcular; recordemos que la suma de dos geométricas independientes es binomial
negativa. Sólo hay que tener cuidado pues este cálculo asume que ambas variables
geométricas toman valores en el mismo conjunto. El resultado es que

P(Ln = m) = mp2 (1− p)m−1
. m = 1, 2, . . .

A continuación exploraremos otra liga entre cadenas de Markov y procesos de
renovación.

Proposición 3.1. En procesos de renovación aritméticos, el proceso de tiem-
pos residuales es una cadena de Markov. Si M es el supremo del soporte de la
distribución de S1, la matriz de transición de R es irreducible en {i ∈ N : i ≤M}.
R es aperiódica si {n ≥ 1 : P(S1 = n) > 0} 6⊂ hN para toda h ≥ 2.

Un proceso de renovación aritmético aperiódico es aquel para el cual se satisface
la anterior condición para que R sea aperiódica.

Demostración. Consideremos a la función

f(i, r) =

{
i− 1 i > 1

r i = 1
.

Al definir a la sucesión R̃ medante

R̃0 = 1 y R̃n+1 = f
(
R̃n, Sn+1

)
,

vemos que R̃ es una cadena de Markov con matriz de transición

Pi,j =

{
1 i > 1, j = i− 1

P(S1 = j) i = 1
.
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Sin embargo, puesto que la sucesión S es iid, R y R̃ tienen la mismas distribuciones
finito-dimensionales en el sentido siguiente:

P(R0 = i0, . . . , Rn = in) = P
(
R̃0 = i0, . . . , R̃n = in

)
.

En efecto, si i0, . . . , in ∈ {1, 2, . . .} e il = 1 si y sólo si l ∈ I ⊂ {0, . . . , n} e
il = il−1 − 1 si l 6∈ I y digamos que I = {l1, . . . , lm} entonces

P
(
R̃0 = i0, . . . , R̃n = in

)
= P

(
Silk = ilk , k ≤ m

)
= P(Sk = ilk , k ≤ m)

= P(R0 = i0, . . . , Rn = in) .

Esto prueba que R es una cadena de Markov con matriz de transición P .
Si M es el supremo del soporte de la distribución de S1 y M < ∞, entonces

P(S1 = M) > 0 y P(S1 = n) = 0 para toda n ≥ M . Entonces de 1 se accede a
M , a partir del cualse accede a M − 1, . . . , 1, por lo que {0, . . . ,M} es una clase
de comunicación, que de hecho es cerrada pues P(S1 = n) = 0 para toda n ≥ M .
Esto hace que la cadena en {1, . . . ,M} sea irreducible. Si M = ∞, entonces para
toda M existe n ≥M tal que P(S1 = n) > 0, por lo que 0 se comunica con M v́ıa
n. Es decir, la cadena es irreducible en {0, 1, . . .}.

Si {n ≥ 1 : P(S1 = n) > 0} 6⊂ hN para h ≥ 2 entonces existen n1, n2, k1 y k2

naturales tal que n1k1 = 1 + n2k2 y tales que P(S1 = n1) ,P(S1 = n2) > 0. Vemos
entonces que es posible ir de cero a cero en n1k1 = n2k2 + 1 pasos y en n2k2 pasos,
por lo que el periodo de 1 es 1 y por lo tanto la cadena es aperiódica. �

La respuesta a cuántas veces a comido la rata al paso n se puede interpretar
en términos de Nn en el caso de procesos de renovación aritméticos o de Nt en el
caso general. Los siguientes dos resultados nos permiten dar una posible respuesta:
para tiempos grandes, la variable Nt se puede predecir determińısticamente.

Proposición 3.2 (Ley fuerte de los grandes números). Si µ = E(Si) < ∞
entonces Nt/t→ 1/µ casi seguramente

Demostración. Por la ley fuerte de los grandes números, sabemos que Tn/n→
µ casi seguramente. Notemos que si t ∈ [Tn, Tn+1) entonces

Tn
n

n

n+ 1
≤ t

Nt
≤ Tn+1

n+ 1

n+ 1

n
.

Los extremos de la desigualdad convergen al mismo ĺımite, µ, conforme n→∞ de
manera casi segura. Por lo tanto Nt/t→ 1/µ. �

Nuestro siguiente resultado involucra a la llamada función de renovación. Es
la función m : [0,∞)→ [0,∞) dada por m(t) = E(Nt).

Proposición 3.3 (Teorema de renovación elemental). Si µ = E(S1) < ∞
entonces m(t) /t→ 1/µ.
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La demostración utilizará un resultado sobre camintas aleatorias conocido
como la identidad de Wald y que se prueba como una aplicación de la teoŕıa de
martingalas. Se trata de una generalización de la fórmula E(Tn) = nE(T1) al caso
en que n ya no es una cantidad fija sino aleatoria. En nuestro contexto, veremos
que

(4) E(TNt+1) = E(Nt + 1)E(T1) = E(Nt + 1)µ.

La demostración en este caso particular es la siguiente: notamos que

{Nt + 1 = n} = {Nt = n− 1} = {Tn−1 ≤ t < Tn} .

Se sigue que {Nt + 1 > n} pertenece a la σ-álgebra generada por S1, . . . Sn y es
por lo tanto independiente de Sn+1. Al aplicar el teorema de Tonelli (dos veces):

E(TNt+1) = E

(∑
i

1i=Nt+1Ti

)

= E

∑
i

∑
j≤i

1i=Nt+1Sj


= E

∑
j

∑
i≥j

1i=Nt+1Sj


= E

∑
j

1Nt+1≥jSj


=
∑
j

E(Sj)P(Nt + 1 ≥ j)

= µ
∑
j

P(Nt + 1 ≥ j)

= µE(Nt + 1) .

Prueba del teorema de renovación elemental. Ocupémonos primero de
obtener una cota inferior. A partir de la identidad de Wald, vemos que

t ≤ E(TNt+1) ≤ E(Nt + 1)µ.

Por lo tanto
1

µ
− 1

t
≤ E(Nt)

t
.

Notemos que

lim
t→∞

1

µ
− 1

t
=

1

µ
.
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Para obtener una cota superior, definimos a S̃i = Si∧b. Con la notación obvia,
notemos que T̃i ≤ Ti y que por lo tanto Nt ≤ Ñt. Además,

E
(
S̃1 ∧ b

)
E(Nt + 1) = E

(
T̃Ñt+1

)
≤ t+ b,

por lo que

E(Nt)

t
≤ t+ b

tE(S1 ∧ b)
.

Al utilizar b =
√
t, el teorema de convergencia monótona nos dice que

E
(
S1 ∧

√
t
)
→ µ,

por lo que

lim
t→∞

t+
√
t

tE
(
S1 ∧

√
t
) =

1

µ
.

Podemos entonces deducir que

lim
t→∞

E(Nt)

t
=

1

µ
. �

1. La medida de renovación en el caso aritmético

Continuaremos el estudio de procesos de renovación al introducir a la medida
de renovación. En realidad se introducirá a partir de la función u dada por

un = P(∃m,Tm = n) =
∑
m

P(Tm = n) .

En términos de la rata en el laberinto, un es la probabilidad de que la rata coma
al instante n. El comportamiento asintótico de un se conoce y es el objeto del
teorema de renovación para procesos de renovación aritméticos de Erdős, Feller y
Pollard.

Teorema 3.1. Para un proceso de renovación aritmético, aperiódico y con
media finita:

lim
n→∞

un →
1

µ
.

Demostración. Primero probemos que el proceso de tiempos residuales R
tiene una distribución invariante. En efecto, sean

πi = P(S1 ≥ i) /µ
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y P la matriz de transición de R. Entonces

(πP )j =
∑
i

πiPi,j

= πj+1Pj+1,j + π1P1,j

=
P(S1 ≥ j + 1)

µ
Pj+1,j +

1

µ
P(S1 = j)

=
P(S1 ≥ j)

µ
= πj .

Al ser la cadena irreducible y aperiódica y con una distribución invariante, es
positivo recurrente y se puede aplicar el teorema fundamental de convergencia
para concluir que

lim
n→∞

Pni,1 =
1

µ
.

Por otra parte, podemos calcular expĺıcitamente Pn1,1 pues

Pn1,1 = P(Rn = 1) = P(n = Tm para alguna m) = un.

Aśı, vemos que un → 1/µ conforme n→∞. �

2. La medida de renovación en el caso continuo

Ahora presentaremos el resultado análogo al teorema de renovación aritméticos
en el caso de procesos no aritméticos. No se abordará la prueba pues depende de
resultados análogos al teorema fundamental de convergencia pero para cadenas de
Markov a tiempo discreto y espacio continuo (en este caso, el espacio de estados
del proceso de tiempos residuales es (0,∞)).

Sea S un proceso de renovación no-aritmético, es decir una sucesión de variables
aleatorias independientes e idénticamente distribuidas con valores en (0,∞) y tal
que no toman valores en δN. Se puede pensar que Si es una variable aleatoria con
densidad. Sea T la sucesión de tiempos entre sucesos y N el proceso de contéo
asociado.

Definición. La medida de renovación es la medida U en [0,∞) tal que

U([0, t]) = E(Nt) =

∞∑
n=1

P(Tn ≤ t) .

Se utilizará la notación Ut para U([0, t]). En general, para procesos de reno-
vación no aritméticos, la cantidad P(∃nTn = t) es cero para casi toda t. Es por eso
que se utiliza la medida de renovación en vez de la función de renovación del caso
aritmético. En efecto, si [a, b] es un intervalo muy pequeño, puede que haya un
punto Tn en dicho intervalo, pero seŕıa raro que hubiera más de uno. Por lo tanto
U([a, b]) ≈ P(∃n, Tn ∈ [a, b]). El siguiente teorema puede entonces interepretarse
como es una extensión del teorema de renovación para procesos aritméticos.
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Teorema 3.2 (Teorema de renovación de Blackwell). Para todo h > 0:

lim
t→∞

Ut+h − Ut =
h

µ
.

3. La ecuación de renovación

La ecuación de renovación aparece en el cálculo de algunas cantidades de la
teoŕıa de renovación. En general se trata de un análisis al primero instante de ren-
ovación al notar que el proceso T ′ dado por 0, T2−T1, T3−T1, · · · es un proceso de
renovación idéntico en distribución a T0, T1, T2, · · · e independiente de T1. Ejem-
plos de su utilidad es que nos permite estudiar el comportamiento asintótico de
las distribuciones de los procesos de tiempo residual, de edad ó de tiempos totales.
Sin embargo, también se puede entender como una relación de recurrencia para
cantidades de interés en teoŕıa de renovación. Nos concentraremos en el caso ar-
itmético, al ser técnicamente menos complicado, al comenzar con algunos ejemplos.
Escribiremos

pk = p(k) = P(S1 = k) .

Ejemplo 3.3. Sea uk la densidad de renovación para un proceso de renovación
aritmético:

uk = P(∃n ≥ 0 tal que Tn = k) .

Escribiremos a dicha cantidad como u(k) cuando la tipograf́ıa lo requiera.
Notemos que u0 = 1, mientras que para k ≥ 1, claramente P(T0 = k) = 0 y

por lo tanto:

uk = P(∃n ≥ 1 tal que Tn = k)

=

k∑
j=1

P(S1 = j,∃n ≥ 0 tal que Tn − j = k − j)

=

k∑
j=1

P(S1 = j,∃n ≥ 0 tal que T ′n = k − j)

=

k∑
j=1

pjP(∃n ≥ 0 tal que Tn = k − j)

=

k∑
j=1

pjuk−j

= E(u(k − S1)) ,

donde por supuesto se utiliza el hecho que por definición uj = 0 si j < 0.
La ecuación

uk = δ0(k) + E(u(k − S1))
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que también se escribe

uk = δ0(k) +
∑

pjuk−j

es la llamada ecuación de renovación para la densidad de renovación.

Ejemplo 3.4. Sea Ln, n ≥ 0 el proceso de tiempos totales de un proceso de
renovación aritmético. Para r ≥ 0, sea z(n) = P(Ln = r) para n ≥ 0 y z(n) = 0 si
n < 0. Notemos que si n ≤ r entonces

z(n) = P(S1 = r) = pr.

