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Hemos visto 4 clases de procesos estocásticos.

1. Cadenas de Markov (tiempo y espacio discretos)

2. Procesos de renovación

3. Procesos de Poisson

4. Cadenas de Markov a tiempo continuo (y espacio discreto)

Salvo la segunda clase, están muy relacionadas y se basan en la
misma idea:
La propiedad de Markov
Interpretación de la propiedad de Markov:
El futuro es independiente del pasado dado el presente.



Cadenas de Markov

Definición
Una cadena de Markov con matriz de transición P y distribución
inicial π es un proceso estocástico (Xn)n∈N con valores en E tal
que si x0, . . . , x1 ∈ E entonces

P(X0 = x0, . . . ,Xn = xn) = πx0Px0,x1 · · ·Pxn−1,xn .

Definición
Una cadena de Markov a tiempo continuo con probabilidades
de transición Pt , t ≥ 0 y distribución inicial π es un proceso
estocástico (Xt)t≥0 con valores en E tal que si x0, . . . , xn ∈ E y
0 = t0 < t1 < · < tn entonces

P(Xt0 = x0, . . . ,Xtn = xn) = πx0Pt1−t0(x0, x1) · · ·Ptn−tn−1(xn−1, xn) .



Cadenas de Markov

Definición
Una cadena de Markov a tiempo continuo con probabilidades
de transición Pt , t ≥ 0 y distribución inicial π es un proceso
estocástico (Xt)t≥0 con valores en E tal que si x0, . . . , xn ∈ E y
0 = t0 < t1 < · < tn entonces

P(Xt0 = x0, . . . ,Xtn = xn) = πx0Pt1−t0(x0, x1) · · ·Ptn−tn−1(xn−1, xn) .

Resultado
Si N = (Nt , t ≥ 0) es un proceso de Poisson de intensidad λ:

P(Nt1 = k1, . . . ,Ntn = kn) = Pt1−t0(x0, x1) · · ·Ptn−tn−1(xn−1, xn)

donde

Pt(i , j) =
e−λt (λt)j−i

(j − i)!
.



Simulación de cualquier cadena de Markov
Sea P una matriz estocástica en {1, . . . , n}:

I Pi ,j ≥ 0 para 1 ≤ i , j ≤ n

I
∑n

j=1 Pi ,j = 1

Sea π una distribución inicial: π = (π1, . . . , πn), donde πi ≥ 0 y∑n
i=1 πi = 1.

Para simular una cadena de Markov con distribución inicial π y
matriz de transición P se sigue la siguiente idea: utilizamos
U0,U1, . . . variables uniformes independientes. (Recordemos que
con variables uniformes podemos generar a cualquier variable
aleatoria.)

I Utilizamos U0 para generar a X0 de tal manera que
P(X0 = i) = πi .

I Procedemos recursivamente al utilizar a Xn y a Un+1 para
generar a Xn+1: si Xn = i , utilizamos a Un+1 para que
P(Xn+1 = j) = Pi ,j .

En otras palabras, Xn+1 = f (Xn,Un+1) (con la misma función para
toda n).



Cadenas de Markov, preguntas fundámentales

Hemos hecho un estudio similar de cadenas de Markov a tiempo
continuo y discreto, enfocándonos en la description a tiempos
grandes de la cadena.

I ¿Tiene estados transitorios?

I ¿Se absorbe?

I ¿Es recurrente?

I ¿Hay fenómenos estacionales ? (Periodicidad)

En resumen: ¿Qué le pasa a la cadena en tiempo grandes?

Respuesta: Se absorbe, se escapa a infinito, es recurrente pero no
lo suficiente como para que se observe estabilización ó la
distribución de la cadena a tiempos grandes se estabiliza.



Cadenas de Markov, Propiedad de Markov

Propiedad de Markov

Si X = (Xn, n ≥ 0) es una cadena de Markov con matriz de
transición P y Yn = Xn+m, entonces, condicionalmente a Xm = i ,
Yn es una cadena de Markov con matriz de transición P que
comienza en i y que es independiente de X0, . . . ,Xm.

