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1. Introduction

1.1. The Lamperti representation theorem

During the 1960s and early 70s, John Lamperti provided relationships between
Lévy processes and two other classes of Markov processes. The first class was
that of continuous-state branching processes (CSBPs for short) in [20], and the
second one was that of positive self-similar processes in [23] (then called positive
semi-stable; the reader might also wish to consult the recent survey [6]). Here,
we are interested in the former, but both relationships have had a strong impact
on recent research. From now on, we will refer to the first relationship as the
Lamperti representation. Roughly, it provides a one-to-one correspondence, via

∗This is an original survey paper.
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a simple random time change, between CSBPs and (possibly killed) Lévy process
with no negative jumps. The Lamperti representation has proved useful in the
study of CSBPs (as in [8]), but also in that of Lévy processes (e.g. [2]) and
superprocesses (see for example [24]).

Lamperti announces his representation theorem in [20], and assures that
“proofs of the main results will appear elsewhere”, but he never published
them. Nine years elapsed before this result was proved by I.S. Helland in [14]
by discrete approximations. There is one missing step in Helland’s paper, since
non-conservative cases are not included. Also, M.L. Silverstein [26, Theorem 4]
gives an ‘analytic paraphrase of Lamperti’s result, namely, he proves by analytic
methods, that CSBP laws are in one-to-one correspondence with Laplace expo-
nents of Lévy processes with no negative jumps. The Lamperti representation,
as a path transformation, is not studied there.

Our goal here is to give two proofs of the Lamperti representation. One is
a direct proof of the Lamperti representation (including the absence of neg-
ative jumps) using probabilistic arguments (infinite divisibility, strong Markov
property, martingales, stopping theorems, stochastic differential equations). The
other one is a proof by discrete approximations, in the same vein as Helland,
but using a new topology on Skorohod space.

The state space we will work on is E = [0,∞] with any metric ρ which makes
it homeomorphic to [0, 1]. We let ∗ stand for the convolution of measures, and
use the convention z + ∞ = ∞ for any z ∈ E.

Definition. A continuous-state branching process, in short CSBP, is a
conservative and càdlàg Markov process with values in E, whose transition
kernels (Pt)t≥0 satisfy the following branching property:

Pt(z1, ·) ∗ Pt(z2, ·) = Pt(z1 + z2, ·)

for all t ≥ 0 and z1, z2 ∈ E.

Remark. We could also have defined CSBPs as stochastically continuous in-
stead of càdlàg. In the forthcoming Proposition 1, we will see that 0 and ∞ are
absorbing states for a CSBP. We could give an analogous definition if the state-
space were [0,∞) without the conservativity assumption; however, using ∞ as
the cemetery point for the former we obtain an E-valued conservative process
which will turn out to be a CSBP and have the Feller property with respect to
the metric ρ.

We now define the Lamperti transformation, which acts on the Skorohod
space of càdlàg trajectories with values in E that tend to either 0 or ∞ at
infinity and are absorbed at those values, that will be denoted D. More formally,
D consists of functions f : E → E which are càdlàg (so that in particular
f(∞−) := limt→∞ f(t) exists in E), such that f(∞−) = f(∞) ∈ {0,∞} and
for which f(t) = 0 (resp. = ∞) implies that f(t + s) = 0 (resp. = ∞) for all
s ≥ 0.
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For any f ∈ D, first introduce the additive functional θ given by

θt :=

∫ t

0

f(s) ds ∈ [0,∞],

and let κ denote the right-inverse of θ on [0,∞], given by

κt := inf{u ≥ 0 : θu > t} ∈ [0,∞]

using the convention inf ∅ = ∞. Define the Lamperti transformation L : D → D
by

L(f) = f ◦ κ

where one remembers that L(f) (t) = f(∞) if κt = ∞.
Notice that 0 and ∞ indeed are also absorbing for L(f). L is a bijection of

D. This can be checked by merely computing its inverse: setting g = L(f) one
rewrites κ as

κt :=

∫ t

0

1/g(s) ds ∈ [0,∞].

Then f = g ◦ θ, where θ is the right-inverse of κ.
It will always be implicit in what follows that a Lévy process is a càdlàg pro-

cess with independent and homogeneous increments, sent to ∞ at an indepen-
dent exponential time, where it is understood that an exponential distribution
with parameter zero means the distribution which assigns probability 1 to the
value ∞. A spectrally positive Lévy process is a Lévy process with no negative
jumps. Recall (e.g. [1]) that the Laplace exponent of a spectrally positive Lévy
process is a convex function Ψ on [0,∞) satisfying

Ex

(

e−λXt

)

= e−λx+tΨ(λ) t, x, λ ≥ 0.

When Ψ does not take positive values, X is a.s. non-decreasing, and it is called
a subordinator.

If Ψ(0) = 0, it is known that X has infinite lifetime. If q := −Ψ(0) > 0, then
it is easily seen that X is the Lévy process with Laplace exponent q + Ψ killed
at an independent exponential time with parameter q. Since in our setting, X
is set to ∞ after it is killed, we will consider that the killing time is the first
jump with infinite size. This amounts to adding to the Lévy measure a Dirac
measure at {+∞} with mass q.

Let us state the Lamperti representation theorem.

Theorem 1 (Lamperti representation of CSBPs [20]). The Lamperti
transformation is a bijection between continuous-state branching processes and
Lévy processes with no negative jumps stopped whenever reaching zero. Specifi-
cally, for any CSBP Z, L(Z) is a Lévy process with no negative jumps stopped
whenever reaching zero; for any Lévy process with no negative jumps X stopped
whenever reaching zero, L−1(X) is a continuous-state branching process.
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There are two natural strategies for a proof of this theorem.

The first strategy is based on generators, and consists in proving a relation-
ship of the type AZf(x) = xAXf(x), where AZ is the local generator of Z
and AX is that of X. Starting either with a CSBP Z or with a Lévy process
X, one characterizes the Laplace transforms of one-dimensional distributions
of the other process to obtain one part of the theorem. The other part can be
obtained proving that the Lamperti transformation is onto (the Laplace expo-
nent of any Lévy process/CSBP is attained). This method was hinted at by
M.L. Silverstein [26, p.1045] in the preparatory discussion of Theorem 4, which
states that Laplace transforms of CSBP are in one-to-one correspondence with
Laplace exponents of spectrally positive Lévy processes (see the forthcoming
Proposition 3). However, this discussion was not meant to be a proof, but was
rather meant to guess the form of the aforementioned correspondence (which is
proved by purely analytical arguments).

We wish to provide a proof of the Lamperti representation theorem in this
vein, that we call ‘direct probabilistic proof’. Our goal is to emphasize the prob-
abilistic rationale for the appearance of a spectrally positive Lévy process when
applying the Lamperti transformation to CSBPs and of CSBPs when applying
the inverse Lamperti transformation to spectrally positive Lévy processes. In
particular, we do not wish to use analytical arguments to prove surjectivity.
The study of the Lamperti transformation uses martingales (as a substitute for
the delicate use of generators), and the inverse is analyzed in the spirit of [9]
where stochastic differential equations are shown to be satisfied by affine pro-
cesses, which become explicit in the special case of CSBPs.