Por otra parte, si n > r, nos fijamos en la primera renovación T1 = S1, que si
Ln = r es necesariamente es más chica que n. Entonces se obtiene:

z(n) =
∑
j≤n

P(S1 = j, Ln−j(T
′) = r) =

∑
j≤n

pjz(n− j) .

La ecuación de renovación resultante es

z(n) = 1n≤rpr +
∑
j

pjz(n− j) .

Ejemplo 3.5. Sea Rn el proceso de tiempos residuales de un proceso de ren-
ovación aritmético. Sea z(n) = P(Rn = r) si n ≥ 0 y z(n) = 0 si n < 0. El cálculo
de Rn se puede dividir en dos casos, dependiendo de si S1 ≤ n o no:

z(n) = P(Rn = r) = pn+r +

n∑
j=1

P(S1 = r) z(n− r) .

En general, la ecuación de renovación es la siguiente: dada una función b (tal
que bn = 0 si n < 0) se busca una función z tal que z(n) = 0 si n < 0 y

z(n) = b(n) +
∑
j≤n

pkz(n− j) .

La solución se puede encontrar al iterar la ecuación de renovación para escribir:

z(n) = b(n) + E(z(n− S1))

= b(n) + E(b(n− S1)) + E(b(n− S1 − S2))

= b(n) + E(b(n− S1)) + E(b(n− S1 − S2)) + E(b(n− S1 − S2 − S3)) = · · · .

Puesto que b(n− Tm) = 0 si m ≥ n, vemos que

z(n) =
∑
m

E(b(n− Tm))

y al sumar sobre los posibles valores de Tm, se obtiene

z(n) =
∑
m

∑
x

b(n− x)P(Tn = x) =
∑
x

uxbn−x.
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Una vez establecida la relación entre soluciones a la ecuación de renovación y
la densidad de renovación, se tienen los elementos clave para probar el siguiente
resultado.

Teorema 3.3 (Teorema clave de renovación en el caso discreto). Si z es
solución a la ecuación de renovación

z(n) = b(n) +
∑
j≤n

pkz(n− j) .

y b es sumable entonces z está dada por z(n) =
∑
x b(x)u(n− x) y z(n) →∑

x b(x) /µ conforme n→∞.

Demostración. Sólo hace falta verificar el comportamiento asintótico de z.
Sin embargo, si b es sumable, puesto que un es una probabilidad, se tiene la cota∑

x

b(x)u(n− x) ≤
∑
x

b(x) <∞

y por lo tanto el teorema de convergencia dominada y el teorema de renovación de
Erdős-Feller-Pollard (EFP) nos dicen que

lim
n→∞

z(n) = lim
n→∞

∑
x

b(x)u(n− x) =
∑
x

b(x) /µ.

�

Veamos ahora algunas aplicaciones del teorema de renovación clave. En el caso
del tiempo total asintótico, vemos que

lim
n→∞

P(Rn = r) =
∑
x

pr+x/µ = P(S1 ≥ r) /µ,

aunque en realidad esto ya lo sab́ıamos y lo utilizamos en la prueba del teorema
de renovación de EFP.

Un ejemplo más interesante es el del tiempo total:

lim
n→∞

P(Ln = r) =
∑
x≤r

px/µ = rpr/µ.



CAPÍTULO 4

Procesos de Poisson

Imaginemos la siguiente situación: al tiempo cero (inicial) una serie de personas
contratan un seguro por el que pagan una prima. La compañia de seguros tienen
entonces la obligación de dar una compensación económica a los contratantes en
caso de que suceda un cierto evento llamado siniestro. En muchos casos, el monto
que debe pagar la compañ́ıa por el siniestro también es aleatorio.

El modelo matemático se realiza en dos etapas: primero nos enfocamos en los
instantes en que suceden los siniestros y luego en sus montos. Si 0 = T0 < T1 <
T2 < · · · son los instantes en que acaecen los siniestros, se introduce al proceso de
contéo asociado N = (Nt, t ≥ 0), donde Nt nos dice cuántos siniestros han sucedido
al instante t, mismo que está caracterizado por satisfacer las identidades

Nt =
∑
n

n1Tn≤t<Tn+1
,

{Nt = n} = {Tn ≤ t < Tn+1}

y

{Nt ≥ n} = {Tn ≤ t} .

En general, un proceso de contéo es un proceso con trayectorias constantes
por pedazos que toma valores enteros y va incrementando de uno en uno. A
Si = Ti − Ti−1 se le llama i-ésimo tiempo interarribo. Es más natural imponer
supuestos sobre N que sobre los tiempos Ti. Los supuestos se pueden traducir
como sigue:

Incrementos estacionarios: La distribución de Nt+s − Nt sólo depende
de s (en otras palabras, si los siniestros se presentan homogéneamente
en el tiempo, se tiene la igualdad en distribución; en particular no hay
fenómenos estacionales).

Incrementos independientes: Si 0 = t0 ≤ t1 ≤ · · · ≤ tn, las variables
Nt1 − Nt0 , . . . , Ntn − Ntn−1 son independientes. (Aśı, el que ocurran
siniestros por la mañana no afecta lo que ocurre por la tarde.

Definición. Un proceso de Poisson es un proceso de contéo con incremen-
tos independientes y estacionarios.

62
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Esta definición captura la idea de que el riesgo de que ocurra un siniestro se dis-
tribuye homogéneamente tanto en el tiempo como en la población. El primer
objetivo de este caṕıtulo es mostrar como una tal definición tiene implicaciones
prácticas y teóricas que hacen que podamos hacer cálculos con el proceso de Pois-
son que no es posible hacer expĺıcitamente con otros modelos. En efecto, hay
una definición alternativa de proceso Poisson que automáticamente nos deja hacer
cálculos.

Teorema 4.1. Un proceso de contéo N es de Poisson si y sólo si existe
λ > 0 tal que los tiempos interarribo son variables exponenciales independientes
de parámetro λ.

Al parámetro λ se le conoce como intensidad del proceso de Poisson. Antes de
probar el teorema, veámos algunas de sus consecuencias. La primera es que Nt es
el proceso de contéo asociado a un proceso de renovación con tiempos interarribo
exponenciales. Por lo tanto, se satisface la ley fuerte de los grandes números en
particular. Además, se pueden calcular expĺıcitamente las distribuciones al tiempo
t del proceso de edad, de tiempos residuales y de tiempos totales, aún en el contexto
de procesos a tiempo continuo.

Una segunda consecuencia es que se conoce la distribución exacta del proceso
de contéo.

Proposición 4.1. Sea N un proceso de Poisson de parámetro λ. Entonces Nt
tiene distribución Poisson de parámetro λt.

Demostración. Puesto que los tiempos interarribo son exponenciales inde-
pendientes de parámetro λ, entonces Tn tiene distribución Γ de parámetros λ y n
y es independiente de Sn+1. Aśı, vemos que la densidad conjunta de (Tn, Sn+1)
está dada por

fTn,Sn+1
(t, s) =

λntn−1e−λt

n− 1!

e−λs

λ
.

Por lo tanto:

P(Nt = n) = P(Tn ≤ t < Tn + Sn+1)

=

∫ t

0

∫ ∞
t−t1

fTn,Sn+1
(t1, s) ds dt1

=

∫ t

0

∫ ∞
t−t1

λntn−1
1 e−λt1

n− 1!
λe−λs. ds dt1

=

∫ t

0

λntn−1
1 e−λt1

n− 1!
e−λ(t−t1)

= e−λt
(λt)

n

n!

�
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Como corolario, podemos calcular las distribuciones finito dimensionales de N :
sean 0 = t0 < t1 < · · · < tm y n0 = 0 ≤ n1 ≤ · · · ≤ nm por lo que

P(Nt1 = n1, . . . , Ntm = nm)

= P
(
Nt1 −Nt0 = n1 − n0, . . . , Ntm −Ntm−1 = nm − nm−1

)
y al utilizar la independencia de incrementos

=

m∏
i=1

P
(
Nti −Nti−1

= ni − ni−1

)
aśı como su estacionariedad

=

m∏
i=1

P
(
Nti−ti−1

= ni − ni−1

)
=

m∏
i=1

e−λ(ti−ti−1) (λ (ti − ti−1))
ni−ni−1

(ni − ni−1)!
.

Ya con esto, podemos hacer un primer código para simular al proceso de Pois-
son. De hecho se trata simplemente del código Poisson.R que ya se hab́ıa intro-
ducido: se trata de generar variables exponenciales e irlas sumando hasta que se
sobrepase el tiempo t:

lambda =10 # Intensidad

xi=rexp(1,lambda) # xi representa el tiempo del primer siniestro

T=c(0,xi) # El vector T irá acumulando los tiempos en que van

ocurriendo siniestros

N=0 # N nos dirá cuantos siniestros ocurren hasta el tiempo 1

while(xi <1){ # Mientras no se haya sobrepasado el instante 1

N<-N+1 # Aumentamos el número de siniestros

xi<-xi+rexp(1,lambda) # Vemos el tiempo en el que ocurre el siguiente

siniestro

T=c(T,xi) # Aumentamos un evento temporal

}

plot(T,c(1:(N+2)))

Listing 4.1. Poisson2.R

Para ver otro esquema de simulación para el proceso de Poisson, en el que el
ciclo while se substituye por un ciclo for, haremos algunos cálculos adicionales. La
primera pregunta es: si sabemos que han ocurrido n siniestros en [0, t], ¿en dónde
han caido estos saltos? Para responder a dicha pregunta, calcularemos la densidad
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conjunta de T1, . . . , Tn dado que Nt = n. Puesto que

P(T1 ∈ dt1, . . . , Tn ∈ dtn, Nt = n) = P(T1 ∈ dt1, . . . , Tn ∈ dtn, tn ≤ t ≤ tn + Sn+1)

=

n∏
i=1

λe−λ(ti−ti−1) e−λ(t−tn)

vemos que la densidad condicional buscada es:

fT1,...,Tn|Nt=n(t1, . . . , tn) =

n∏
i=1

λe−λ(ti−ti−1) e−λ(t−tn) n!

(λt)
n
e−λt

=
n!

tn
.

Se concluye que condicionalmente a Nt = n, las variables T1, . . . , Tn los valores
ordenados de n uniformes independientes en [0, t]. Por lo tanto, hay otra manera
de simular la trayectoria de un proceso de Poisson en el intervalo de tiempo [0, t]:

l<-10 % Intensidad

t<-3 % Umbral de tiempo

N<-rpois(1,l*t) % Cantidad de siniestros

u<-runif(N)*t % Tiempos en que ocurren (desordenados)

u<-sort(u) % Tiempos de siniestros ordenados

plot(u)

Listing 4.2. PoissonConUniformes.R

Antes de continuar con el modelo completo de reclamaciones en una compañ́ıa de
seguros, veremos algunos procesos estocásticos importantes asociados al proceso
de Poisson. Se definirá a

Ft = σ(Xs : s ≤ t) .

Ejemplo 4.1 (El proceso de Poisson compensado). El proceso de Poisson com-
pensado es el proceso Mt = Nt− λt. Este proceso satisface la siguiente propiedad:
si s ≤ t

E(Mt |Fs) = Ms.

En efecto, al notar que Mt = Mt −Ms +Ms vemos que

E(Mt |Fs) = E(Mt −Ms |Fs) + E(Ms |Fs) = E(Mt −Ms) +Ms = Ms

puesto que Mt −Ms tiene media cero y es independiente de Fs.
La propiedad anterior nos dice que M es una martingala. Las martingalas son

fundamentales en el desarrollo de la probabilidad moderna.

Ejemplo 4.2 (La martingala exponencial). Consideremos al proceso

Et = e−qNt+tλ(1−e−q).
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Este proceso también es una martingala. Para verificarlo, primero calculemos

E
(
e−qNt

)
=

∞∑
n=0

e−qn
e−λt (λt)

n

n!
= e−λteλte

−q

= e−tλ(1−e−q).

Luego utilizamos la independencia entre Nt −Ns y Fs para obtener:

E(Et |Fs) = etλ(1−e−q)e−qNsE
(
e−q(Nt−Ns)

∣∣∣Fs

)
= etλ(1−e−q)e−qNse−(t−s)λ(1−e−q)

= Es.