Tiempo de paro

Un tiempo aleatorio T es un tiempo de paro si para toda n ∈ N
existe An ⊂ En+1 tal que

{T = n} = {(X0, . . . ,Xn) ∈ An} .

Propiedad de Markov fuerte

Sea X una cadena de Markov con matriz de transición P. Si
Yn = XT+n, entonces (condicionalmente a T = m y Xm = i) Y es
una cadena de Markov con matriz de transición P que comienza en
i y que es independiente de X0, . . . ,Xm.



Cadenas de Markov, Clases de comunicación

Chapman-Kolmogorov y potencias de la matriz de transición

Para cadenas de Markov se satisfacen las ecuaciones de
Chapman-Kolmogorov: si Pn

i ,j = P(Xn = j |X0 = i) entonces

Pn+m
i ,k =

∑
j

Pm
i ,jP

n
j ,k .

Es por esto que la colección numérica
(
Pn
i ,j , i , j ∈ E

)
es la

potencia n de P.

Clases de comunicación
El espacio de estados de una cadena de Markov se puede
particionar en clases de comunicación: dos estados i y j se
comunican entre si si existen n ≥ 0 y m ≥ 0 tal que Pm

i ,j > 0 y

P j ,i > 0. Una cadena de Markov es irreducible si todos los
estados se comunican entre śı. Esto es, si hay una sóla clase de
comunicación.



Cadenas de Markov, Transitoriedad y recurrencia

Transitoriedad y recurrencia

Sea x ∈ E . Definamos a la cantidad de visitas al estado x como la
variable aleatoria

Vx =
∞∑
n=0

1Xn=x .

Esta variable aleatoria podŕıa tomar el valor infinito. Sin embargo,
un resultado curioso es que si toma el valor infinito con
probabilidad positiva, entonces toma el valor infinito con
probabilidad 1. En caso de que Vx sea infinita con probabilidad 1
bajo Px hablamos de un estado recurrente y en caso contrario de
un estado transitorio.
El conjunto {Vx =∞} tiene probabilidad cero (decimos que x es
transitorio) ó uno (decimos que x es recurrente)



Cadenas de Markov, Transitoriedad y recurrencia

Conjuntos abiertos y cerrados

Sea C un subconjunto del espacio de estados E . Decimos que C es
un conjunto cerrado si para toda y ∈ E \ C , x no conduce a y .
Un conjunto abierto es aquel que no es cerrado.

Criterios útiles para transitoriedad y recurrencia

I Todos los estados de una clase de comunicación son
recurrentes o todos son transitorios.

I Una clase abierta es transitoria.

I Una clase cerrada y finita es recurrente.

I Una cadena irreducible y finita es recurrente.



Cadenas de Markov, Distribuciones Invariantes

Estados positivo recurrentes

Un estado x de una cadena de Markov es positivo recurrente si
Ex(Tx) <∞. Denotamos por mx a dicha cantidad, a la que nos
referiremos como tiempo medio de recurrencia de x .

Distribuciones invariantes
Una distribución invariante es un vector renglón π que satisface

πi > 0,
∑
i

πi = 1 y
∑
i

πiPi ,j = πj .



Cadenas de Markov, Distribuciones Invariantes

Caracterización de estados positivo recurrentes.

Para una cadena irreducible las siguientes condiciones son
equivalentes.

1. Todos los estados son positivo recurrentes

2. Algún estado es positivo recurrente

3. La cadena admite una distribución invariante.

En este caso, la distribución invariante es única y asigna a x el
rećıproco de su tiempo medio de recurrencia.

Teorema fundamental de convergencia

Si P es la matriz de transición de una cadena de Markov
irreducible, aperiódica y positivo recurrente y π es la única
distribución invariante de P entonces

∑
y

∣∣Pn
x ,y − πy

∣∣ → 0
conforme n→∞.



Cadenas absorbentes

Cadena absorbente
Una cadena absorbente es una cadena de Markov con espacio de
estados finito, que tiene al menos un estado absorbente y que
desde cualquier estado se puede acceder a un estado absorbente.