The second strategy is based on discrete approximations. In the case of
Markov branching processes with integer values (discrete-state branching pro-
cesses, or DSBPs), the Lamperti representation in terms of time-continuous
random walks (with no negative jumps ‘larger’ than −1) is nearly evident (see
below). After rescaling, this yields a one-to-one correspondence between rescaled
DSBPs and certain compound Poisson processes which are in the domain of at-
traction of spectrally positive Lévy processes. The second ingredient, due to [22],
is the fact that all CSBPs are limits of rescaled DSBPs. The third ingredient is
a necessary and sufficient condition for a sequence (Yn) of DSBPs to converge
to a certain (CSBP) process Y . Such a condition is given by I.S. Helland in [14]
(see [13] for the case of a sequence of Bienaymé–Galton–Watson processes), and
proved to be equivalent to the convergence (in finite-dimensional distributions
and weakly in the Skorohod topology) of the sequence Xn := L(Yn) to a spec-
trally positive Lévy process X. If the convergence of (Yn) is strong enough so
as to guarantee continuity of the Lamperti transform, then Theorem 1 follows.
This difficult step is carried out in [14], even in the explosive case, where ∞
can be reached continuously in finite time by the CSBP (but with the excep-
tion of the non-conservative case, where ∞ can be reached by a jump from a
finite state). More specifically, the Lamperti transformation is not continuous
w.r.t. the usual Skorohod topology due to possible explosive cases. If explosive
cases are excluded, one can proceed as in [11, Ch. VI,IX] using properties of
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the time-change transformation studied by Whitt in [27]. If even explosive (but
conservative) cases are included, one can follow the work of Helland, introducing
the (non-metrizable) Stone topology on our Skorohod space D. The Lamperti
transformation is still not continuous under this topology, but if (Wn) converges
weakly to W w.r.t. this topology, then under certain conditions on W and the
sequence (Wn), there is convergence of finite-dimensional distributions of L(Wn)
to those of L(W ). This proves sufficient to achieve the proof of Theorem 1.

We will provide a proof of the Lamperti representation theorem in the same
vein, that we call ‘proof through weak convergence’, not completing the proof
of Helland by allowing the non-conservative case, but rather, introducing a new
topology on Skorohod space which will make the Lamperti transformation con-
tinuous on D.

1.2. Outline of the two proofs

Section 2 is dedicated to the direct probabilistic proof of Theorem 1, and Section
3 to its proof through weak convergence.

Beforehand, we will recall well-known properties of CSBPs and sometimes
sketch their proofs.

1.2.1. Proof through martingales and stochastic calculus

Let us outline Section 2. First, we prove that in continuous time and continuous
state-space (both conditions are needed), a branching process cannot have neg-
ative jumps. Then we show that if eλ : z 7→ exp(−λz) for any λ > 0, then there
exists a function F (the negative of the branching mechanism of Proposition 2)
such that

Mλ
t := eλ(Zt) + F (λ)

∫ t

0

Zseλ(Zs) ds

is a martingale. Applying the optional stopping theorem to the time change κt,
we get a differential equation satisfied by the Laplace transform of the marginal
of the image Y of Z by the Lamperti transformation. Solving this differential
equation yields an expression which is very close to that known for a Lévy
process, when it is not stopped upon reaching 0. The conclusive step consists in
proving that Y indeed is a Lévy process stopped upon reaching 0.

For the second part of the theorem, we can use the Lévy–Itô decomposition
for the initial Lévy process. We start with any spectrally positive Lévy process
X with initial position x > 0, Lévy measure Λ and Gaussian coefficient σ. Using
the Lévy–Itô decomposition, we show that the image Z of the process X stopped
upon reaching 0, by the inverse Lamperti transformation, satisfies

Zt = x + a

∫ t

0

Zs ds + σ

∫ t

0

√

Zs dBs

+

∫ t

0

∫ Zs−

0

∫

[1,∞]

rN(ds, dv, dr) +

∫ t

0

∫ Zs−

0

∫

(0,1)

rÑ(ds, dv, dr), (1)
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for some real number a, where B is a Brownian motion and N is an independent
Poisson measure (Ñ is the associated compensated measure) with intensity mea-
sure ds dv Λ(dr). It is then immediate to deduce the branching property. This
stochastic equation is similar to the ones shown to be satisfied by affine pro-
cesses in [9, (5.1)], [4] and [5, (9)]. The Poisson integral in equation (1) has
the following interpretation: the role of the second coordinate of the Poisson
measure N is to mark jumps in order to have them occur only if this mark is
‘below’ the path of Z; thus, the jumps with size in (r, r + dr) occur at a rate
equal to Zt Λ(dr), that is, as in the discrete case discussed below, the branching
process jumps at a rate which is linear in the population size.

1.2.2. Proof through weak convergence

The second proof (Section 3) relies on the approximation of spectrally posi-
tive Lévy processes by compound Poisson processes and of CSBPs by (time-
continuous) discrete state-space branching processes, abbreviated as DSBPs.

Definition. A discrete space branching process Z = (Zt; t ≥ 0) is a càdlàg
Markov process with values in N = N∪{∞} (sent to ∞ after possible blow-up),
which jumps from state i to state i + j, j = −1, 1, 2, . . ., at rate iµj+1, where
(µk)k≥0 is a finite measure on N with zero mass at 1.

The integer Zt can be interpreted as the size at time t of a population where
each individual is independently replaced at constant rate λ :=

∑

k µk by a ran-
dom quantity of individuals, equal to k with probability µk/λ. As a consequence,
it is easily seen that Z satisfies the branching property.

To explain the heuristics behind the Lamperti transformation (implicit in
[20, 26] and also found in [3, 19]), let us note that for any state i 6∈ {0,∞},
the size of the jump of Z starting from i does not depend on i. Thus, the jump
chain of Z is exactly that of the compound Poisson process X which goes from
state i to state i+ j, j = −1, 1, 2, . . ., at rate µj+1. The only difference between
those two processes lies in the waiting times between two jumps. The Lamperti
transformation is a random time change that enables the paths of one process
to be obtained from those of the other one by an appropriate modification of
the waiting times. If T0 = 0 and T1 < T2 < · · · are the successive jump times of
Z, then the differences (Ti − Ti−1)i≥1 are conditionally independent given the
successive states (ZTi

)i∈N
and conditionally on them, Ti − Ti−1 is exponential

with parameter λZTi−1
. The important point is to notice that defining Y as the

Lamperti transform of Z amounts to multiplying each waiting time Ti−Ti−1 by
ZTi−1

; this turns the waiting time into an exponential variable with parameter
λ, except when ZTi−1

= 0, since then the waiting time is infinite. Therefore, Y
is equal to the compound Poisson process X with rate λ and jump distribution
µ1+· stopped upon reaching zero. Of course, a similar sketch of proof can be
achieved for the inverse Lamperti transformation.

It turns out that general CSBPs can be approximated by DSBPs at the level
of finite-dimensional distributions if and only if the corresponding Lamperti
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transforms of the latter approximate spectrally positive Lévy processes stopped
whenever reaching zero (analogous to previous work of Grimvall presented in
[13]). Therefore, one could hope to prove the Lamperti representation of CSBPs
by weak convergence considerations. This program would be carried out in a
very simple manner if the Lamperti transformation were continuous on Skoro-
hod space but unfortunately this is not the case (Helland first reported such
a phenomenon in [14]). We will therefore have to circumvent this problem by
using properties of our approximations which ensure weak convergence in Skoro-
hod space with a modified topology which makes the Lamperti transformation
continuous and implies convergence in the usual Skorohod space.

1.3. Preliminary results

Proposition 1. For a CSBP, both states 0 and ∞ are absorbing, and for all
t, z ∈ (0,∞),

Pt(z, {0,∞}) < 1.

In addition, there is ut : [0,∞) → [0,∞) such that

∫

[0,∞]

e−λz′

Pt(z, dz′) = e−zut(λ) (2)

for z ∈ [0,∞] which satisfies the composition rule

ut+s(λ) = ut(us(λ)) .

Finally, (Pt)t≥0 is a Feller semigroup.

Proof. The absorbing character of 0 and ∞ is easily handled, the composition
rule follows from the Markov property, while the Feller character can be dealt
as in [22, Lemma 2.2]. Indeed, the càdlàg character of the trajectories implies
that t 7→ ut(λ) is continuous at zero, where it is equal to λ, and so the compo-
sition rule gives us continuity everywhere. The extended continuity theorem for
Laplace transforms applied to (2) implies that Ptf is continuous whenever f is
(because the restriction of f to [0,∞) would be continuous and bounded) and
that it tends to f pointwise as t → 0.

We now provide further properties of ut.