Una consecuencia del cálculo de la transformada de Laplace de Nt es que
podemos calcular la esperanza y la varianza de Nt: si definimos

ϕt(q) = E
(
e−qNt

)
= e−tλ(1−e−q),

y derivamos bajo el signo integral cuando q > 0, se obtiene

ϕt(q)
(
−λte−q

)
=
∂ϕt(q)

∂q
= −E

(
Nte

−qNt
)
.

Luego el teorema de convergencia monótona nos permite ver que

λt = E(Nt) .

Al derivar dos veces se tiene que para q > 0:

ϕt(q)
(
λte−q

)2
+ ϕt(q)λte

−q =
∂ϕt(q)

∂q
= E

(
N2
t e
−qNt

)
,

por lo que el teorema de convergencia monótona nos dice que

E
(
N2
t

)
= (λt)

2
+ λt.

Finalmente, se obtiene
Var(Nt) = λt.

Continuaremos ahora con el modelo de las reclamaciones en una compañ́ıa de
seguros: es natural que los montos de los siniestros son independientes entre si y de
los tiempos en que acontecen. Por lo tanto se plantéa el siguiente modelo completo:

(1) Los tiempos en que acontecen los siniestros tienen como proceso de contéo
asociado a un proceso de Poisson N . Sea λ su intensidad.

(2) Los montos de los siniestros son variables aleatorias independientes e
idénticamente distribuidas ξ1, ξ2, . . ..

Sea Sn = ξ1 + · · · + ξn la sucesión de sumas parciales asociada a los montos de
los siniestros. Entonces, al tiempo t, el monto total que ha sido reclamado a la
compañ́ıa de seguros es

Xt = SNt
=
∑
i≤Nt

ξi.
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Al proceso X se le conoce con el nombre de proceso de Poisson compuesto. A
la distribución de ξi se le conoce como distribución de salto de X y al parámetro
de N se le conoce como intensidad de X. El siguiente código permite simular al
proceso de Poisson compuesto cuando la distribución de salto es la de 100,000 veces
una Beta de parámetros 1/2 y 1/2. La idea es modelar una situación en la que es
más probable que los montos de los siniestros sean o muy pequeños o muy grandes
(hasta el tope de 100,000 que podŕıa ser la suma asegurada). El resultado se puede
apreciar en la Figura 1

lambda <-10 # Intensidad

s<-rexp(1,lambda) # s representa el tiempo del primer siniestro

x<-100000*rbeta(1,1/2,1/2) # x representa el monto del primer siniestro

T<-c(0,s) # El vector T irá acumulando los tiempos en que van

ocurriendo siniestros

X<-c(0,x) # X irá acumulando los montos de los siniestros

N<-0 # N nos dirá cuantos siniestros ocurren hasta el tiempo

1

while(s<1){ # Mientras no se haya sobrepasado el instante 1

N<-N+1 # Aumentamos el número de siniestros

s<-s+rexp(1,lambda) # Vemos el tiempo en el que ocurre el siguiente

siniestro

x<-100000*rbeta(1,1/2,1/2) # Calculamos su monto

T<-c(T,s) # Aumentamos un evento temporal

X<-c(X,tail(X,1)+x) # Agregamos el monto de la reclamación

}

plot(T,X)

Listing 4.3. PoissonCompuesto.R

Se pueden hacer cálculos paralelos a los del proceso de Poisson en el caso Poisson
compuesto. Por ejemplo, calculemos la media y varianza de Xt: si µ = E(S1) y
σ2 = Var(S1) son finitas entonces

E
(
X2
t

)
=

∞∑
n=0

E
(
S2
n1(Nt=n)

)
=

∞∑
n=0

(
nσ2 + n2µ2

)
P(Nt = n) = E

(
σ2Nt + µ2N2

t

)
<∞,

ya que las variables Poisson tienen momentos de cualquier orden. La media está
dada por

E(Xt) =

∞∑
n=0

E
(
S2
n1(Nt=n)

)
=

∞∑
n=0

nµP(Nt = n) = λtµ = E(Nt)E(S1) .

Aśı, también se tiene que

Var(Xt) = E
(
E
(

(SNt − λµt)
2
∣∣∣Nt))

= E
(
E
(

(SNt −Ntµ)
2

+ (Ntµ− λµt)2
∣∣∣Nt))

= E
(
Ntσ

2 + µ2 (Nt − λt)2
)

= σ2λt+ µ2λt.



68

0.0 0.2 0.4 0.6 0.8 1.0

0
50
00
0

10
00
00

15
00
00

20
00
00

25
00
00

T

X

Figura 1. Trayectoria de un proceso de Poisson compuesto

Las igualdades anteriores también se pueden interpretar como un caso partic-
ular de las identidades de Wald.

Continuaremos ahora con un análisis del Teorema 4.1. Primero probaremos
que un proceso de contéo con tiempos interarribo independientes y exponenciales
de parámetro λ tiene incrementos independientes y estacionarios.

Sean S1, S2, . . . exponenciales independientes de parámetro λ, T las sumas
parciales asociadas dadas por T0 = 0, Tn = S1 + · · · + Sn y N = (Nt, t ≥ 0) el
proceso de contéo asociado dado por

Nt =
∑

n1Tn≤t<Tn+1 .

Consideremos al proceso N t dado por N t
s = Nt+s−Nt. Este proceso es un proceso

de contéo. Sus tiempos interarribo son

St1 = TNt+1 − t, St2 = SNt+2, S
t
3 = SNt+3, . . . .
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Al descomponer respecto al valor de Nt vemos que

P
(
St1 > t1, S

t
2 > t2, . . . , S

t
n > tn

)
=
∑
m

P(Nt = m,Sm+1 − t > t1, Sm+2 > t2, . . . , Sm+n > tn)

=
∑
m

P(Tm ≤ t < Tm + Sm+1, Tm + Sm+1 − t > t1, Sm+2 > t2, . . . , Sm+n > tn)

=
∑
m

P(Tm ≤ t < Tm + Sm+1, Tm + Sm+1 − t > t1)P(Sm+2 > t2, . . . , Sm+n > tn) .

Al condicionar sobre el valor de Tm, su independencia con Sm+1 y utilizar la
propiedad de pérdida de memoria para S1, vemos que

P(Tm ≤ t < Tm + Sm+1, Sm+1 − t > t1)

= E
(
E
(
1Tm≤t<Tm+Sm+11Tm+Sm+1−t>t1

∣∣T1

))
= E

(
1Tm≤te

−λ(t−Tn)
)
e−λt1 .

Sin embargo, al utilizar t1 = 0, nos damos cuenta de que

P(Nt = m) = P(Tm ≤ t < Tm + Sm+1) = E
(
1Tm≤te

−λ(t−Tn)
)
,

por lo cual se deduce que

P
(
St1 > t1, S

t
2 > t2, . . . , S

t
n > tn

)
=
∑
m

P(Nt = m) e−λt1e−λt2 · · · e−λtn .

Se deduce que los tiempos de salto de N t son exponenciales independientes de
parámetro λ. Se puede concluir que N t tiene las mismas distribuciones finito-
dimensionales que N , es decir, que si 0 = t0 ≤ t1 ≤ · · · entonces

P(Nt1 = m1, . . . , Ntn = mn) = P
(
N t
t1 = m1, . . . , N

t
tn = mn

)
.

(Esto se verifica al expresar los eventos anteriores en términos de los tiempos in-
terarribo.) En particular, N t tiene incrementos estacionarios. Ahora veamos que
N t tiene incrementos independientes. Para esto, consideremos al evento

A = {Ns1 = k1, . . . , Nsm = km} ,

donde s1, . . . , sn ≤ t. Al descomponer sobre el valor de Nt se obtiene

P
(
A,Nt = m,St1 > t1, S

t
2 > t2, . . . , S

t
n > tn

)
=
∑
m

P(A, Tm ≤ t < Tm + Sm+1, Tm + Sm+1 − t > t1)P(Sm+2 > t2, . . . , Sm+n > tn) .

Sin embargo, como el conjunto A∩{Nt = m} se escribe en términos de S1, . . . , Sm
y de {Nt = m}, podemos repetir el argumento anterior para verificar que

P(A, Tm ≤ t < Tm + Sm+1, Tm + Sm+1 − t > t1) = P(A ∩ {Nt = m}) e−λt1 .
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Por lo tanto,

P
(
A,Nt = m,St1 > t1, S

t
2 > t2, . . . , S

t
n > tn

)
= P(A,Nt = m)P

(
St1 > t1, S

t
2 > t2, . . . , S

t
n > tn

)
.

Lo anterior implica que N t
s es independiente de Ns1 , . . . , Nsm si s1, . . . , sm ≤ t, y

por inducción se puede probar entonces que N tiene incrementos independientes.
Aśı, N es un proceso de contéo con incrementos independientes y estacionarios.

Consideremos ahora un proceso de contéo con incrementos independientes y
estacionarios y veamos que se trata de un proceso de renovación con tiempos inter-
arribo exponenciales. De la propiedad de incrementos independientes y estacionar-
ios, podemos inmediatamente verificar que T1 tiene una distribución exponencial.
En efecto, notemos que

P(T1 > t+ s) = P(Nt = 0, Nt+s −Nt = 0)

= P(Nt = 0)P(Ns = 0) = P(T1 > t)P(T1 > s)

Aśı, o T1 es infinito casi seguramente, lo cual dice que N es idénticamente cero, ó
es exponencial de algún parámetro λ > 0.

Ahora sólo debemos ver la razón por la que los tiempos interarribo son inde-
pendientes y con la misma distribución que el primero. Para esto, analizaremos
dos implicaciones de nuestras hipótesis conocidas como la propiedad de Markov y
de Markov fuerte.

Proposición 4.2 (Propiedad de Markov del proceso de Poisson). El proceso
N t dado por N t

s = Nt+s − Nt es un proceso de Poisson con las mismas distribu-
ciones finito-dimensionales que N y es independiente de Ft.

Demostración. Lo primero es notar que N t es un proceso de Lévy y de
contéo. Para ver que tiene las mismas distribuciones finito-dimensionales que N ,
notamos que (

N t
t1 , N

t
t2 −N

t
t1 , . . . , N

t
tn −N

t
tn−1

)
=
(
Nt+t1 −Nt, Nt+t2 −Nt+t1 , . . . , Nt+tn −Nt+tn−1

)
d
=
(
Nt1 , Nt2 −Nt1 , . . . , Ntn −Ntn−1

)
.

Al considerar f(x1, . . . , xn) = (x1, x1 + x2, . . . , x1 + · · ·+ xn), vemos que entonces(
N t
t1 , N

t
t2 , . . . , N

t
tn

)
= f

(
N t
t1 , N

t
t2 −N

t
t1 , . . . , N

t
tn −N

t
tn−1

)
d
= f

(
Nt1 , Nt2 −Nt1 , . . . , Ntn −Ntn−1

)
= (Nt1 , Nt2 , . . . , Ntn) .
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Ahora sólo se debe probar que N t es independiente de Ft. Sin embargo, si
0 = s0 ≤ s1 ≤ sm ≤ t = t0 ≤ t1 ≤ tn entonces las variables(

Ns1 −Ns0 , . . . , Nsm −Nsm−1

)
y (

Nt1 −Nt0 , . . . , Ntm −Ntm−1

)
=
(
N t
t1 , . . . , N

t
tm−t −N

t
tm−1−t

)
son independientes. Eso implica que

(Ns1 , . . . , Nsm) y
(
N t
t1 , . . . , N

t
tm−t −N

t
tm−1−t

)
son independientes y que por lo tanto, si definimos a los π-sistemas

C1 = {Ns1 ∈ A1, . . . , Nsm ∈ Am}

y

C2 =
{
N t
t1 ∈ B1, . . . , N

t
tn ∈ Bn

}
se sigue que

M1 = {A ∈ Ft : A⊥B para todo B ∈ C2}
contiene a C1. Puesto que M1 es un λ-sistema y σ(C1) = Fs entonces

Fs ⊂M1.

Por lo tanto el λ-sistema

M2 = {B ∈ Ft : A⊥B para todo A ∈ Fs}

contiene al π-sistema C2. Esto implica que σ(N t
s : s ≥ 0) ⊂M2 y que por lo tanto

N t es independiente de Ft. �

Ahora, haremos una extensión adicional de la propiedad anterior.