Los estados de una cadena absorbente los podemos dividir en
no-absorbentes (T , pues son transitorios) y absorbentes (A). Si los
enumeramos del 1 al n y ponemos al final a los absorbentes, la
matriz de transición tomará la forma

P =

(
Q R
0 I

)
,

donde Q es una matriz de tamaño m ×m (m < n) en donde se
encuentran las probabilidades de transición entre estados
no-absorbentes, R es una matriz de tamaño m × n correspondiente
a las probabilidades de transición de estados no-absorbentes a
absorbentes, mientras que I es la matriz identidad de tamaño
(n −m)× (n −m).



Cadenas absorbentes

La matriz fundamental
La matriz I − Q es invertible. Si M = (I − Q)−1 entonces

Mi ,j = I + Q + Q2 + Q3 + · · · = Ei

( ∞∑
n=0

1Xn=j

)
.

Si ti = Ei (
∑∞

n=0 1Xn∈T ) entonces

t = M1.

Si Bi ,j = Pi (XT = j) entonces

B = MR.



Procesos de renovación

Proceso de contéo
Un proceso de contéo es un proceso con trayectorias constantes
por pedazos N que comienza en cero, toma valores enteros y va
incrementando de uno en uno en los instantes T1 < Tt < · · · .
Sea T0 = 0 y Si = Ti − Ti−1.
La sucesión S será la sucesión de tiempos de vida, la sucesión T
la de tiempos de renovación y la sucesión N será el proceso de
contéo asociado.

Proceso de renovación
Estamos ante un fenómeno de renovación cuando los tiempos de
vida son independientes e idénticamente distribuidos.
Un fenómeno de renovación aritmético es aquel en el que Si
toma valores en N.
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Figure: Ilustración de las definiciones de proceso de renovación



Resultados básicos de la teoŕıa de renovación

Ley fuerte de los grandes números

Si µ = E(Si ) <∞ entonces Nt/t → 1/µ casi seguramente

Teorema de renovación elemental
Si µ = E(S1) <∞ entonces m(t) /t → 1/µ.



La medida de renovación (caso aritmético)

Sea
un = P(∃m,Tm = n) =

∑
m

P(Tm = n)

Teorema de renovación clave de Erdős-Feller-Pollard
Para un proceso de renovación aritmético, aperiódico y con media
finita:

lim
n→∞

un →
1

µ
.



El teorema de renovación de Blackwell

Sea S un proceso de renovación no-aritmético. Se puede pensar
que Si es una variable aleatoria con densidad. Sea T la sucesión de
tiempos de ocurrencia de sucesos y N el proceso de contéo
asociado.

Medida de renovación
La medida de renovación es la medida U en [0,∞) tal que

U([0, t]) = E(Nt) =
∞∑
n=1

P(Tn ≤ t) .

Se utilizará la notación Ut para U([0, t]).

Teorema de renovación de Blackwell
Para todo h > 0:

lim
t→∞

Ut+h − Ut =
h

µ
.



La ecuación de renovación

Escribiremos

pk = p(k) = P(S1 = k) y un = P(∃m,Tm = n) =
∑
m

P(Tm = n)

Teorema clave de renovación en el caso discreto
Si z es solución a la ecuación de renovación

z(n) = b(n) +
∑
j≤n

pkz(n − j) .

y b es sumable entonces z está dada por z(n) =
∑

x b(x) u(n − x)
y z(n)→

∑
x b(x) /µ conforme n→∞.



El proceso de Poisson

Proceso de contéo
Un proceso de contéo es un proceso con trayectorias constantes
por pedazos que comienza en cero, toma valores enteros y va
incrementando de uno en uno en los instantes T1 < Tt < · · · . Sea
T0 = 0. A Si = Ti − Ti−1 se le llama i-ésimo tiempo interarribo.

Proceso de Poisson
Un proceso de Poisson de intensidad λ es un proceso de contéo
N tal que

I La distribución de Nt+s − Nt es Poisson de parámetro λ

I Si 0 = t0 ≤ t1 ≤ · · · ≤ tn, las variables
Nt1 − Nt0 , . . . ,Ntn − Ntn−1 son independientes.