Proposition 2. For every λ > 0, the function t 7→ ut(λ) is differentiable on
[0,∞). Moreover,

∂ut(λ)

∂t
= F (ut(λ)) t, λ ≥ 0

where

F (λ) :=
∂ut(λ)

∂t

∣

∣

∣

∣

t=0

.

The function Ψ := −F is called the branching mechanism of Z.
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This last result was proved in [26], using a delicate analytical proof, so we
prefer to provide an elementary proof resting mainly on the composition rule.
An only more slightly complicated argument found in [12, Lemma 1, Chap
V.2, p.413] enables one to generalize the above proposition to stochastically
continuous multi-type continuous-state branching processes.

Proof. In this proof, we exclude the trivial case where Z is a.s. constant, so
that ut(λ) 6= λ unless t = 0. First note that by a recursive application of the
dominated convergence theorem, λ 7→ ut(λ) is infinitely differentiable in (0,∞)
and strictly increasing. Next observe that the Feller property of Z gives the
continuity of t 7→ ut(λ).

By the composition rule again, we may write

ut+h(λ) − ut(λ) = ut(uh(λ)) − ut(λ) =
∂ut(λ)

∂λ
(λ′) (uh(λ) − λ) . (3)

for some λ′ ∈ [λ, uh(λ)]. Hence the increment ut+h(λ)−ut(λ) has the same sign
as uh(λ) − λ and so, for equally-spaced partitions {ti}i of [0, t] with spacing h,
we have:

∑

i

∣

∣uti+1
(λ) − uti

(λ)
∣

∣ = sign(uh(λ) − λ)
∑

i

(uti+1
(λ) − uti

(λ)) = |ut(λ) − λ| .

We deduce that t 7→ ut(λ) has finite variation and hence, it is almost everywhere
differentiable. Now thanks to (3),

lim
h↓0

ut+h(λ) − ut(λ)

uh(λ) − λ
=

∂ut(λ)

∂λ

where the r.h.s. is nonzero, so choosing t where t 7→ ut(λ) is differentiable, its
right-derivative exists at 0. This, along with the last display now yields the
differentiability everywhere, as well as the following equality

∂ut(λ)

∂t
=

∂ut(λ)

∂λ
· F (λ), (4)

where we have set

F (λ) :=
∂ut(λ)

∂t

∣

∣

∣

∣

t=0

.

Letting h ↓ 0 in (uh ◦ ut(λ) − ut(λ)) /h, we finally get

∂ut(λ)

∂t
= F (ut(λ)), (5)

which ends the proof.

Proposition 3. The branching mechanism Ψ is the Laplace exponent of a spec-
trally positive Lévy process.



M.E. Caballero, A. Lambert, G. Uribe Bravo/The Lamperti representation of CSBPs 70

This last proposition can be found in [26], where it is proved by analytical
methods relying on completely monotone functions. Silverstein uses this proposi-
tion to prove uniqueness of solutions to the differential equation in Proposition
2, which we only need in the proof by weak convergence; a simple argument
for it is offered. He additionally proves that any Laplace exponent of a killed
spectrally positive Lévy process can occur; we obtain this as a consequence of
our approach to Theorem 1. It is also proved in [18], where it is deduced mainly
from Itô’s formula. We will rely on the convergence criteria for infinitely divisible
probability measures as found in [17, Thm. 15.14, p.295].

Proof. Since for every x ≥ 0, λ 7→ e−xut(λ) is the Laplace transform of a prob-
ability measure (on [0,∞]) then λ 7→ ut(λ) is the Laplace exponent of a sub-
ordinator. Recalling that the Laplace exponent of a subordinator is minus its
Laplace exponent as a spectrally positive Lévy process (cf. [1]), it follows that
for every ε > 0,

λ 7→ (λ − uε(λ)) /ε (6)

is the Laplace exponent of a spectrally positive Lévy process whose limit as
ε → 0+, Ψ, is then the Laplace exponent of a spectrally positive Lévy process.
Indeed, letting Gε be the (infinitely divisible) law on (−∞,∞] whose Laplace
exponent is (6), the Helly-Bray theorem gives us a subsequence εk → 0 for
which Gεk

converges to an increasing càdlàg function G; we can interpret G as
the distribution of a probability measure µ on [−∞,∞]. To see that it does not
charge −∞, we use Fatou’s lemma for convergence in law:

∫

e−λx G(dx) ≤ lim inf
k→∞

∫

e−λx Gεk
(dx) → eΨ(λ) < ∞.

Actually, Ψ is the log-Laplace transform of G: by the convergence in the pre-
ceding display we get

sup
k

∫

e−λxGεk
(dx) < ∞

for all λ ≥ 0. Since for λ′ > λ ≥ 0, e−λ′y =
(

e−λy
)λ′/λ

, the Lp criterion for
uniform integrability implies that

∫

e−λy Gεk
(dy) →k→∞

∫

e−λy G(dy)

and so
∫

e−λy G(dy) = e−F(λ).

The same argument, when applied to λ 7→ (λ − utε(λ)) /ε, tells us that tΨ is
the log-Laplace of a probability measure on (−∞,∞], so that G is infinitely
divisible. The fact that its Lévy measure does not charge (−∞, 0) is deduced
from [17, Thm. 15.14, p.295].
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2. Direct probabilistic proof

2.1. The Lamperti transform of a CSBP

Let Z denote a CSBP and Px its law when started at x ∈ [0,∞]. First, we prove
that Z cannot have negative jumps. Fix δ > 0 and set

Jδ := inf{t > 0 : Zt − Zt− < −δ}.

Now let n be any integer such that x/n < δ and let (Z(i,j); i ≥ 1, j = 1, . . . , n)
be independent copies of Z whose starting point will be defined recursively on i.

Also set Z(i) :=
∑n

j=1 Z(i,j). Let T
(i,j)
δ denote the first hitting time of (δ, +∞]

by Z(i,j) and set τ
(i)
δ := inf1≤j≤n T

(i,j)
δ . Now set the initial values of Z(i,j) as

follows: Z(1,j)(0) = x/n < δ for all j and

Z(i+1,j)(0) = n−1Z(i)(τ
(i)
δ ) j = 1, . . . , n, i ≥ 1,

so that in particular Z(1)(0) = x and Z(i+1)(0) = Z(i)(τ
(i)
δ ). Next, define I as

I := min{i ≥ 1 : Z(i)(τ
(i)
δ ) > nδ}.

Observe that by definition of τ
(i)
δ , all paths (Z

(i,j)
t ; t < τ

(i)
δ ) remain below δ, and

so all paths (Z
(i)
t ; t < τ

(i)
δ ) remain below nδ. Observe that each Z(i) has the same

transition kernels as Z, and that τ
(i)
δ is a stopping time for (Z(i,j); j = 1, . . . , n),

so that the concatenation, say Z⋆, in increasing order of i = 1, . . . , I, of the

paths Z(i) all killed at τ
(i)
δ > 0, has the same law as Z killed at Tnδ, where

Tnδ := inf{t ≥ 0 : Zt > nδ}.

Now recall that for all 1 ≤ i ≤ I and 1 ≤ j ≤ n, all paths (Z
(i,j)
t ; t < τ

(i)
δ )

remain below δ. Since these processes are CSBPs, they only take non-negative
values, and therefore cannot have a negative jump of amplitude larger than δ.
Since CSBPs are Feller processes, they have no fixed time discontinuity and the
independent copies (Z(i,j); j = 1, . . . , n) a.s. do not jump at the same time. As

a consequence, (Z
(i)
t ; t < τ

(i)
δ ) has no negative jump of amplitude larger than δ.

The same holds for (Z
(i)
t ; t ≤ τ

(i)
δ ) because if τ

(i)
δ is a jump time, it can only be

the time of a positive jump. As a consequence, the process Z⋆ has no negative
jump of amplitude larger than δ, which implies

Tnδ < Jδ.

Letting n → ∞ and because δ is arbitrarily small, this last inequality shows
that Z has no negative jumps.