Proposición 4.3 (Propiedad de Markov fuerte). Si T : Ω → [0,∞) es una
variable aleatoria tal que {T ≤ t} ∈ Ft para toda t ≥ 0 y

FT = {A ∈ F : A ∩ {T ≤ t} ∈ Ft∀t}

entonces el proceso NT dado por NT
t = NT+t − NT es un proceso de Lévy y de

contéo con las mismas distribuciones finito-dimensionales que N e independiente
de FT .

Veamos cómo se aplica la propiedad de Markov fuerte: puesto que los tiempos
interarribo de NTn son Tn+1−Tn, Tn+2−Tn+1, . . . y son independientes de FTn , se
deduce que Tn+1−Tn es exponencial e independiente de T1, T2−T1, . . . , Tn−Tn−1.
Esto termina la prueba de que un proceso de contéo y de Lévy es el proceso de
contéo asociado a un proceso de renovación exponencial.
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Prueba de la propiedad de Markov fuerte. Para cada n ≥ 1, defini-
mos Tn igual a (k + 1)/2n si T ∈ [k/2n, (k + 1)/2n). Formalmente, podemos
escribir

Tn = d2nT e/2n.
Entonces Tn es una sucesión de variables aleatorias que decrecen hacia T . Además,
notemos que

{Tn = k + 1/2n} = {k/2n ≤ T < (k + 1) /2n}
= {T < (k + 1) /2n} \ {T < k/2n} ∈ F(k+1)/2n .

Por el mismo argumento, si A ∈ FT entonces

A ∩ {Tn = k/2n} ∈ F(k+1)/2n .

Aśı, por la propiedad de Markov, vemos que

P
(
A, Tn = k + 1/2n, NTn

t1 = k1, . . . , N
Tm

tn = km

)
= P(A, Tn = k + 1/2n)P(Nt1 = k1, . . . , Ntm = km) .

Al sumar sobre k, vemos que

P
(
A,NTn

t1 = k1, . . . , N
Tn

tm = km

)
= P(A)P(Nt1 = k1, . . . , Ntm = km) .

Como N es continuo por la derecha y Tn decrece a T , vemos que confome n→∞:
P
(
A,NT

t1 = k1, . . . , N
T
tm = km

)
=P(A)P(Nt1 = k1, . . . , Ntm = km). Se concluye que

NT es un proceso de contéo y de Lévy con las mismas distribuciones finito-
dimensionales que N . Por lo tanto, sus tiempos interarribo tienen la mismas
distribuciones conjuntas, pues si S̃ son los tiempos interarribo de NT entonces

P
(
S̃1 > s1, S̃2 > s2, . . . , S̃n > sn

)
= P

(
T̃1 > s1, T̃2 > s1 + s2, . . . , T̃n > s1 + · · ·+ sn

)
= P

(
NT
s1 ≤ 0, NT

s1+s2 ≤ 1, . . . , NT
s1+···+sn ≤ n− 1

)
= P(Ns1 ≤ 0, Ns1+s2 ≤ 1, . . . , Ns1+···+sn ≤ n− 1)

= P(S1 > s1, S2 > s2, . . . , Sn > sn) .

�

Proposición 4.4. El proceso de Poisson compuesto es un proceso de Lévy
y satisface la propiedad de Markov siguiente: si FX

t = σ(Xr : r ≤ t) entonces el
proceso Xt dado por Xt

s = Xt+s −Xt es un proceso de Poisson compuesto con la
misma intensidad y distribución de salto que X y es independiente de FX

t .

Demostración. El proceso X comienza en cero y tiene trayectorias que son
constantes por pedazos, en particular, continuas por la derecha y con ĺımites por
la izquierda.
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Para ver que X tiene incrementos independientes y estacionarios, notemos que
si 0 = t0 ≤ t1 ≤ · · · ≤ tn y Ai ∈ BR para i = 1, . . . , n, entonces

P
(
Xti −Xti−1

∈ Ai, i = 1, . . . , n
)

=
∑

0=k0≤k1≤···≤kn

P
(
Ski − Ski−1

∈ Ai, Nti = ki, i = 1, . . . , n
)

=
∑

0=k0≤k1≤···≤kn

n∏
i=1

P
(
Ski − Ski−1

∈ Ai
)
P(Nti = ki, i = 1, . . . , n) ,

puesto que las variables {Si : i = 0, 1, · · · } y {Nt : t ≥ 0} son independientes. Si
k2 ≥ k1, entonces Sk2 − Sk1 tiene la misma distribución que Sk1−k2 , entonces∑

0=k0≤k1≤···≤kn

n∏
i=1

P
(
Ski − Ski−1 ∈ Ai

)
P(Nti = ki, i = 1, . . . , n)

=
∑

0=k0≤k1≤···≤kn

n∏
i=1

P
(
Ski−ki−1 ∈ Ai

) n∏
i=1

P
(
Nti −Nti−1 = ki − ki−1

)
=

∑
0≤j1,...,jn

n∏
i=1

P
(
Sji ∈ Ai, Nti−ti−1 = ji

)
=

n∏
i=1

P
(
Xti−ti−1

∈ Ai
)
.

Si utilizamos el caso n = 2, con A1 = R, podemos concluir que Xt2 −Xt1 y Xt2−t1
tienen la misma distribución, de donde la igualdad

P
(
Xti −Xti−1 ∈ Ai, i = 1, . . . , n

)
=

n∏
i=1

P
(
Xti−ti−1 ∈ Ai

)
nos permite concluir la independencia de los incrementos y por lo tanto, que el
proceso Poisson compuesto es un proceso de Lévy.

La propiedad de Markov es válida más generalmente para procesos de Lévy y
tiene una demostración muy similar a la del proceso de Poisson. �

Veamos una aplicación adicional del Teorema 4.1.

Proposición 4.5. Si N1 y N2 son dos procesos de Poisson independientes
de intensidad λ1 y λ2 entonces N1 + N2 es un proceso de Poisson de intensidad
λ1 + λ2.

En efecto, N1 +N2 es un proceso de contéo y de Lévy y su primer salto, que
es igual a S1

1 ∧ S1
2 , tiene distribución exponencial de parámetro λ1 + λ2.



CAPÍTULO 5

Procesos de Markov constantes por pedazos

En este caṕıtulo analizaremos una clase de procesos estocásticos que generaliza
al proceso de Poisson y tiene similitudes con las cadenas de Markov: los procesos
de Markov a tiempo continuo con valores en un conjunto a lo más numerable E.
Comenzaremos con un estudio del proceso de Poisson, al expresar su propiedad
de Markov de forma que se parezca a la de las cadenas de Markov. Luego, se in-
troducirá un segundo ejemplo, el de los procesos de nacimiento puro. Finalmente,
comenzaremos el estudio de procesos con trayectorias constantes por pedazos y
daremos una descripción probabiĺıstica de estos al introducir parámetros que de-
terminan a un proceso de Markov: la distribución inicial y la matriz infinitesimal.
Luego, estudiaremos sus probabilidades de transición mediante unas ecuaciones
diferenciales que satisfacen y que están ligadas con su matriz infinitesimal: las
ecuaciones backward y forward de Kolmogorov. Finalmente, veremos cómo las
ecuaciones backward nos permiten estudiar a las distribuciones invariantes de los
procesos de Markov a tiempo continuo.

1. El proceso de Poisson como proceso de Markov

El proceso de Poisson toma valores en los naturales. Como lo hemos definido,
siempre comienza en cero, a diferencia de las cadenas de Markov que podemos
comenzar en cualquier parte de su espacio de estados. Recordemos que si N es un
proceso de Poisson de parámetro λ, al tener incrementos independientes y esta-
cionarios, podemos escribir, para = t0 < t1 < t2 < · · · < tn

P(Nt1 = k1, Nt2 = k2, . . . , Ntn = kn)

= P(Nt1 = k1)P(Nt2−t2 = k2 − k1) · · ·P
(
Ntn −Ntn−1

= kn − kn−1

)
.

Por lo tanto, si definimos

Pt(i, j) = P(Nt = j − i) = e−λt
(λt)

n

n!
,

vemos que

P(Nt1 = k1, Nt2 = k2, . . . , Ntn = kn) = Pt1(0, k1)Pt2−t1(k1, k2) · Ptn(kn−1, kn) .

La expresión anterior ya es muy paralela a la que vemos en cadenas de Markov; la
entrada i, j de la matriz (infinita) Pt se puede interpretar como la probabilidad de

74
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ir de i a j en t unidades de tiempo. Esto además nos dice cómo podŕıamos definir
a un proceso estocástico que fuera como el proceso de Poisson pero que comenzara
en k: simplemente substituimos Pt1(0, k1) por Pt1(k, k1). Sin embargo, no tenemos
un proceso estocástico que satisfaga lo anterior; demos una construcción de él.

Sea N un proceso de Poisson de parámetro λ. Si t > 0, hemos visto que el
proceso N t dado por N t

s = Nt+s −Nt es un proceso de Poisson independiente de
Nt. Por lo tanto:

P(Nt+s1 = k1, . . . , Nt+sn = kn |Nt = k)

=
P(Nt+s1 = k1, . . . , Nt+sn = kn, Nt = k)

P(Nt = k)

=
P(Ns1 = k1 − k, . . . , Nsn = kn − k)P(Nt = k)

P(Nt = k)

= P(Ns1 + k = k1, . . . , Nsn + k = kn) .

Vemos entonces que, la distribución condicional del proceso de Poisson en tiempos
posteriores a t condicionalmente a Nt = k es la misma que la del proceso k + N .
Aśı, es natural definir al proceso de Poisson que comienza en k como k +N , pues
este proceso tiene trayectorias como las del proceso de Poisson (aumenta de uno
en uno en ciertos tiempos aleatorios) pero comienza en k. Además:

P(Nt+s1 = k1, . . . , Nt+sn = kn |Nt = k) = Pt1(k, k1)Pt2−t1(k1, k2) · Ptn(kn−1, kn)

Recordemos que en el caso de cadenas de Markov, se satisfacen las ecuaciones
de Chapman-Kolmogorov. En este contexto, las ecuaciones se pueden expresar
como sigue:

Pt+s(i, k) =
∑
j

Ps(i, j)Pt(j, k) .

Ejercicio 5.1. Al utilizar el teorema del biniomio, pruebe directamente que
la ecuación anterior se satisface. Dé además un argumento probabiĺıstico, basado
en condicionar con lo que sucede al tiempo s, para probar dicha ecuación.

La diferencia con las cadenas de Markov y el proceso de Poisson es que, al ser el
segundo un proceso de Markov a tiempo continuo, en lugar de tener una sola matriz
cuyas potencias nos permiten describir al proceso, tenemos toda una colección de
matrices (Pt, t ≥ 0). Uno de los objetivos de este caṕıtulo es mostrar como, con
una definición adecuada, podemos generar a todas las matrices (Pt, t ≥ 0) mediante
una sola matriz, la llamada matriz infinitesimal o matriz de tasas de transición. La
idea es la siguiente: si x es un número, podemos interpolar a la sucesión xn, n ∈ N
mediante la función exponencial: xn = en log x. El lado derecho ya tiene sentido si
n ≥ 0 y no sólo si n ∈ R. En cierto sentido, si Pt = etQ, podŕıamos interpretar a Q
como el logaritmo de P1. Para ver cómo podŕıamos obtener a Q, notemos que para
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obtener a log x si conocemos a f(t) = et log x, simplemente calculamos log x = f ′(0)
y además f ′(t) = f ′(0) f(t). En el caso de nuestra matriz Pt, vemos que

d

dt
Pt(i, j) =

d

dt
e−λt

(λt)
j−i

(j − i)!

=
1

(j − i)!

[
e−λt (j − i) tj−i−1λj−i1j≥i+1 − λe−λt (λt)

j−i
]

por lo que al evaluar en cero se obtiene:

d

dt

∣∣∣∣
t=0

Pt(i, j) =


−λ j = i

λ j = i+ 1

0 j 6= i, i+ 1

.

Ejercicio 5.2. Sea

Q(i, j) =


−λ j = i

λ j = i+ 1

0 j 6= i, i+ 1

.