El proceso de Poisson como fenómeno de renovación

Un proceso de contéo es un proceso de Poisson de intensidad λ si
y sólo si sus tiempos interarribo son exponenciales independientes
de parámetro λ.



Propiedad de Markov del proceso de Poisson

Propiedad de Markov del proceso de Poisson

Sea N un proceso de Poisson de parámetro λ. El proceso Nt dado
por Nt

s = Nt+s − Nt es un proceso de Poisson de parámetro λ y es
independiente de Ns , s ≤ t.



El proceso de Poisson compuesto
Sea Sn = ξ1 + · · ·+ ξn donde ξ1, ξ2, . . . son variables aleatorias
independientes. (Interpretamos a ξi como el monto de la i-ésima
reclamación de una compañ́ıa de seguros.)
Sea N un proceso de Poisson independiente de S . (Interpretamos a
Nt como la cantidad de reclamos que han llegado a la compañ́ıa de
seguros en el intervalo de tiempo [0, t].)
Entonces, al tiempo t, el monto total que ha sido reclamado a la
compañ́ıa de seguros es

Xt = SNt =
∑
i≤Nt

ξi .

El proceso X se conoce como proceso de Poisson compuesto.

E
l proceso de Poisson compuesto es un proceso de Lévy:

Incrementos estacionarios La distribución de Xt+s − Xt sólo
depende de s.

Incrementos independientes Si 0 = t0 ≤ t1 ≤ · · · ≤ tn, las variables
Xt1 − Xt0 , . . . ,Xtn − Xtn−1 son independientes.



Cadenas de Markov a tiempo continuo

Definición
Una cadena de Markov a tiempo continuo con probabilidades
de transición Pt , t ≥ 0 y distribución inicial π es un proceso
estocástico (Xt)t≥0 con valores en E y trayectorias constantes por
pedazos y minimales tal que si x0, . . . , xn ∈ E y
0 = t0 < t1 < · < tn entonces

P(Xt0 = x0, . . . ,Xtn = xn) = πx0Pt1−t0(x0, x1) · · ·Ptn−tn−1(xn−1, xn) .

Ecuaciones de Chapman-Kolmogorov

Las probabilidades de transición satisfacen las ecuaciones de
Chapman-Kolmogorov

Pt+s = PtPs .



Cadenas de Markov a tiempo continuo, Propiedad de
Markov

Propiedad de Markov

Si X es una cadena de Markov a tiempo continuo y X t
s = Xt+s ,

entonces X t también es una cadena de Markov a tiempo continuo
con las mismas probabilidades de trancisión que X . X t es
independiente de Xs , s ≤ t condicionalmente a Xt .

Tiempos de paro

Un tiempo de paro es una variable aleatoria T tal que
{T ≤ t} ∈ σ(Xs : s ≤ t).

Propiedad de Markov fuerte

Sea T un tiempo de paro finito. Entonces el proceso XT dado por
XT
t = XT+t es una cadena de Markov con las mismas

probabilidades de transición que X que es independiente de
Xs , s ≤ t condicionalmente a XT y a T ≤ t.



Caracterización de cadenas de Markov a tiempo continuo

Consideremos a los tiempos aleatorios

T0 = 0, Tn+1 = inf {t ≥ Tn : Xt 6= XTn} y ζ = lim
n→∞

Tn

con la convención inf ∅ =∞. Consideremos además a la cadena
asociada

Zn = XTn

si Tn <∞. Definimos Zn+m = Zn para toda m ≥ 1 si
Tn <∞ = Tn+1.

Caracterización de cadenas de Markov
El proceso Z es una cadena de Markov de matriz de transición P
que comienza en x bajo Px . Si c(x) > 0 para toda x ∈ E ,
condicionalmente a Z , las variables S1,S2, . . . con Si = Ti − Ti−1

son independientes y exponenciales de parámetros
c(Z0) , c(Z1) , . . ..



Caracterización de cadenas de Markov a tiempo continuo

Caracterización de cadenas de Markov
El proceso Z es una cadena de Markov de matriz de transición P
que comienza en x bajo Px . Si c(x) > 0 para toda x ∈ E ,
condicionalmente a Z , las variables S1,S2, . . . con Si = Ti − Ti−1

son independientes y exponenciales de parámetros
c(Z0) , c(Z1) , . . ..