Now define Y as the image of Z by the Lamperti transformation. Specifically,
let κ be the time-change defined as the inverse of the additive functional θ : t 7→
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∫ t

0
Zs ds and let Y be defined as Z ◦ κ. Recall Proposition 1 and the branching

mechanism −F . We consider the process Mλ defined as

Mλ
t = eλ(Zt) + F (λ)

∫ t

0

Zseλ(Zs) ds.

We now prove that Mλ is a martingale under P. Thanks to (4),

∂

∂t
Ex(eλ(Zt)) = − x

∂ut(λ)

∂t
e−xut(λ) = −xF (λ)

∂ut(λ)

∂λ
e−xut(λ)

= F (λ)
∂

∂λ
Ex(eλ(Zt)) ,

which gives as a conclusion

∂

∂t
Ex(eλ(Zt)) = −F (λ) Ex(Zteλ(Zt)) .

This last equality proves that Mλ has constant expectation, and the fact that
it is a martingale follows from the Markov property of Z.

Now κt is a stopping time, so we can use the optional stopping theorem to
get that for any s > 0,

Ex

(

Mλ
κt∧s

)

= eλ(x)

which translates into

Ex(eλ(Zκt∧s)) = eλ(x) − F (λ) Ex

(∫ κt∧s

0

Zueλ(Zu) du

)

.

By the dominated convergence theorem and the monotone convergence theorem
applied respectively to the l.h.s. and r.h.s. as s → ∞, one obtains

Ex(eλ(Zκt
)) = eλ(x) − F (λ) Ex

(∫ κt

0

Zueλ(Zu) du

)

so that by using the definition of Y and the fact that

∫ κt

0

Zueλ(Zu) du =

∫ t

0

Zκu
eλ(Zκu

) dκu =

∫ t

0

eλ(Zκu
)1Zκu>0

du

(since Zκu
dκu = 1Zκu >0 du), we get the equality

Ex(eλ(Yt)) = eλ(x) − F (λ)

∫ t

0

Ex(eλ(Ys)1Ys>0) ds. (7)

We denote by T0 the first hitting time of 0 by Y . As a first consequence of (7),
note that if we write Ex(eλ(Yt)1Yt>0) = Ex(eλ(Yt))− Px(T0 ≤ t), the following
differential equation is satisfied

∂Ex(eλ(Yt))

∂t
+ F (λ) Ex(eλ(Yt)) = F (λ)Px(T0 ≤ t) . (8)
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We can therefore use standard techniques of solving first order linear differential
equations to deduce the following equality

Ex(eλ(Yt)) = e−λx−F(λ)t + Ex

((

1 − e−F(λ)(t−T0)
)

1T0≤t

)

. (9)

The last step is now to deduce that Y is a Lévy process stopped upon hitting
0. In the case when Px(T0 = ∞) = 1 for some x ∈ (0,∞) the same property
holds for all x ∈ (0,∞) and we conclude from (9) that

Ex(eλ(Yt)) = e−λx−F(λ)t.

Then Y is a Lévy process which remains on (0,∞] when started there. It is
therefore a subordinator and, from the last display, its Laplace exponent is −F .

This step is more complicated when Px(T0 = ∞) < 1. Because we would like
to show how the Lévy process emerges without appealing to analytical properties
of the function F , we have been able to achieve a proof which makes no use
of Proposition 3. But since this proof is a bit long and technical, we propose
hereafter a shorter one which uses Proposition 3. Thanks to this proposition,
there is a spectrally positive Lévy process X with Laplace exponent −F , whose
law we denote by Q.

We stick to the notation T0 for both processes X and Y . It is not difficult to
arrive at the following equality

Qx(eλ(Xt∧T0
)) = e−λx−F(λ)t + Ex

((

1 − e−F(λ)(t−T0)
)

1T0≤t

)

.

Then thanks to (9), the only thing we have to check is that T0 has the same
law under Px as under Qx. To see this, first recall that T0 =

∫∞

0
Zsds. Since

the CSBP started at x + y is the sum of two independent CSBPs started at x
and y respectively, the distribution of T0 under Px+y is the convolution of the
laws of T0 under Px and Py. We can therefore conclude that the distribution
of T0 under Px is infinitely divisible on [0,∞], and that there is a nonnegative
function φ on [0,∞) such that −φ is the Laplace exponent of a subordinator
and

Ex

(

e−λT0
)

= e−xφ(λ) x, λ ≥ 0. (10)

On the other hand, as is well-known [1],

Qx

(

e−λT0
)

= e−xϕ(λ) x, λ ≥ 0,

where ϕ is the nonnegative function on [0,∞) characterised by −F ◦ϕ = Id[0,∞).
At this point, we have to make sure that −F indeed takes positive values (i.e.
X is not a subordinator). On the contrary, if F took only nonnegative values,
then by (8), we would get

∂Ex(eλ(Yt))

∂t
= −F (λ) Ex(eλ(Yt)1T0>t) ,

so that all mappings t 7→ Ex(eλ(Yt)) would be nonincreasing. Letting λ → ∞,
we would get that the mapping t 7→ Px(Yt = 0) also is nonincreasing. But since
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0 is absorbing, this mapping is obviously nondecreasing, so that Px(Yt = 0) =
Px(Y0 = 0) = 0 for all t ≥ 0 and x > 0. This contradicts the assumption that Y
hits 0 with positive probability.

If (Kλ
t ; t ≥ 0) denotes the martingale obtained by taking conditional expec-

tations of the terminal variable exp(−λ
∫∞

0
Zs ds), we get

Kλ
t = exp

(

−λ

∫ t

0

Zs ds − φ(λ)Zt

)

,

so that in particular

e−xφ(λ) = Ex

(

exp

(

−λ

∫ t

0

Zs ds − φ(λ)Zt

))

.

Informally, we evaluate the derivative w.r.t. t of both sides at t = 0 to obtain

0 = −λxe−xφ(λ) − xF (φ(λ))e−xφ(λ), (11)

so that −F ◦φ is the identity on [0,∞). This shows that φ = ϕ, so that T0 indeed
has the same law under Px as under Qx. It remains to give a formal proof of
(11). Write Kλ as the product of the semimartingale Lλ

t = exp(−φ(λ) Zt) and

the finite variation process Nλ
t = exp

(

−λ
∫ t

0
Zs ds

)

; we can write Lλ
t as

Lλ
t = Mt − F (φ(λ))

∫ t

0

Zse
−φ(λ)Zs ds

where M ≡ Mφ(λ) is a (formerly defined) locally bounded martingale, in par-
ticular square integrable. Integration by parts gives us

Kλ
t = e−φ(λ)x +

∫ t

0

Nλ
s− dMs −

∫ t

0

Nλ
s Lλ

s Zs [F (φ(λ)) + λ] ds.

Since Nλ is bounded, its stochastic integral with respect to Mλ is a square inte-
grable martingale. Taking expectations, the second summand vanishes, and since
by stochastic continuity of Z, t 7→ Ex

(

Lλ
t Nλ

t Zt

)

is continuous (and bounded),
we get

0 =
∂

∂t
Ex

(

Kλ
t

)

∣

∣

∣

∣

t=0

= −e−φ(λ)x [F (φ(λ)) + λ]

which implies (11).