Pruebe directamente que

(5)
d

dt
Pt(i, j) = QPt(i, j) = PtQ(i, j) ,

donde QPt es el producto de las matrices Q y Pt.

A las ecuaciones (diferenciales) (5) se les conoce como ecuaciones de Kol-
mogorov. Esbocemos una interpretación y deducción probabiĺıstica de dichas
ecuaciones. Para calcular Pt+h(0, j), podemos descomponer respecto del valor de
Nh para obtener

Pt+h(i, j) = P(Nt+h = j) = P(Nh = i)P(Nt = j − i) .
Por otra parte, al utilizar expĺıcitamente la distribución Poisson, vemos que

lim
h→0

1− P(Nh = 0)

h
= λ lim

h→0

P(Nh = 1)

h
= λ lim

h→0

P(Nh ≥ 2)

h
= 0.

La interpretación es que es muy probable que haya cero saltos en un intervalo de
longitud h, hay probabilidad proporcional al tamaño del intervalo de que haya un
sólo salto, y muy improbable que haya más de dos saltos. Se concluye que

∂Pt(i, k)

∂t
= lim
h→0

Ph(i, i)Pt(i, k)− Pt(i, k)

h

+ lim
h→0

Ph(i, i+ 1)Pt(i+ 1, k)

h
= Pt(i+ 1, k)λ− Pt(i, j)λ = PtQ(i, k)

A esta ecuación se le denomina ecuación hacia atrás de Kolmogorov (también
llamada, aún en español, ecuación backward) y fué obtenida al descomponer a
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Nt+h respecto del valor de Nh. Ésta implica automáticamente la ecuación hacia
adelante de Kolmogorov

∂Pt(i, k)

∂t
= QPt(i, k)

al utilizar la relación Pt(i+ 1, j) = Pt(i, j − 1).

2. El proceso de nacimiento puro

El proceso de nacimiento puro es una generalización del proceso de Poisson que
puede presentar un fenómeno interesante: la explosión. Daremos una definición de
dicho proceso paralela a la del proceso de Poisson.

Definición. Sean q0, q1, . . . ∈ (0,∞). Un proceso de nacimiento puro es
el proceso de contéo cuyos tiempos interarribo conforman una sucesión de variables
exponenciales independientes S1, S2, . . . de parámetros λ0, λ1, . . ..

La interpretación del proceso de nacimiento puro es que λi representa la tasa a
la que un nuevo individuo se agrega a una población cuando esta tiene i elementos.
Aśı, el proceso de nacimiento puro se construye al definir a los tiempos de salto

0 = T0 Tn = S1 + · · ·+ Sn T∞ =

∞∑
n=0

Si

y al proceso de contéo asociado

Nt =
∑
n∈N

n1Tn≤t<Tn+1
.

Claramente, cuando qi = λ para toda i el proceso que hemos construido es el
proceso de Poisson. Sin embargo, cuando tenemos qi dependientes de i se presenta
un nuevo fenómeno. En efecto, en el caso del proceso de Poisson, sabemos que
Tn/n → 1/λ = E(S1) > 0 por la ley fuerte de los grandes números y por lo tanto
T∞ =∞ casi seguramente. Sin embargo, en el caso del proceso de nacimiento puro
puede suceder que T∞ <∞, en cuyo caso:

lim
t→T∞−

Nt =∞.

Decimos entonces que ha ocurrido la explosión (en este caso demográfica) del pro-
ceso de nacimiento puro y es natural definir

Nt =∞1T∞≤t +
∑
n∈N

n1Tn≤t<Tn+1

pues con la definición anterior el proceso se vuelve cero despues de que la población
haya explotado.

Puesto que el proceso de nacimiento puro admite una construcción sencilla,
se puede dar un criterio expĺıcito para la explosión, el cual además prueba que la
explosión se da o con probabilidad cero o con probabilidad uno.
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Proposición 5.1. T∞ = ∞ casi seguramente si E(T∞) =
∑
i 1/qi = ∞. Si∑

i 1/qi <∞ entonces T∞ <∞ casi seguramente.

Demostración. Si
∑
i 1/qi < ∞ entonces podemos aplicar el teorema de

convergencia monótona a la sucesión Tn para deducir que

E(T∞) = lim
n

E(Tn) = lim
n

∑
m≤n

1/qm =
∑
n

1/qn <∞,

por lo que T∞ <∞ casi seguramente.
Por otra parte, si

∑
i 1/qi = ∞, entonces podemos aplicar el teorema de con-

vergencia acotada para ver que

E
(
e−T∞

)
= lim

n
E
(
e−Tn

)
= lim

n

n∏
i=1

qi
1 + qi

.

Ahora dividiremos en dos partes nuestro análisis: si existe µ > 0 tal que qi ≤ µ
para una cantidad infinita de ı́ndices i entonces

n∏
i=1

qi
1 + qi

≤
(

1

1 + 1/µ

)n
→ 0

conforme n → ∞. Si por otra parte qi → ∞ entonces utilizamos el hecho de que
qi log (1 + 1/qi)→ 1 conforme n→∞ y por lo tanto

n∏
i=1

qi
1 + qi

= e−
∑n

i=1 log(1+1/qi) ≤ e−C
∑n

i=1 1/qi → 0.

Vemos que en cualquier caso

E
(
e−T∞

)
= 0,

lo cual nos dice que T∞ =∞ casi seguramente. �

Para analizar la propiedad de Markov del proceso de nacimiento puro, nece-
sitamos definirlo cuando comienza en i ∈ N. Una definición posible es que se
trata del proceso (NTi+t, t ≥ 0). Este proceso va tomando los valores sucesivos
i, i + 1, i + 2, . . . y los tiempos que permanece en cada uno de los estados son
Si, Si+1, . . . ,. Pues este proceso tiene la misma estructura probabiĺıstica que i más
un proceso de contéo cuyos tiempos interarribo son exponenciales independientes
de parámetros λi, λi+1, . . ., o sea, que una definición equivalente es que un pro-
ceso de nacimiento puro con parámetros λ0, λ1, . . . que comienza en i es i más un
proceso de nacimiento puro con parámetros λi, λi+1, . . .. Con estos preliminares
podemos enunciar la propiedad de Markov del proceso de nacimiento puro.

Proposición 5.2. Sean N un proceso de nacimiento puro de parámetros λ0, λ1, . . .
y s ≥ 0. Condicionalmente a Ns = i, el proceso estocástico (Nt+s − i, t ≥ 0) es
un proceso de nacimiento puro de parámetros λi, λi+1, . . . y es condicionalmente
independiente de Fs = σ(Nr : r ≤ t) dado Ns = i.
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En otras palabras, condicionalmente a Ns = i, el proceso Nt+s, t ≥ 0 es un
proceso de nacimiento puro que comienza en i.

Demostración. El proceso Nt+s−i, t ≥ 0 es un proceso de contéo cuyos tiem-
pos interarribo son TNs+1 − s, SNs+2, SNs+3, . . .. Denotémoslos como Ss0 , S

s
1 , . . ..

Debemos ver que condicionalmente a Ns = i, estos tiempos interarribo son expo-
nenciales, independientes y de parámetros λi, λi+1, . . .. En efecto:

P(Ns = i, Ss0 > s0, · · · , Ssn > sn)

= P(Ti ≤ s < Ti + Si, s0 + s < Ti + Si, s1 < Si+1, . . . , sn < Si+n) .

Al condicionar por Ti, utilizar la independencia de las variables Ti,Si, . . . , Si+n y
la propiedad de pérdida de memoria de la distribución exponencial vemos que

P(Ti ≤ s < Ti + Si, s0 + s < Ti + Si, s1 < Si+1, . . . , sn < Si+n) .

= E
(
1Ti≤se

−λi (s− Ti)
)
e−λis1 · · · e−λi+nsn .

Sin embargo, al poner s0 = · · · = sn = 0, vemos que

E
(
1Ti≤se

−λi (s− Ti)
)

= P(Ns = i)

y por lo tanto, al condicional por Ns = i, vemos que Ns es un proceso de nacimiento
puro que comienza en i.

Falta demostrar que Ns es condicionalmente independiente de Fs dado que
Ns = i, esto es, que para todo A ∈ Fs, se tiene que

P
(
Ns
t1 = k1, . . . , N

s
tn = kn, A |Ns = i

)
= P

(
Ns
t1 = k1, . . . , N

s
tn = kn |Ns = i

)
P(A |Ns = i) .

Por clases monótonas, basta verificarlo cuando A = {Ns1 = j1, . . . , Nsm = jm} con
s1 ≤ · · · ≤ sm ≤ t y j1 ≤ · · · ≤ jm ≤ i. Para esto, seguimos el mismo razonamiento
anterior al notar que

A ∩ {Ns = i} = {Tj1 ≤ s1 < Tj1+1, · · · , Tjm ≤ s < Tjm+1} ∩ {Ti ≤ s < Ti+1} .

�

Ejercicio 5.3. Haga un programa en R que simule al proceso de nacimiento
puro que comienza en 1 si λi = iλ para algún λ > 0. ¿Este proceso explota? Haga
otro programa que simule el caso λi = λi2 y diga si ocurre explosión o no.

La propiedad de Markov se puede interpretar de manera similar a la del proceso
de Poisson. Dados los parámetros q = (λ0, λ1, . . .), sea Pt(i, j) la probabilidad de
que un proceso de nacimiento puro de parámetro q que comienza en i se encuentre
en j al tiempo t. Entonces:

P(Ns+t1 = k1, . . . , Ns+tn = kn |Ns = k)

= Pt1(k, k1)Pt2−t1(k1, k2) · · ·Ptn−tn−1(kn−1, kn) .
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Aqúı es más dif́ıcil obtener una expresión expĺıcita para Pt(i, j). Ésto se puede
lograr cuando por ejemplo λi = iλ para alguna λ > 0 (que es el caso del Proceso
de Yule, básico en la teoŕıa de procesos de ramificación a tiempo continuo). Sin
embargo, podemos argumentar por qué son válidas las ecuaciones hacia atrás de
Kolmogorov: Si h es pequeño y nuestro proceso de nacimiento puro comienza en
i, será raro que haya más de dos saltos en un intervalo de tiempo pequeño. Lo que
se afirma es que, exactamente como en el caso de procesos de Poisson,

lim
h→0

1− Ph(i, i)

h
= λi lim

h→0

Ph(i, i+ 1)

h
= λi lim

h→0

∑
j≥2 Ph(i, j)

h
= 0.

Por lo tanto, las ecuaciones hacia atrás de Kolmogorov seŕıan

∂

∂t
Pt(i, j) = λiPt(i+ 1, j)− λiPt(i, j) .

Vemos entonces que la matriz infinitesimal o de tasas de transición estaŕıa dada
por

Q(i, j) =


−λi i = j

λi j = i+ 1

0 en otro caso

y que las ecuaciones hacia atrás se pueden escribir como

∂

∂t
Pt(i, j) = QPt(i, j) .

3. Matrices infinitesimales y construcción de procesos de Markov

Comenzaremos por describir a un tercer ejemplo de proceso de Markov a
tiempo continuo. Este ejemplo se basa en calcular el mı́nimo de variables ex-
ponenciales independientes.

Comenzaremos con un ejemplo con espacio de estados E finito. Para cada
x, y ∈ E con x 6= y sea λx,y ≥ 0. Sean Ei,x,y,≥ 1, x, y ∈ E, x 6= y variables
aleatorias exponenciales independientes, tal queEi,x,y tiene parámetro λx,y. A λx,y
lo interpretaremos como la tasa a la que dejo el estado x para acceder al estado y
y supondremos que para cada x ∈ E existe y ∈ E distinta de x tal que λx,y > 0.
Si x ∈ E, definamos a

T1 = min
y 6=x

E1,x,y donde T1 = E1,x,X1
.

Recursivamente, definiremos a

Tn+1 = min
y 6=Xn

En+1,Xn,y donde Tn+1 = E1,Xn,Xn+1 .