La matriz de tasas de transición
Sea αx ,y = c(x)Px ,y .

La matriz infinitesimal
Está dada por

Qx ,y =

{
αx ,y x 6= y

−c(x) x = y
.

Esta matriz satisface: Qx ,y ≥ 0 si x 6= y ,
∑

y Qx ,y = 0.
Cualquier matriz que satisfaga las condiciones anteriores es la
matriz infinitesimal de una cadena de Markov a tiempo continuo.



Simulación de cadenas de Markov a tiempo continuo
Sea Q una matriz infinitesimal y π una distribución inicial. Para
simular a una cadena de Markov con matriz infinitesimal Q
seguimos el siguiente procedimiento:

I Simulamos una variable Z0 con distribución π.

I Si Z0 = x simulamos una variable exponencial S1 con
parámetro c(x)

I (Independientemente) simulamos una variable X1 tal que
P(X1 = y) = Q(x , y) /c(x) si y 6= x .

I Si ya hemos construido a Z0, . . . ,Zn y a S0, . . . ,Sn y Zn = x ,

I Simulamos a una variable exponencial Sn+1 con parámetro
c(x)

I Simulamos a una variable Xn+1 tal que
P(Xn+1 = y) = Q(x , y) /c(x) si y 6= x .

Ahora ponemos T0 = 0, Tn = S1 + · · · Sn y

Xt = Zn si Tn ≤ t < Tn+1.



Las ecuaciones de Kolmogorov

Ecuación backward de Kolmogorov

Para cualquier x , y ∈ E , las probabilidades de transición satisfacen
la ecuacion backward de Kolmogorov

∂

∂t
Pt(x , y) =

∑
z∈E

α(x , z)Pt(x , z)− Pt(x , y) .

Dada la matriz de tasas de transición, definiremos a la matriz
infinitesimal Q mediante:

Qx ,y =

{
α(x , y) x 6= y

−c(x) x = y
.

Entonces la ecuación backward de Kolmogorov se puede escribir
como la ecuación diferencial para la matriz Pt

∂

∂t
Pt = QPt .



Las ecuaciones de Kolmogorov

La ecuación backward de Kolmogorov se puede escribir como la
ecuación diferencial para la matriz Pt

∂

∂t
Pt = QPt .

Cuando el espacio de estados E es finito, la única solución está
dada en términos de la exponencial de la matriz infinitesimal: sea

etQ =
∞∑
n=0

tnQn

n!
.

Entonces Pt = etQ y también se satisfacen las ecuaciones forward
de Kolmogorov:

∂

∂t
etQ = etQQ.



Distribuciones invariantes

Distribución invariante
Decimos que una distribución ν en E (identificada con la colección
numérica νx = ν({x})) es invariante para una familia Markoviana
si ∑

x

νxPt(x , y) = νy .

Como encontrar distribuciones invariantes
Si ν es invariante entonces νQ = 0.
Una medida de probabilidad ν tal que

∑
x νxc(x) <∞ es

invariante para X si y sólo si cν = (cxνx , x ∈ E )) es invariante
para la cadena asociada.

Aperiodicidad de las cadenas a tiempo continuo

Pt(x , y) > 0 para alguna t > 0 si y sólo si Pt(x , y) > 0 para toda
t > 0.



El teorema fundamental de convergencia

Teorema fundamental de convergencia

Si (Px) es una familia markoviana irreducible entonces son
equivalentes:

1. Existe una única distribución invariante ν para la familia que
satisface νx > 0 para toda x ∈ E y para cualquier distribución
inicial µ:

lim
t→∞

∑
x

|Pν(Xt = y)− νy | = 0.

2. Para alguna h > 0, la sucesión de variables aleatorias
(Xnh, n ∈ N) es una cadena de Markov positivo recurrente.

En caso contrario, no existe ninguna distribución invariante y
Px(Xt = y)→ 0 conforme t →∞.
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