2.2. The inverse Lamperti transform of a spectrally positive Lévy

process

In this subsection, we consider a Lévy process X with no negative jumps, started
at x ≥ 0, stopped at its first hitting time T0 of 0, and possibly sent to ∞ after
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an independent exponential time. Using the well-known Lévy-Itô decomposition
of X [1, 19], we can write for every t < T0

Xt = x + at + σBX
t + P X

t + MX
t , (12)

where a is a real number, σ is a nonnegative real number (the Gaussian coeffi-
cient), BX is a standard Brownian motion, P X is a compound Poisson process
and MX is a square integrable martingale, all terms being independent and
adapted to the same filtration. To be more specific about P X and MX , we
denote by Λ the Lévy measure of X, which is a σ-finite measure on (0,∞]
(see Introduction) such that

∫

(0,∞](1 ∧ r2)Λ(dr) < ∞. Then there is a Poisson

measure NX on [0,∞)× (0,∞] with intensity measure dt Λ(dr), and associated
compensated measure ÑX(dt, dr) := NX(dt, dr) − dt Λ(dr) (defined for r < 1)
such that

P X
t :=

∫ t

0

∫

[1,∞]

r NX(ds, dr) and MX
t :=

∫ t

0

∫

(0,1)

r ÑX(ds, dr),

where the second integral is the L2 limit, as ε → 0, of

MX,ε
t :=

∫ t

0

∫

(ε,1)

r ÑX(ds, dr).

Notice that, at the first jump of P X of infinite size, X jumps to ∞ and remains
there. It will be implicit in the rest of the proof that equalities hold in [0,∞].

Recall that the inverse Lamperti transform Z of X is given as follows. Set

κt :=

∫ t∧T0

0

ds

Xs
,

and let θ be its inverse

θt := inf{u ≥ 0 : κu > t} ∈ [0,∞],

so that Z := X ◦ θ. To prove that Z is a CSBP, we will use the following
proposition.

Proposition 4. There is a standard Brownian motion BZ , and an indepen-
dent Poisson measure NZ on [0,∞) × (0,∞) × (0,∞] with intensity measure
dt dv Λ(dr) such that

Zt = x + a

∫ t

0

Zs ds + σ

∫ t

0

√

Zs dBZ
s

+

∫ t

0

∫ Zs−

0

∫

[1,∞]

rNZ(ds, dv, dr) +

∫ t

0

∫ Zs−

0

∫

(0,1)

rÑZ(ds, dv, dr),

(13)

where ÑZ is the compensated Poisson measure associated with NZ.
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Proof. Define G as the time-changed filtration, that is, Gt = Fθt
. We denote

by (Tn, ∆n)n≥1 an arbitrary labelling of the pairs associating jump times and
jump sizes of Z. By a standard enlarging procedure, we can assume we are also
given an independent G -Brownian motion B, an independent G -Poisson point
process N on [0,∞)× (0,∞) × (0,∞] with intensity measure dt dv Λ(dr), and
an independent sequence (Un)n≥1 of random variables uniformly ditributed on
(0, 1) such that Un is GTn

-measurable and independent of GTn−.
As a first step, we define BZ and NZ . Recall the Lévy-Itô decomposition

(12). Notice that Y := BX ◦ θ is a continuous local martingale w.r.t. G , so we
can define BZ as

BZ
t :=

∫ t

0

1Zs 6=0√
Zs

dYs +

∫ t

0

1Zs=0 dBs.

Next, we define NZ as

NZ(dt, dv, dr) :=
∑

n

δ{Tn, UnZTn−,∆n}(dt, dv, dr) + 1v>Zt−
N(dt, dv, dr),

where δ denotes Dirac measures.
The second step consists in proving that BZ is a G -Brownian motion, and

that NZ is an independent G -Poisson point process with intensity dt dv Λ(dr).
Observe that BZ is a continuous local martingale w.r.t. G , and that its

quadratic variation in this filtration equals

< BZ >t=

∫ t

0

1Zs 6=0

Zs
dθs +

∫ t

0

1Zs=0 ds =

∫ t

0

(1Zs 6=0 + 1Zs=0) ds = t,

because dθs = Zs ds. This shows that BZ is a G -Brownian motion. For NZ , let
H be a non-negative G -predictable process, let f be a two-variable non-negative
Borel function, and let RX be the image of NX by the mapping (t, r) 7→ (θt, r).
Then by predictable projection,

E
∑

n

HTn
f(UnZTn−, ∆n) = E

∫ 1

0

du

∫

[0,∞)

∫

(0,∞]

RX(dt, dr)Ht f(uZt−, r)

= E

∫ 1

0

du

∫

[0,∞)

dθt

∫

(0,∞]

Λ(dr)Ht f(uZt, r)

= E

∫ ∞

0

Ztdt

∫

(0,∞]

Λ(dr)

∫ 1

0

du Ht f(uZt, r)

= E

∫ ∞

0

dt

∫

(0,∞]

Λ(dr)

∫ Zt

0

dv Ht f(v, r).

Now since

E

∫

[0,∞)

∫

(0,∞)

∫

(0,∞]

N(dt, dv, dr)1v>Zt−
Ht f(v, r)

= E

∫ ∞

0

dt

∫

(0,∞]

Λ(dr)

∫ ∞

Zt

dv Ht f(v, r),
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we deduce

E

∫

[0,∞)

∫

(0,∞)

∫

(0,∞]

NZ(dt, dv, dr)Ht f(v, r)

= E

∫ ∞

0

dt

∫ ∞

0

dv

∫

(0,∞]

Λ(dr)Ht f(v, r),

which shows that NZ is a G -Poisson point process with the claimed intensity.
Finally, since BZ is a G -Brownian motion and NZ is a G -Poisson point process,
Theorem 6.3 on p.77 of [15] ensures that BZ and NZ are independent.

The last step is showing that Z indeed solves (13). We will refer to the
successive terms in (13) as At (Lebesgue integral), σWt (Brownian integral),
Ut (Poisson integral), and Vt (compensated Poisson integral). Since we want to
prove that X ◦ θ = x + A + σW + U + V , and since aθt = At, it is enough to
prove that BX ◦ θ =: Y = W , P X ◦ θ = U , and MX ◦ θ = V . Denote by T the
absorption time of Z at 0 and recall that by definition of BZ ,

∫ t

0

√

Zs dBZ
s =

∫ t

0

√

Zs
1Zs 6=0√

Zs

dYs +

∫ t

0

√

Zs1Zs=0 dBs,

where the second term vanishes. As a consequence, Wt = Yt∧T = Yt, which
provides us with the first required equality. Since P X(θt) is merely the sum of
jumps of X of size greater than 1 occurring before time θt, it is also the sum of
jumps of Z of size greater than 1 occurring before time t. As a consequence,

P X(θt) =
∑

n:Tn≤t

∆n1∆n≥1 =

∫ t

0

∫ Zs−

0

∫

(0,∞]

rNZ(ds, dv, dr)1r≥1,

which provides us with the second required equality. As for the third one, the
same reasoning as previously yields the following, where limits are taken in L2

MX(θt) = lim
ε↓0





∑

n:Tn≤t

∆n1ε<∆n<1 − θt

∫

(ε,1)

Λ(dr)





= lim
ε↓0

(

∫ t

0

∫ Zs−

0

∫

(0,∞]

rNZ(ds, dv, dr)1ε<r<1

−
∫ t

0

ds

∫ Zs−

0

dv

∫

(0,∞]

Λ(dr)1ε<r<1

)

,

which indeeds shows that MX(θt) = Vt.

Now we want to prove that X ◦ θ is a CSBP. Thanks to Proposition 4, we
only need to check that any solution Z to (13) satisfies the branching property.
Let Z1 and Z2 be two independent copies of Z, one starting from x1 and the
other from x2. Thanks to Proposition 4, we can write the sum ζ of Z1 and Z2

as
ζt := Z1

t + Z2
t = x1 + x2 + At + σWt + Ut + Vt,
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where, with obvious notation,

At := a

∫ t

0

(Z1
s + Z2

s ) ds, Wt :=

∫ t

0

√

Z1
s dB1

s +

∫ t

0

√

Z2
s dB2

s ,

Ut :=

∫ t

0

∫ Z1
s−

0

∫

[1,∞]

rN1(ds, dv, dr) +

∫ t

0

∫ Z2
s−

0

∫

[1,∞]

rN2(ds, dv, dr),

Vt :=

∫ t

0

∫ Z1
s−

0

∫

(0,1)

rÑ1(ds, dv, dr) +

∫ t

0

∫ Z2
s−

0

∫

(0,1)

rÑ2(ds, dv, dr),

and B1, N1, B2, N2 are all independent and adapted to the same filtration, say
F = (Ft; t ≥ 0). By a standard enlarging procedure, we can assume that we
are also given an independent F -Brownian motion B and an independent F -
Poisson point process N with intensity measure dt dv Λ(dr).