Definamos finalmente, al proceso a tiempo continuo de interés:

Zt = Xn si t ∈ [Tn, Tn+1).
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Hagamos un ejemplo en R para ilustrar la definición. Comencemos con E =
{1, 2}, por lo que necesitamos definir a dos cantidades positivas λ1,2 (que deno-
taremos por λ1 y digamos que es igual a 2) y λ2,1 (denotada λ2 y digamos igual
a 1). Si queremos comenzar nuestra construcción con x = 1, podemos utilizar el
siguiente código.

# Simulemos una cadena de Markov en tiempo continuo en $E={1 ,2}$

# l(1) es la tasa a la que dejo $1$ (para ir a 2) y viceversa

l=c(2,1);

# x es el estado actual , comenzamos en

x=1;

X=c(x);

# T contendr\’a los tiempos en que cambia la cadena

T=0

# n es la cantidad de pasos

n=20;

for(i in 1:n)

{

#Cambio de estado

x=3-x;

#Agrego el nuevo estado

X=c(X,x)

# Simulo la exponencial de la tasa adecuada y la agrego a mis tiempos

T=c(T,tail(T,1)+rexp(1,l[x]));

}

# Grafico la trayectoria

plot(T,X,type="s")

Listing 5.1. QCadena2Estados.R

Una exponencial de parámetro λ tiene la misma distribución que una exponen-
cial de parámetro 1 dividida entre λ, por lo cual en el ciclo es equivalente utilizar
el comando T=c(T,tail(T,1)+rexp(1)/l[x]);.

Un ejemplo un poco más complicado lo obtenemos si E = {1, 2, 3} y ponemos
las tasas de transición λ1,2 = 2, λ2,1 = λ2,3 = 1, λ3,1 = 1/3 y todas las demás
igual a cero. En este caso, nuestro primer impulso podŕıa ser el utilizar el siguiente
código:

# Simulemos una cadena de Markov en tiempo continuo en $E={1,2,3}$

# La matriz de tasas de transici\’on

L=matrix (0,3,3)

L[1 ,2]=2

L[2 ,1]=1

L[2 ,3]=1

L[3 ,1]=1/3

# Estado inicial

x=1

# Vector de estados

X=c(x)

# Vector de tiempos

T=c(0)

# N\’umero de pasos

n=20
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for(i in 1:20)

{

# Genero las exponenciales

e=rexp (3)/L[x,]

# El nuevo tiempo de salto

t=min(e)

T=c(T,tail(T,1)+t)

# El nuevo estado

x=which.min(e)

X=c(X,x)

}

plot(T,X,type="s")

Listing 5.2. QCadena3Estados.R

Hay una manera de realizar la simulación anterior con menos variables aleato-
rias. En vez de las 3 exponenciales, podemos utilizar una exponencial y una uni-
forme. La idea es utilizar la proposición siguiente para ver que el mı́nimo de
variables exponenciales es exponencial.

Proposición 5.3. Sean T1, . . . , Tn variables exponenciales independientes de
parámetros respectivos λ1, . . . , λn. Sea T = mini Ti. Entonces, con probabilidad
1, existe un único ı́ndice K tal que T = TK . T y K son independientes, T tiene
distribución exponencial de parámetro λ = λ1 + · · ·+ λn y P(K = k) = λk/λ.

Demostración. Calculemos:

P(T ≥ t, Tj > Tk para toda j 6= k) = P(Tk ≥ t, Tj > Tk para toda j 6= k)

= E

1Tk≥t
∏
j 6=k

e−λkTk


=

∫ ∞
t

λke
−λks

∏
j 6=k

e−λjs ds

=
λk
λ
e−λt.

Al evaluar en t = 0 vemos que

P(Tj > Tk para toda j 6= k) =
λk
λ

por lo que al utilizar que los eventos anteriores son ajenos conforme variamos a k
y su unión es la probabilidad de que el mı́nimo de T1, . . . , Tn se alcance para un
sólo ı́ndice, vemos que

P(Existe un único k ∈ {1, . . . , n} tal que T = Tk) =
∑
k

λk
λ

=
λ

λ
= 1.

Al sumar sobre k, vemos que

P(T ≥ t) = e−λt,
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lo cual implica que T es exponencial de parámetro λ
Puesto que con probabilidad 1 hay un único ı́ndice (aleatorio) en el que se

alcanza el mı́nimo, digamos K tal que TK = T , vemos que

P(K = k, T ≥ t) =
λk
λ
e−λt = P(K = k)P(T ≥ t) . �

Aśı, nuestro proceso a tiempo continuo se puede simular también mediante el
siguiente código.

# Simulemos una cadena de Markov en tiempo continuo en $E={1,2,3}$

# La matriz de tasas de transici\’on

L=matrix (0,3,3)

L[1 ,2]=2

L[2 ,1]=1

L[2 ,3]=1

L[3 ,1]=1/3

# Tasas totales de salto

l=rowSums(L)

# Matriz de transici\’on

P=L/rowSums(L)

# Estado inicial

x=1

# Vector de estados

X=c(x)

# Vector de tiempos

T=c(0)

# N\’umero de pasos

n=20

for(i in 1:20)

{

# Genero la exponencial

e=rexp(1,l[x])

# El nuevo tiempo de salto

T=c(T,tail(T,1)+e)

# El nuevo estado

x=sample(3,1,prob=P[x,])

X=c(X,x)

}

plot(T,X,type="s")

Listing 5.3. QCadena3EstadosConMinimo.R

Continuemos con el análisis de la cadena general. A partir del código, vemos
que los parámetros se pueden reducir a una matriz de transición P con ceros en la
diagonal y un vector l de tasas totales de salto. Expĺıcitamente,

l(x) =
∑
y

λx,y y Px,y =
λx,y
l(x)

.

Además, es posible construir nuestra cadena mediante una sucesión de variables
exponenciales estándar independientes ξ1, ξ2, . . . entre śı y de una sucesión iid
U1, U2, . . . de variables uniformes. En efecto, podemos definir a X0 = x, T0 = x
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y a T1 = S1 = ξ1/l(X0). Luego, utilizamos a la variable uniforme U1 para es-
coger a un elemento aleatorio X1 de E tal que P(X1 = y) = PX0,y. Finalmente,
continuamos este procedimiento de manera recursiva: si ya tenemos definidos a
X0, . . . , Xn y a T0, . . . , Tn en términos de S1, . . . , Sn y U1, . . . , Un entonces defin-
imos Sn+1 = ξn+1/l(Xn), Tn+1 = Tn + Sn+1 y utilizamos a las variables Un+1 y
Xn para construir a Xn+1 de tal manera que P(Xn+1 = y |Xn = x) = Px,y. Fi-
nalmente, recordemos que Zt = Xn si Tn ≤ t < Tn+1. Resulta ser que Z es un
proceso de Markov a tiempo continuo. Formalmente, sea Pt(x, y) la probabilidad
de que Zt = y cuando Z0 = x y probemos que

Px0
(Xt1 = x1, . . . , Xtn = yn)

= Pt1−t0(x0, x1)Pt2−t1(x1, x2) · · ·Ptn−tn−1
(xn−1, xn)

donde Px es la medida de probabilidad que rige a Z cuando comienza en x y
0 = t0 < t1 < · · · < tn. El argumento es parecido a cuando probamos que el
proceso de Poisson (o más generalmente el de nacimiento y muerte) es un proceso
de Markov, se basa en notar que el proceso posterior a s, condicionalmente a
Zs = x tiene la misma construcción probabiĺıstica que Z comenzando en x. Esto
es, que sus tiempos y lugares de salto se pueden obtener a partir de una sucesión
de variables uniformes y exponenciales estándar independientes. Concentrémonos
mejor en las aplicaciones de este hecho.

La primera aplicación es a la obtención de las ecuaciones de Chapman-Kolmo-
gorov. En efecto, vemos que

Pt+s(x, z) = Px(Zt+s = z)

=
∑
y

Px(Zs = y, Zt+s = z)

=
∑
y

Ps(x, y)Pt(y, z) .

Seguido de esto, obtendremos las ecuaciones de Kolmogorov como en el caso
de procesos de procesos de Poisson. Se afirma que

lim
h→0

1− Px(Nh = 0)

h
= l(x) , lim

h→0

Px(Nh = 1) , Zt = y

h
= l(x)Px,y

y

lim
h→0

Px(Nh ≥ 2)

h
= 0.

En efecto, puesto que bajo Px el primer salto de N ocurre en una variable expo-
nencial de parámetro l(x), entonces

lim
h→0

1− Px(Nh = 0)

h
= lim
h→0

1− e−l(x)h

h
= l(x) .
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Por otra parte, vemos que

{Nh ≥ 2} = {S1 + S2 ≤ h}

=

{
ξ1

l(X0)
+

ξ2
l(X1)

≤ h
}

⊂
{
ξ1
λ

+
ξ2
λ
≤ h

}
.

El último evento corresponde a que un proceso de Poisson de parámetro λ, digamos
Nλ tenga más de dos saltos en el intervalo [0, t], que ya hemos estimado. Se concluye
que

0 ≤ lim sup
h→0

Px(Nh ≥ 2)

h
≤ lim
h→0

Px
(
Nλ
h ≥ 2

)
h

= 0.

Finalmente, veamos cómo ocuparnos de Px(Nh, Xh = y) = 1. Puesto que U1 es
independiente de ξ1, ξ2, entonces

1

h
Px(Nh = 1, Zh = y) =

1

h
Px
(
ξ1
l(x)

≤ h < ξ1
l(x)

+
ξ2
l(y)

)
Px,y

= Px,y
1

h
Px
(
ξ1
l(x)

≤ h < ξ1
l(x)

+
ξ2
λ

)
= Px,y

1

h

∫ h

0

l(x) e−l(x)se−l(y)(h−s) ds

= Px,yl(x) e−l(y)h 1

h

∫ h

0

e−s[l(y)−l(x)] ds

→h→0 l(x)Px,y.

Podemos entonces deducir que

lim
h→0

Ph(x, x)− 1

h
= −l(x) y para y 6= x lim

h→0

Ph(x, y)

h
= Px,yl(x) .

Llámemósle Q a la matriz

Qx,y =

{
−l(x) y = x

l(x)Px,y y 6= x
.

A esta matriz se le conoce como matriz infinitesimal del proceso de Markov Z.
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Al utilizar la finitud de E para intercambiar derivadas y sumas y las ecuaciones
de Chapman-Kolmogorov se obtiene

d

dt
Pt(x, z) = lim

h→0

Pt+h(x, z)− Pt(x, z)
h

= lim
h→0

Pt(x, z)
Ph(z, z)− 1

h
+
∑
y 6=z

Pt(x, y) lim
h→0

1

h
Ph(y, z)

=
∑
y 6=z

Pt(x, y) l(y)Py,z − Pt(x, y) l(y)

= (PtQ)x,y .

Estas son las ecuaciones forward de Kolmogorov. De igual manera, al utilizar
la finitud de E se obtienen las ecuaciones backward de Kolmogorov

d

dt
Pt(x, z) = (QPt)x,y .

Como ya se ha comentado, la anterior ecuación diferencial matricial es parecida
a la ecuación diferencial f ′(t) = λf(t) (con f(t) = Pt y λ = Q) cuya única solución
es f(t) = eλt. Aún en el caso matricial se le puede dar sentido a esta ecuación
diferencial al definir la exponencial de la matriz tQ por medio de

etQ =
∑
n

tnQn

n!
.

Entonces, se deduce que
Pt = etQ.

La pregunta que sigue es si es posible realizar la construcción que acabamos de
explorar en espacio de estados numerable. La respuesta es básicamente que śı, salvo
que se debe prestar atención al fenómeno de explosión. Otra pregunta importante
es si cualquier cadena de Markov a tiempo continuo se puede construir como lo
acabamos de hacer. La respuesta es básicamente afirmativa de nuevo cuidandonos
de la explosión. La siguiente sección aborda este segundo cuestionamiento.

4. Descripción probabiĺıstica de procesos de Markov constantes por
pedazos

En esta sección definiremos a las cadenas de Markov a tiempo continuo y
analizaremos su estructura y su comportamiento a tiempos grandes. Se realizará
por lo tanto un estudio paralelo al de las cadenas de Markov a tiempo discreto.

Sea E un conjunto a lo más numerable, ∆ 6∈ E algún punto que denominaremos
cementerio y a donde mandaremos las trayectorias de un proceso de Markov
cuando explote, y sea C el conjunto de funciones f : [0,∞) → E ∪ {∆} que
satisfacen:



4. Descripción probabiĺıstica de procesos de Markov constantes por pedazos 87

(1) si f(t) ∈ E entonces existe δ > 0 tal que f(s) = f(t) para s ∈ [t, t+ δ],
(2) si f(t) = ∆ entonces f(s) = ∆ para toda s ≥ t y
(3) si t1 < t2 < · · · , tn → t <∞ y f(tn+1) 6= f(tn) entonces f(t) = ∆.

Definición. Una cadena de Markov a tiempo continuo con espacio de
estados E es un proceso estocástico X = (Xt, t ≥ 0) tal que

(1) Xt toma valores en E ∪ {∆}
(2) para todo ω ∈ Ω, la trayectoria t 7→ Xt(ω) es un elemento del conjunto

de funciones C,
(3) existe una colección de matrices estocásticas (Pt, t ≥ 0) indexadas por los

elementos de E tales que si 0 = t0 < t1 < · · · < tn entonces:

P(X0 = x,Xt1 = x1, . . . , Xtn = xn)

= P(X0 = x)Pt1−t0(x0, x1)Pt2−t1(x1, x2) · · ·Ptn−tn−1(xn−1, xn) .

Denotaremos por Px a P condicionada por X0 = x. A la colección de matrices
estocásticas (Pt, t ≥ 0) les llamamos probabilidades de transición.

Comenzamos por verificar una propiedad familiar de las probabilidades de
transición.

Proposición 5.4. Las probabilidades de transición satisfacen las ecuaciones
de Chapman-Kolmogorov

Pt+s = PtPs.

Demostración. Al descomponer Px(Xt+s = z) por el valor que toma Xt se
obtiene

Px(Xt+s = z) =
∑
y

Px(Xt = y,Xt+s = z) =
∑
y

Pt(x, y)Ps(x, y) ,

de lo cual se sigue que Pt+s es el producto de las matrices Pt y Ps. �

Proposición 5.5 (Propiedad de Markov). Si X es una cadena de Markov a
tiempo continuo y Xt

s = Xt+s, entonces Xt también es una cadena de Markov a
tiempo continuo con las mismas probabilidades de trancisión que X. Xt es inde-
pendiente de Xs, s ≤ t condicionalmente a Xt.

Demostración. Sean t1 < t2 < · · · . Entonces

Px
(
Xt

0 = x0, X
t
t1 = x1, . . . , X

t
tn = xn

)
= Px(Xt+0 = x0, Xt+t1 = x1, . . . , Xt+tn = xn)

Pt(x, x0)Pt1(x0.x1) · · ·Ptn−tn−1
xn−1, xn.

Puesto que Pt(x, x0) = Px(Xt
0 = x0), vemos que Xt es una cadena de Markov a

tiempo continuo con las mismas probabilidades de transición que X.
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Para ver la independencia, hacemos un cálculo similar: sean 0 < s1 < · · · <
sm ≤ t y 0 < t1 < · · · < tn. Al utilizar la definición de cadena de Markov,
obtenemos

Px
(
Xs1 = x1, . . . , Xsn = xn, X

t
0 = y0, X

t
t1 = y1, . . . , X

t
tn = yn

)
= Ps1(x, x1)Ps2−s1(x1, x2) · · ·Psn−sn−1

(xn−1, xn)

Pt−sn(xn, y0)Pt1(x1, y0)Pt2−t1(y1, y2) · · ·Ptn−tn−1
(yn−1, yn) .

Al condicional por Xt = y0 vemos que

Px
(
Xs1 = x1, . . . , Xsn = xn, X

t
0 = y0, X

t
t1 = y1, . . . , X

t
tn = yn

∣∣Xt = y0

)
Px
(
Xs1 = x1, . . . , Xsn = xn

∣∣Xt
0 = y0

)
Py0(Xt1 = y1, . . . , Xtn = yn)

por lo que Xt es independiente de Xs, s ≤ t condicionalmente a Xt. �

Consideremos a los tiempos aleatorios

T0 = 0, Tn+1 = inf {t ≥ Tn : Xt 6= XTn
} y ζ = lim

n→∞
Tn

con la convención inf ∅ =∞.

Proposición 5.6. Tn y ζ son tiempos de paro respecto de la filtración canónica.

Existen tres categoŕıas para las trayectorias en términos de estos tiempos
aleatorios:

Absorción: Cuando existe n tal que Tn < ∞ = Tn+1, en cuyo caso Xt =
XTn

para toda t ≥ Tn,
Explosión: cuando ζ <∞ y
Movimiento perpetuo: cuando Tn <∞ para toda n y ζ =∞.

Proposición 5.7. Bajo Px, T1 es exponencial de parámetro c(x) ∈ [0,∞). Si
c(x) > 0 entonces las variables XT1 y T1 son independientes.

Demostración. Al utilizar la propiedad de Markov, vemos que

Px(T1 > t+ s) = Px(T1 > s,Xs = x, T1(Xs) > t)

= Px(T1 > s)Px(T1 > t)

y por lo tanto, bajo Px, T1 es exponencial.
Por otra parte

Px(1T1>tXT1
= y)

= Px
(
1T1>t, Xt = x,Xt

T1(Xt) = y
)

= Px(1T1>t)Px(XT1 = y)

por lo que T1 es independiente de X ◦ θT1
. �
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A c(x) la interpretamos como la tasa a la que dejamos el estado x. Definamos
ahora

Px,y =

{
0 c(x) = 0

Px(XT1 = y) c(x) 6= 0
y α(x, y) = c(x)Px,y.

A α se le conoce como la matriz de tasas de transición y la interpretación de α(x, y)
es la tasa a la que dejamos el estado x para pasar al estado y. La matriz de tasas de
transición es el parámetro que nos permitirá caracterizar a la familia Markoviana.
Para verificar por qué, es necesario extender la propiedad de Markov.

Teorema 5.1 (Propiedad de Markov fuerte). Sea T un tiempo de paro finito.
Entonces el proceso XT dado por XT

t = XT+t es una cadena de Markov con
las mismas probabilidades de transición que X que es independiente de Xs, s ≤ t
condicionalmente a XT y a T ≤ t.

La prueba es un tanto más complicada del nivel que se quiere para este curso
y no se dará.

El teorema anterior nos permitirá caracterizar a la cadena de Markov en tiempo
continuo en términos de la matriz de tasas de transición α, o equivalentemente, de
c y P . Sea Z el proceso estocástico a tiempo discreto definido por

Zn = XTn

si Tn < ∞. En el caso absorbente, definimos Zn+m = Zn para toda m ≥ 1 si
Tn <∞ = Tn+1.

Teorema 5.2. El proceso Z es una cadena de Markov de matriz de transición
P que comienza en x bajo Px. Si c(x) > 0 para toda x ∈ E, condicionalmente a
Z, las variables S1, S2, . . . con Si = Ti − Ti−1 son independientes y exponenciales
de parámetros c(Z0) , c(Z1) , . . ..

Demostración. Al utilizar el lema de clases de Dynkin, vemos que es sufi-
ciente verificar que

Px(Z1 = x1, . . . , Zn = xn, S1 > t1, . . . , Sn > tn)(6)

= Px,x1
· · ·Pxn−1,xn

e−c(x)t1e−c(x1)t2 · · · e−c(xn−1)tn .

Esto se sigue por inducción al utilizar la propiedad de Markov fuerte. La base
inductiva es la Proposición 5.7. Por otra parte, si suponemos válida la ecuación (6)
vemos que al aplicar la propiedad de Markov fuerte al instante Tn y la Proposición
5.7 se sigue que

Px(Z1 = x1, . . . , Zn+1 = xn+1, S1 > t1, . . . , Sn+1 > tn+1)

= Px(Z1 = x1, . . . , Zn = xn, S1 > t1, . . . , Sn > tn) e−c(xn)tn+1Pxn,xn+1

puesto que Zn+1 es el primer estado al que salta XTn y Sn+1 es el tiempo que
tarda en realizar XTn su primer salto. �
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Dada una función α : E × E → [0,∞) tal que c(x) =
∑
y α(x, y) < ∞,

podemos definir a Px,y = α(x, y) /c(x) cuando c(x) > 0 y a Px,y = δx,y cuando
c(x) = 0 y preguntarnos cuándo existe una cadena de Markov a tiempo continuo
cuya matriz de tasas de transición sea α. Nos abocaremos ahora a verificar que
se puede construir una cadena de Markov cuya matriz de tasas de transición sea
α. En efecto, sean S̃1, S̃2, . . . variables aleatorias exponenciales de parámetro 1 y
Z una cadena de Markov con matriz de transición P que comienza en X. Ahora
definamos

T0 = 0, y Tn+1 = Tn + S̃n/c(Zn) .

Consideremos al proceso X definido mediante

X̃t = Zn si t ∈ [Tn, Tn+1).

Definimos a Px como P condicionada por Z0 = x. Se afirma que Px es una familia
Markoviana cuya matriz de tasas de transición es α. Por definición, bajo la medida
de probabilidad Px es válida la ecuación (6).

Teorema 5.3. La colección (Px)x∈E es una familia Markoviana con matriz
de tasas de transición α.

De hecho, hemos verificado este teorema en la sección anterior y la prueba en
este caso en el que el espacio de estados es posiblemente infinito es muy similar.

5. Las ecuaciones backward y forward de Kolmogorov

Tal como la propiedad de Markov y de Markov fuerte nos llevan a relaciones
de recurrencia para probabilidades que deseamos calcular, en tiempo continuo nos
llevan a ecuaciones diferenciales. Una de ellas es la ecuación backward de Kol-
mogorov. Sea (Px, x ∈ E) una familia markoviana con probabilidades de tran-
sición Pt(x, y) = Px(Xt = y). Estas probabilidades de transición satisfacen las
ecuaciones de Chapman-Kolmogorov

Pt+s(x, z) =
∑
y

Ps(x, y)Pt(y, z) .

Teorema 5.4 (Ecuaciones backward de Kolmogorov). Para cualquier x, y ∈
E, las probabilidades de transición satisfacen la ecuacion backward de Kolmogorov

∂

∂t
Pt(x, y) =

∑
z∈E

α(x, z)Pt(x, z)− Pt(x, y) .

Dada la matriz de tasas de transición, definiremos a la matriz infinitesimal Q
mediante:

Qx,y =

{
α(x, y) x 6= y

−c(x) x = y
.
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Entonces la ecuación backward de Kolmogorov se puede escribir como la ecuación
diferencial para la matriz Pt

∂

∂t
Pt = QPt.

Esto explica la conexión con ecuaciones diferenciales: las probabilidades de tran-
sición de una familia markoviana satisfacen una ecuación diferencial. Veremos
que en el caso de espacio de estados finito, la teoŕıa clásica de ecuaciones diferen-
ciales lineales nos permite verificar que existe una única solución para la ecuación
backward de Kolmogorov y por lo tanto nos da una manera de obtener, a ve-
ces expĺıcitamente pero inclusive también numéricamente, a las probabilidades de
transición de la familia Markoviana.

Demostración. Heuríısticamente, la prueba es una aplicación de la propiedad
de Markov fuerte. Sin embargo, necesitamos una verisón que también depende del
tiempo. Espećıficamente, notemos que si s ≤ t

Pt(x, y) = Px(Xt = y) = Ex(Pt−s(Xs) y) .

Podemos por lo tanto pensar que por la propiedad de Markov fuerte aplicada al
tiempo de paro σ = t ∧ T1 se satisface

(7) Pt(x, y) = Ex(Pt−σ(Xσ, y))

para t > 0. Esto es en efecto cierto pero no se ha demostrado y se sigue del hecho
de que podemos aproximar al tiempo de paro σ por σn = dσ2ne/2n y tomar el
ĺımite conforme n→∞ para verificar (7). Veamos cómo se aplica dicha ecuación.
De (7) se deduce que:

Ptf(x) = Ex(Pt−σf(Xσ)) = f(x) e−c(x)t +

∫ t

0

∑
y

e−c(x)sα(x, y)Pt−sf(y) ds.

Al multiplicar por ec(x)t de ambos lados se obtiene

ec(x)tPtf(x) = f(x) +

∫ t

0

ec(x)s
∑
y

α(x, y)Psf(y) ds.