Notice that W is a continuous local martingale with quadratic variation t 7→
∫ t

0 ζsds. Set

Bζ
t :=

∫ t

0

1ζs 6=0√
ζs

dWs +

∫ t

0

1ζs=0 dBs.

Then Bζ is adapted to the filtration F and, letting T denote the first hitting
time of 0 by ζ,

Wt = Wt∧T =

∫ t

0

1ζs 6=0dWs =

∫ t

0

√

ζs dBζ
s−
∫ t

0

√

ζs 1ζs=0 dBs =

∫ t

0

√

ζs dBζ
s .

In addition, the quadratic variation of Bζ in the filtration F is

< Bζ >t=

∫ t

0

1ζs 6=0

ζs
d < W >s +

∫ t

0

1ζs=0 ds =

∫ t

0

1ζs 6=0 ds +

∫ t

0

1ζs=0 ds = t,

so that Bζ is a F -Brownian motion. Now set

N ζ(dt, dv, dr) = 1v<Z1
t−

N1(dt, dv, dr)+ 1Z1
t−

<v<ζt−
N2(dt, dv − Z1

t−, dr)

+ 1v>ζt−
N(dt, dv, dr)

Then for any non-negative F -predictable process H = (Ht; t ≥ 0) and any
two-variable non-negative Borel function f ,

∫

[0,∞)

∫

(0,∞)

∫

(0,∞]

N ζ(dt, dv, dr)Ht f(v, r)

=

∫

[0,∞)

∫

(0,∞)

∫

(0,∞]

N1(dt, dv, dr)Ht 1v<Z1
t−

f(v, r)

+

∫

[0,∞)

∫

(0,∞)

∫

(0,∞]

N2(dt, dv, dr)Ht 1v<Z2
t−

f(v + Z1
t−, r)

+

∫

[0,∞)

∫

(0,∞)

∫

(0,∞]

N(dt, dv, dr)Ht 1v>ζt−
f(v, r),
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so that, taking Ht = 1v<ζt−
and f(v, r) = r1r≥1, we get

Ut =

∫ t

0

∫ ζs−

0

∫

[1,∞]

rN ζ(ds, dv, dr).

In addition, by predictable projection,

E

∫

[0,∞)

∫

(0,∞)

∫

(0,∞]

N ζ(dt, dv, dr)Ht f(v, r)

= E

∫

[0,∞)

∫

(0,∞)

∫

(0,∞]

dt dv Λ(dr)Ht f(v, r),

so that N ζ is a F -Poisson point process with intensity dt dv Λ(dr). Similarly,
we could get that

Vt =

∫ t

0

∫ ζs−

0

∫

(0,1)

rÑ ζ(ds, dv, dr),

concluding that

ζt := x1 + x2 + a

∫ t

0

ζs ds + σ

∫ t

0

√

ζs dBζ
s

+

∫ t

0

∫ ζs−

0

∫

[1,∞]

rN ζ(ds, dv, dr) +

∫ t

0

∫ ζs−

0

∫

(0,1)

rÑ ζ(ds, dv, dr).

Finally, since Bζ is a F -Brownian motion and N ζ is a F -Poisson point pro-
cess, Theorem 6.3 of [15] ensures that Bζ and N ζ are independent. Pathwise
uniqueness for (13) is proved in [9] under the stronger integrability condition

∫

(0,∞]

r ∧ r2 Λ(dr) < ∞,

which excludes jumps of infinite size. We now sketch a proof, suggested by
Zenghu Li, of pathwise uniqueness for lower semi-continuous solutions to (13).
As a consequence, we will conclude that ζ = Z1 + Z2 has the same law as the
process Z started at x1 + x2, that is, Z has the branching property.

For each integer n, consider the equation

Zt = x + a

∫ t

0

Zs ds + σ

∫ t

0

√

Zs dBZ
s

+

∫ t

0

∫ Zs−

0

∫

[1,∞]

r ∧ nNZ(ds, dv, dr) +

∫ t

0

∫ Zs−

0

∫

(0,1)

rÑZ(ds, dv, dr),

Existence and pathwise uniqueness holds for this equation by Theorem 5.1 in
[9]. Consider also two solutions Z′ and Z′′ to (13) and consider the first times
τ ′
n and τ ′′

n that they have a jump of magnitude greater than n. Set also τn =
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τ ′
n ∧ τ ′′

n . Then, Z′ and Z′′ satisfy the above equation on [0, τn], and so they are
indistinguishable on [0, τn]. As n → ∞, τn converges to the first instant when
Z′ or Z′′ have a jump of infinite size, say τ∞, a jump that comes from an atom
of NZ of the form (τ∞, v,∞), so that both processes have it. Since after this
time both processes are equal to ∞, and since the integral with respect to the
Poisson process diverges, then Z′ and Z′′ are indistinguishable.

3. Proof through weak convergence

Here, we provide a second proof of Theorem 1, this time through weak con-
vergence. We use the fact that the Lamperti representation is easy to prove on
discrete state-spaces, and introduce a topology on Skorohod space for which
the inverse Lamperti transformation is continuous. Then approximating Lévy
processes by compound Poisson processes, and CSBPs by discrete-state branch-
ing processes, we will deduce the Lamperti representation on the continuous
state-space.

3.1. Preliminaries

Recall that ρ is any metric on E = [0,∞] that makes E homeomorphic to [0, 1].
Recall the Skorohod-type space D consisting of functions f : E → E which are
càdlàg (so that in particular limt→∞ f(t) = f(∞)), such that f(∞) ∈ {0,∞}
and for which f(t) = 0 (resp. = ∞) implies that f(t + s) = 0 for all s ≥ 0 (resp.
= ∞).

For any t ≤ ∞, we denote by ‖ · ‖t the uniform norm on [0, t], and by ρD
t the

uniform distance with respect to ρ, that is,

ρD
t (f, g) := sup

s∈[0,t]

ρ(f(s), g(s)).

Let Λt be the set of increasing homeomorphisms of [0, t] into itself ([0,∞) if
t = ∞), and define the metric d∞ on D as

d∞(f, g) := 1 ∧ inf
λ∈Λ∞

ρD
∞(f, g ◦ λ) ∨ ‖λ − Id ‖∞.

The proofs of the two following propositions can be found in Subsection 3.4.

Proposition 5. The inverse Lamperti transformation L−1 is continuous on
(D, d∞).

Remark. The usual Skorohod topology on [0, t] defined in [7, Ch. 3.12] (resp.
on [0,∞) defined in [7, Ch. 3.16]) is induced by the metric dt (resp. d), where

dt(f, g) = inf
λ∈Λt

ρD
t (f, g ◦ λ) ∨ ‖λ − Id ‖t

(

resp. d(f, g) =

∫ ∞

0

e−tdt(f, g) dt

)

.

Then d(fn, f) → 0 as n → ∞ if and only if for every continuity point t of f ,
dt(fn, f) → 0 (cf. Lemma 1 in [7, Ch. 3.16, p. 167]), which gives a precise mean-
ing to saying that d controls the convergence of fn to f only on compact subsets
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[0, t] of [0,∞). It is easy to see, and will be repeatedly used, that d∞(fn, f) → 0
as n → ∞ implies dt(fn, f) → 0 for every continuity point t of f , so that conver-
gence with d∞ implies convergence in the usual Skorohod space. We also point
out that in general,

d∞(f, g) ≤ max(dt(f, g) , d∞(f ◦ st, g ◦ st))

where f ◦ st := f(t + ·), since the right-hand side is obtained by taking the
infimum over homeomorphisms which send t to itself.

We will also need the following technical result on stopped Lévy processes,
as well as its corollary.

Proposition 6. Let X and (Xn)n be spectrally positive Lévy processes with
Laplace exponents Ψ, Ψn respectively. If for all λ ≥ 0 we have

lim
n→∞

Ψn(λ) = Ψ(λ),

then Xn stopped whenever reaching zero converges weakly in (D, d∞) to X
stopped whenever reaching zero. The same result holds if the processes (Xn)n

are rescaled compound Poisson processes with jumps in {−1} ∪ N.

We will use the last proposition in the form of the following corollary (see
e.g. Lemma 5.4 in [21, p. 287]). For any a, b > 0, consider the scaling operator
Sa

b on Skorohod space which sends f to t 7→ f(a · t) /b.

Corollary 1. Let X be a spectrally positive Lévy process with Laplace exponent
Ψ, started at x ≥ 0 and stopped whenever reaching 0. There are a sequence of
integers an → ∞, and a sequence (Xn)n of compound Poisson processes started
at xn ∈ N, stopped upon reaching 0, and whose jump distribution is concentrated
on {−1}∪N, such that the Laplace exponent Ψn of San

n (Xn) converges to Ψ and
the sequence (San

n (Xn))n converges weakly to X in (D, d∞).

We begin the proof of Theorem 1 by studying the inverse Lamperti transfor-
mation.

3.2. The inverse Lamperti transform of a spectrally negative Lévy

process

Let X and (Xn)n∈N
be as in Corollary 1. As we have noted in the introduc-

tion, denoting L−1 the inverse Lamperti transformation, L−1(Xn) satisfies the
branching property in N. Also it is obvious that Zn := L−1 ◦ San

n (Xn) satisfies

the branching property in n−1N (e.g. because L−1 ◦ Sa
b = S

a/b
b ◦ L−1).

Thanks to Proposition 5, the sequence of branching processes (Zn)n con-
verges weakly in (D, d∞) to the Markov process Z := L−1(X) (time-changing
a càdlàg strong Markov process by the inverse of an additive functional gives
another càdlàg strong Markov process, cf. [10, Vol. 1, X.5]). To show that Z is
a CSBP, we have to check that it has inherited the branching property from the
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∞

κ∞ =
∫
∞

0
1

f(s)) ds < ∞

f satisfies:

n ∞

fn = f1[0,n]

L−1

L−1 (f) explodes at κ∞

L−1 (fn) is zero after κn

Fig 1. Discontinuity of the inverse Lamperti transformation.

sequence (Zn)n∈N
, and thanks to the Markov property, it is sufficient to check

the branching property at any fixed time. The result is due to the following two
facts. First, because neither of the discrete branching processes Zn jumps at
fixed times, neither does Z jump at fixed times. Second, it is known that for
any fixed time t, the mapping D : f 7→ f(t) is continuous at any f which is
continuous at t. As a conclusion, for any fixed time t, the mapping D : f 7→ f(t)
is a.s. continuous at Z. This ends the proof.

Remark. Recall the usual topology on Skorohod space from the remark in the
previous subsection. For this topology, the inverse Lamperti transformation L−1

is not continuous, and the problem is due to explosions as seen in the example
below.

Example 1. Consider an element f of D such that f(s) → ∞,

κ∞(f) =

∫ ∞

0

ds

f(s)
< ∞,

and note that its inverse Lamperti transform L−1(f) blows up at κ∞. If we
approximate f by fn = f1[0,n], then the inverse Lamperti transform of fn is
always zero after κn(f) so that it cannot converge to L−1(f); it does converge
to another limit however. This is illustrated in Figure 1. An explanation of why
the problem occurs is that κ(f) contracts [0,∞) into [0, κ∞) and so to have
convergence in Skorohod space of a sequence of functions when they approach a
limit taking infinite values, we have to control the behaviour of the trajectories
of the sequence on [0,∞) instead of only on its compacts subsets as with the
usual metrics.

3.3. The Lamperti transform of a CSBP

Let Z be a CSBP with law Px when it starts at x. As we have shown in Propo-
sitions 1 and 2, there are nonnegative real numbers ut(λ), t, λ ≥ 0, such that

Ex

(

e−λZt
)

= e−xut(λ),
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and t 7→ ut(λ) is differentiable on [0,∞). In addition, there is a real function Ψ
on [0,∞) called the branching mechanism of Z, such that

∂ut(λ)

∂t
= −Ψ(ut(λ)) t, λ ≥ 0, (14)

and Ψ is the Laplace exponent of a spectrally positive Lévy process.
Then let X and (Xn)n∈N

be as in Corollary 1. Set Z̃n := L−1(San

n (Xn)). As

in the proof of the converse implication, each Z̃n satisfies the branching prop-
erty in n−1N, and thanks to Proposition 5, the sequence of branching processes
(Z̃n)n converges weakly in (D, d∞) to the Markov process Z̃ := L−1(X). (As
remarked earlier, time-changing a càdlàg strong Markov by the inverse of an ad-
ditive functional gives another càdlàg strong Markov process.) We end the proof
showing that the finite dimensional distributions of Z̃n converge to those of Z,
which will entail the equality in distribution between Z and Z̃ , and subsequently
between L(Z) and X, since X = L(Z̃).

Since Z̃n is a branching process, there are real numbers ũn
t (λ) such that

Exn/n

(

e−λZ̃n

t

)

= exp(−(xn/n)ũn
t (λ)) t, λ ≥ 0,

and we also have

ũn
t (λ) = λ −

∫ t

0

Ψn(ũn
s (λ)) ds. (15)

By convergence of the sequence of branching processes (Z̃n), ũn
t (λ) converges

pointwise to some nonnegative real number ũt(λ) such that

Ex

(

e−λZ̃t

)

= e−xũt(λ) t, λ ≥ 0.

Since Ψn converges to Ψ pointwise and they are convex on (0,∞), convergence
is uniform on compact subsets of (0,∞); by taking limits in (15), we obtain

ũt(λ) = λ −
∫ t

0

Ψ(ũs(λ)) ds.

Because of the local Lipschitz character of Ψ (which can fail only at zero, and
when it does makes the solutions with small starting point go away from it),
and Gronwall’s lemma, we get ũt = ut. As a consequence,

Ex

(

e−λZ̃t

)

= e−xut(λ) = Ex

(

e−λZt
)

t, λ ≥ 0,

so that Z and Z̃ have the same law.

3.4. Proof of propositions 5 and 6

3.4.1. Proof of Proposition 5

There are two cases to consider since every element of D either tends to 0 or to
∞. At the outset however, there are some simple propositions that cover both.
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First of all, note that if d(fn, f) → 0 then κ(fn) → κ(f) uniformly on compact
sets of [0, T0(f)).

Second, note that if dc(fn, f) → 0 then θ(fn) → θ(f) uniformly on compact
sets of [0, κT0(f)(f)). This follows from the following argument. It suffices to
prove pointwise convergence on [0, κT0(f)(f)); let s < t < s′ be three points on
that interval. Then θ(f) < T0(f) on s, s′ and t. By the preceding paragraph,

κθs(f)(fn) → κθs(f)(f) = s < t

and so eventually, θs(f) < θt(fn). By the same argument, we see that eventually
θt(fn) < θs′(f). By taking s, s′ → t, we see that θt(fn) → θt(f).

Note that the preceding two facts are true even if we are working with the
metric d. The particular nature of the metric d∞ come into play at this stage:
note that if d∞(fn, f) → 0 then fn(∞) = f(∞) from a given index onwards.