Finalmente, la expresión del lado derecho muestra que el lado izquierdo es derivable
y por la continuidad del integrando vemos que

∂

∂t
Ptf(x) + c(x)Ptf(x) =

∑
y

αx, yPtf(y) . �

Ahora recordemos que en espacio de estados finito, digamos de cardinalidad
n, estas ecuaciones backward admiten una solución en términos de la matriz infin-
itesimal Q y esto nos permitirá introducir a las ecuaciones forward. Cuando I es
finito, debemos resolver el sistema de ecuaciones

∂

∂t
Pt = QPt.
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Este es un sistema lineal y si Q fuera de tamaño 1×1, tendŕıa como única solución
a la función exponencial. Lo mismo sucede en el caso n×n, si definimos a la matriz

etQ =

∞∑
n=0

tnQn

n!

para cualquier t ∈ R.La convergencia de la serie se sigue pues la sucesión

N∑
n=0

tnQn

n!
.

es de Cauchy cuando se utiliza la norma

‖Q‖ = max {‖Qx‖ : x ∈ Rn, ‖x‖ = 1} .

En efecto, puesto que esta norma es submultiplicativa, se sigue que:

sup
n≥m
‖

n∑
k=0

tkQk

k!
−

m∑
k=0

tkQk

k!
‖ ≤

∞∑
k=m+1

|t| k‖Q‖k

k!
→m→∞ 0.

Ahora veremos que etQ, t ≥ 0 es la única solución a las ecuaciónes backward y
forward de Kolmogorov:

∂

∂t
etQ = QetQ y

∂

∂t
etQ = etQQ.

Además, satisfacen las ecuaciones de Chapman-Kolmogorov

e(s+t)Q = esQetQ.

En efecto, Chapman-Kolmogorov se sigue de la definición de la exponencial
de una matriz. Por otra parte, podemos derivar término a término la serie de
potencias (cuyo radio de convergencia, con la norma matricial, es infinito) para
obtener

∂

∂t
etQ =

∞∑
k=1

tk−1Qk

k!
=

∞∑
k=0

tkQk+1

k!
=

{
QetQ

etQQ
,

lo cual muestra que se satisfacen las ecuaciones backward y forward. Además e0Q =
Id. Para la unicidad de la solución a estas últimas, supongamos que Pt, t ≥ 0 es una
colección de matrices en Rn que satisface las ecuaciones backward (el argumento
para las forward es similar) y tal que P0 = Id. Notemos que la inversa de etQ es
e−tQ. Entonces

∂

∂t
e−tQPt = −Qe−tQPt + e−tQQPt = −Qe−tQPt +Qe−tQPt = 0.

Por lo tanto e−tQPt es constante y como la constante es P0 = Id, vemos que
Pt = etQ.



6. Distribuciones invariantes 93

6. Distribuciones invariantes

Ahora pasaremos al estudio de las distribuciones invariantes para familias
markovianas. La liga entre el tiempo continuo y discreto nos lo proporciona el
siguiente resultado que se sigue de las ecuaciones backward de Kolmogorov.

Definición. Decimos que una distribución ν en E (identificada con la colección
numérica νx = ν({x})) es invariante para una familia Markoviana si∑

x

νxPt(x, y) = νy.

En otras palabras, la distribución ν es invariante si la distribución de Xt bajo
Pν =

∑
x νxPx es igual a la de X0.

Teorema 5.5. Una medida de probabilidad ν tal que
∑
x νxc(x) < ∞ es in-

variante para X si y sólo si cν = (cxνx, x ∈ E)) es invariante para la cadena
asociada.

Demostración. Por la ecuación backward de Kolmogorov y el teorema de
Fubini-Tonelli se sigue que

(8)
∑
x

νxPt(x, z) =
∑
x

νxP0(x, z) +

∫ t

0

∑
y

∑
x

νxα(x, y) [Ps(y, z)− P (x, z)] ds.

Aśı, ν es invariante si y sólo si la integral del lado derecho es igual a 0 para cualquier
t. Escribamos a α(x, y) = c(x)P (x, y), donde P es la matriz de transición de la
cadena asociada. Puesto que

∑
x cxνx y t 7→ Pt(x, y) es continua, podemos aplicar

el teorema de convergencia dominada para concluir que el integrando en el lado
derecho de (8) es continuo. Por lo tanto, ν es invariante si y sólo si

0 =
∑
y

∑
x

νxα(x, y) [P0(y, z)− P0(x, z)]

=
∑
y

∑
x

c(x) νxPx,y [1y=z − 1x=z] =
∑
x

c(x) νxPx,z − czνz

En otras palabras, cν es invariante para la cadena asociada. �

Recordemos que en el teorema fundamental de convergencia para cadenas de
Markov (en tiempo discreto) la periodicidad juega un rol importante. Ahora vere-
mos que en tiempo continuo, en cierto sentido el proceso ya es periódico.

Proposición 5.8. Pt(x, y) > 0 para alguna t > 0 si y sólo si Pt(x, y) > 0 para
toda t > 0. En particular Pt(x, x) > 0 para toda t ≥ 0.

Demostración. El caso particular es simple:

Pt(x, x) ≥ Px(T1 > t) > 0.



6. Distribuciones invariantes 94

Por otra parte, si y 6= x y para la cadena asociada se accede de x a y entonces
existen x0, . . . , xn ∈ E tales que x0 = x, xn = y y xk+1 6= xk para los cuales

Px,x1 · · ·Pxn−1,y > 0.

En particular, se tiene que c(xi) > 0 para i < n.
Si S1, . . . , Sn+1 son exponenciales de parámetro 1 independientes entonces

Pt(x, y) ≥ P

∑
k≤n

Sk
c(xk−1)

≤ t <
∑

k≤n+1

Sk
c(xk−1)

P (x0, x1) · · ·Pxn−1,y > 0.

(Sólo se debe tener cuidado si c(y) = 0.)
Finalmente, si de x no se accede a y para la cadena asociada Z entonces

Px(Xt 6= y para toda t ≥ 0) = Px(Zn 6= y para toda n ≥ 0) = 1. �

Una familia markoviana es irreducible si Px(Xt = y) > 0 para toda t > 0 y
toda y ∈ E.

Proposición 5.9. Si la cadena asociada a una familia markoviana irreducible
es recurrente entonces no hay explosión.

Lo anterior nos dice que los conjuntos {t ≥ 0 : Xt = y} y {n ∈ N : Zn = y} o
son ambos acotados o ambos no acotados para familias markovianas irreducibles.
En el primer caso hablamos de transitoriedad y en el segundo de recurrencia.

Demostración. Sólo hay que notar que si Px(Zn = x i.o. ) entonces o Zn se
absorbe en x (que sucede si y sólo si c(x) > 0 y no es compatible con la irreducibil-
idad de la cadena) ó c(x) > 0 y∑

n

1

c(Zn)
≥ ∞/c(x) =∞

Px-casi seguramente, en cuyo caso, al condicionar con Z, vemos que no hay ex-
plosión. (Recordemos que si τi son exponenciales independientes de parámetro λi
entonces

∑
τi =∞ casi seguramente si y sólo si

∑
1/λi =∞.) �

Teorema 5.6. Si (Px) es una familia markoviana irreducible entonces son
equivalentes:

(1) Existe una única distribución invariante ν para la familia que satisface
νx > 0 para toda x ∈ E y para cualquier distribución inicial µ:

lim
t→∞

∑
x

|Pν(Xt = y)− νy| = 0.

(2) Para alguna h > 0, la sucesión de variables aleatorias (Xnh, n ∈ N) es
una cadena de Markov positivo recurrente.

En caso contrario, no existe ninguna distribución invariante y Px(Xt = y) → 0
conforme t→∞.
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Demostración. Sólo demostraremos la equivalencia. (La prueba completa
se puede verificar en el libro de Kallenberg.)

Sea h > 0. Notemos que (Xnh, n ≥ 0) es una cadena de Markov con matriz de
transición Ph(x, y) , x, y ∈ E. En efecto, vemos que

Px(Xh = x1, . . . , Xnh = xn) = Ph(x, x1)Ph(x1, x2) · · ·Ph(xn−1, xn) .

Si para alguna h, dicha cadena de Markov es positivo recurrente, entonces al ser
irreducible y aperiódica, existe una única distribución invariante νh. Por otra
parte, la cadena de Markov Xnh/2n ≥ 0 debe también ser positivo recurrente pues
su tiempo de primer retorno está acotado por dos veces el tiempo de primer retorno
de Xnh, n ≥ 0, el cual es integrable. Aśı, existe una única distribución invariante
para Xnh/2, digamos νh/2 pero como ésta también es invariante para Xnh, vemos

que νh/2 = νh. Escribamos por lo tanto ν = νh. Generalizando, vemos que para
cualquier racional no-negativo q, la distribución de Xqh bajo Pν es ν y, al aproximar
a cualquier t > 0 por la derecha por reales de la forma qh, vemos que ν es invariante
para la familia markoviana. Para mostrar la convergencia en variación, notemos
que, de acuerdo al teorema fundamental de convergencia para cadenas de Markov,
se tiene que ∑

x

|Pnh(x, y)− νy| → 0

conforme n→∞. Por lo tanto, al escribir a t (de manera única) en la forma nh+r
con n ∈ N y 0 ≤ r < h, las ecuaciones de Chapman-Kolmogorov y la invariancia
de ν nos dicen que∑

x

|Pt(x, y)− νy| ≤
∑
x

∑
y

|Pnh(x, z)− νz|Pr(z, y)→ 0.

Por lo tanto, el teorema de convergencia dominada nos permite afirmar que

lim
t→∞

∑
x

|Pν(Xt = y)− νy| = 0.

Por otra parte, si existe una distribución invariante ν para la familia marko-
viana, entonces ν es una distribución invariante para Xnh, lo que implica que esta
es positivo recurrente para cualquier h > 0. �

Finalmente, pasamos a la relación entre el comportamiento asintótico de la
probabilidad de transición y los tiempos medios de recurrencia. Sea

T̃ y = min {t > T1 : Xt = y} .

Teorema 5.7. Si y no es absorbente entonces

lim
t→∞

Pt(x, y) =
Px(T y <∞)

c(y)Ey
(
T̃ y
) .
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Demostración. Sólo podremos probarlo en el caso transitorio y positivo re-
currente. En el caso nulo recurrente, tendremos la convergencia en el sentido de
Cesàro.

Primero nos concentraremos en el caso x = y. Si y es transitorio entonces
Ey(T̃ y) =∞ y por lo tanto el enunciado es válido. Si por otra parte y es positivo
recurrente y nos concentramos en su clase de comunicación, esta será irreducible y
sabemos que Pt(x, y) converge a νy donde ν es la distribución invariante única (en
la clase de comunicación de y). Aśı, los tiempos medios de ocupación

Lt =
1

t

∫ t

0

1Xs=y ds

satisfacen:

Ex(Lt) =
1

t

∫ t

0

Px(Xs = y) ds =
1

t

∫ t

0

Ps(x, y) ds→t→∞ νy.

Por otra parte, si T̃ yn = T̃ y + T̃ yn−1(XTy

) representa al tiempo del enésimo

retorno de la cadena al estado y, la propiedad de Markov fuerte nos dice que T̃ yn
es una caminata aleatoria. Como T̃ y(XT1) se puede acotar en términos del tiempo
de visita a y por la cadena XT1+nh, n ≥ 0, que es finito por ser positivo recurrente,

vemos que Ex(T̃ y) < ∞, por lo que podemos aplicar la ley fuerte de los grandes

números y deducir que bajo Py se tiene que T̃ yn/n→ Ey(T̃ yn ). Por esto, observamos
que

LT̃y
n

T̃ yn
=
ξ1 + · · ·+ ξn

T̃ yn
→ 1

c(y)Ex(Ty)

donde ξi = T1 ◦ θT̃y
n

son variables exponenciales de parámetro c(y) (a la cuales

también les aplicamos la ley fuerte de los grandes números). Finalmente, por
convergencia dominada vemos que

Ex(Lt)→
1

c(y)Ex(Ty)
,

lo cual prueba el resultado en este caso. �
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