We will now consider the case when f(∞) = ∞. Let M > 0 be such that the ρ-
diameter of [M,∞] is less than ε. The quantity L2M(f) = sup {t ≥ 0 : f(t) ≤ M}
is finite and infs≥L2M(f) f(s) ≥ M . Also, κL2M(f)(f) < κ∞(f) (the rhs is
κT0(f)(f)) and so the preceding paragraphs tell us that θ(fn) → θ(f) uniformly
on κL2M(f)(f). Whitt’s result on the continuity of time-changes [27] tells us that
L−1(fn) → L−1(f) (with respect to the Skorohod metric) on [0, κ(L2M (f)) f ].
Since

ρ(f(s) , fn(s)) < ε

for s > L2M , then d∞

(

L−1(fn) , L−1(f)
)

→ 0.
The remaining case, which is handled similarly, is when f(∞) = 0. Suppose

f(0) > 0, since otherwise there is nothing to prove. For ε > 0 small enough, we
can introduce the (finite) quantity Lε(f) = sup {t ≥ 0 : f(t) > ε}. Since Lε <
T0, by the same arguments as above, we have that L−1(fn) → L−1(f) (with
respect to the Skorohod topology) on [0, κLε

(f)]. Since, eventually, fn > 2ε on
[L(ε) ,∞), then d∞

(

L−1(fn) , L−1(f)
)

→ 0 as n → ∞.

3.4.2. Proof of Proposition 6

Note that a given Lévy process X is either killed at an independent exponential
time, or drifts to ∞, or to −∞ or has lim inft→∞ Xt = −∞ and lim inft→∞ =
∞ (it oscillates). When we stop a spectrally positive Lévy process at 0 there
are therefore three cases: either the stopped process jumps to ∞, or it drifts
to ∞ without reaching 0 or it is stopped at 0 at a finite time. In any case,
the trajectories of the stopped process belong to D. The convergence of the
Laplace exponents of the approximating sequence Xn implies the convergence
of the finite-dimensional distributions and so Skorohod’s classical result implies
that the convergence holds on (D, d) (cf. [17, Thm. 15.17, p. 298]). To study
the convergence of the stopped processes on (D, d∞), we will use Skorohod’s
representation theorem (on (D, d) which has an equivalent metric under which
it becomes a Polish space) to assume that, on a given probability space, Xn

converges almost-surely to X on (D, d). Let Tε(X) denote inf {s ≥ 0 : Xt ≤ ε} ∈



M.E. Caballero, A. Lambert, G. Uribe Bravo/The Lamperti representation of CSBPs 85

[0,∞]; we will add the subscript n when the stopping times are defined from
Xn . Note that on the set T0(X) < ∞, T0+(X) = T0(X), by the quasi-left-
continuity of Lévy processes (cf. [1, Pro. I.2.7, p.21]). Stopping at the hitting
time of zero is therefore a.s. continuous at X (on (D, d), as can be seen in [25]
and Lemma VI.2.10 in [16, p. 340]) and so Xn stopped at zero, denoted X̃n,
converges almost surely to X̃ (equal to X stopped at zero). We will now divide
the proof in three cases.

X drifts to −∞ or oscillates In this case, T0 is finite almost surely. As we
have remarked, Tn

0 → T0 and so for h > 0, Tn
0 ≤ T0 +h from a given index

onwards almost surely. Since Lévy processes do not jump at fixed times,
X is continuous at T0 + h for h > 0 and so dT0+h(X, Xn) → 0 as n → ∞.
Note that

lim sup
n→∞

d∞

(

X̃, X̃n
)

≤ lim sup
n→∞

dT0+h(X, Xn) = 0.

X drifts to ∞ We will begin by verifying that the convergence of Xn to X
(on (D, d)) implies that we can uniformly control the overall infimum of
the Xn. This is formally achieved in the following statement: given δ > 0
there exists some M > 0 such that

P2M(inf
s≥0

Xs < M) < δ and P2M (inf
s≥0

Xn
s < M) < δ

from a given index onwards. For the proof, note that since Ψn and Ψ are
strictly convex, we may denote their largest roots by Φn and Φ respectively.
When Xn is a spectally positive Lévy processes, the Laplace exponents
Ψn and Ψ restricted to [Φn,∞) and [Φ,∞) have inverses φn and φ. The
convergence of the Laplace exponents and their convexity allow us to prove
that Φn → Φ as n → ∞. When X drifts to infinity, then Φ > 0 and from
[1, Thm. 1, p.189] and the above, we deduce

P2M

(

inf
s≥0

Xs < M

)

, lim sup
n→∞

P2M

(

inf
s≥0

Xn
s < M

)

≤ e−MΦ.

By taking M large enough, the claim follows. When the approximating
sequence is constituted of rescaled left continuous compound Poisson pro-
cesses, we adapt the proof of [1, Thm. 1, p.189] to arrive at the same
conclusion.
Since X drifts to ∞, it reaches arbitrarily high levels, and since Xn con-
verges to X on (D, d), then Xn will also reach arbitrarily high levels.
Coupled with our control on the infimum, we will see that from a given
(random) time onwards and from a given index, Xn and X are close since
they are above a high enough barrier. Formally, we will now prove that X̃n

converges to X̃ in probability (using d∞): for any ε, δ > 0 let M > 0 be
such that the ρ-diameter of [M,∞] is less than ε and exp(−MΦ) < δ/2.
We introduce the stopping time:

S3M = inf {s ≥ 0 : Xs > 3M} ,
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as well as the corresponding hitting times times Sn
2M of [2M,∞) for

Xn, n = 1, 2, · · · . Observe that

P

(

d∞

(

X̃n, X̃
)

> ε
)

= P

(

d∞

(

X̃n, X̃
)

> ε, T0 < ∞
)

+ P

(

d∞

(

X̃n, X̃
)

> ε, T0 = ∞
)

.

The first summand of the right-hand side of the preceding inequality con-
verges to zero by the arguments of the previous case. Consider h > 0 and
let us bound the second summand by

P(Cn) + P(Dn)

where
Cn = {dS3M+h(Xn, X) > ε, T0 = ∞}

and

Dn =
{

d∞

(

(

Xn
S3M +h+t

)

t≥0
, (XS3M +h+t)t≥0

)

> ε, T0 = ∞
}

.

Since Lévy processes do not jump at fixed times, the strong Markov prop-
erty implies that almost surely X does not jump at time S3M + h so that
dS3M+h(Xn , X) → 0 almost surely. Hence

lim
n→∞

P(Cn) = 0.

This also implies that from a given index onwards, Sn
2M ≤ S3M +h so that

P(Sn
2M > S3M + h) → 0.

Hence, it remains to bound P(Dn, Sn
2M ≤ S3M + h). If the d∞ distance

between
(

XS3M+h+t

)

t≥0
and

(

Xn
S2M+h+t

)

t≥0
is to be greater than ε while

Sn
2M ≤ S3M+h then either Xn goes below M after Sn

2M or X goes below
M after S3M . The probability of both events is smaller than δ/2 from a
given index onwards because of our choice of M , so that

lim sup
n

P

(

d∞

(

X̃n, X̃
)

> ε
)

≤ δ

for every δ > 0. We conclude that d∞(Xn, X) → 0 in probability.
X jumps to ∞ This case is characterized by q := −Ψ(0) > 0. It can be re-

duced to the q = 0 case by means of an independent exponential variable
of rate q: if X′ is a Lévy process whose Laplace exponent is Ψ − Ψ(0)
and T is an exponential variable with mean 1 independent of X′ and
we define X′′ as X′ sent to ∞ at time T/q, then X′′ has the same law
as X. If X′n is a Lévy process with Laplace exponent Ψn − Ψn(0) (and
qn := −Ψn(0)) then X′n converges in law to X′ on (D, d); as before, we
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will use Skorohod’s representation theorem so that convergence holds al-
most surely on a given probability space. We now extend that space so as
to have an additional mean 1 exponential variable T independent of X′

and (X′n)n∈N
and define on that space X′′ and X′′n as above by killing

X′ and X′n at times T/q and T/qn respectively. Since qn → q by hypoth-
esis, and X′ is continuous at time T/q + h almost surely (for any h > 0),
then dT/q+h(X′n, X′) → 0 and since T/qn ≤ T/q + h from a given index
onwards, then d∞(X′′n, X′′) → 0 almost surely.
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