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THE CONVEX MINORANT OF A LÉVY PROCESS

BY JIM PITMAN1 AND GERÓNIMO URIBE BRAVO2

University of California, Berkeley

We offer a unified approach to the theory of convex minorants of Lévy
processes with continuous distributions. New results include simple explicit
constructions of the convex minorant of a Lévy process on both finite and
infinite time intervals, and of a Poisson point process of excursions above
the convex minorant up to an independent exponential time. The Poisson–
Dirichlet distribution of parameter 1 is shown to be the universal law of
ranked lengths of excursions of a Lévy process with continuous distributions
above its convex minorant on the interval [0,1].

1. Introduction. We present simple explicit constructions of the convex mi-
norant of a Lévy process with continuous distributions on both finite and infinite
time intervals, and of a Poisson point process of excursions of the Lévy process
above its convex minorant. These constructions bridge a number of gaps in the
literature by relating combinatorial approaches to fluctuation theory of random
walks related to the cycle structure of random permutations, dating back to the
1950s [cf. Andersen (1950, 1953a, 1953b, 1954); Spitzer (1956)], some features of
which were extended to interval partitions associated with the convex minorant of
Brownian motion and Brownian bridge by Suidan (2001a, 2001b) and Balabdaoui
and Pitman (2009), and results previously obtained for the convex minorants of
Brownian motion by Groeneboom (1983) and Pitman (1983), and for Lévy pro-
cesses by Nagasawa (2000) and Bertoin (2000). In particular, we gain access to the
excursions above the convex minorant, which were previously treated only in the
Brownian case by Groeneboom (1983) and Pitman (1983).

Our work is part of a larger initiative to understand the convex minorant of
processes with exchangeable increments. The case of discrete time is handled in
Abramson and Pitman (2011), while Brownian motion is given a more detailed
study in Pitman and Ross (2010). Our joint findings are summarized in Abramson
et al. (2011).
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1.1. Statement of results. Let X be a Lévy process. The following hypothesis
is used throughout the paper:

(CD) For all t > 0, Xt has a continuous distribution, meaning that for each x ∈ R,
P(Xt = x) = 0.

It is sufficient to assume that Xt has a continuous distribution for some t > 0.
Equivalently [Sato (1999), Theorem 27.4, page 175] X is not a compound Poisson
process with drift.

The convex minorant of a function f on an interval [0, t] or [0,∞) is the great-
est convex function c satisfying c ≤ f . We shall only consider functions f which
are càdlàg, meaning that limh→0+ f (t + h) = f (t) and that limh→0− f (t − h)

exists; the latter limit will be denoted f (t−).
First properties of the convex minorant of a Lévy process, established in Sec-

tion 2 and which partially overlap with the Markovian study of convex minorants
in Lachieze-Rey (2009), are:

PROPOSITION 1. Let X be a Lévy process which satisfies (CD) and C the
convex minorant of X on [0, t]. The following conditions hold almost surely:

1. The open set O = {s ∈ (0, t) :Cs < Xs ∧ Xs−} has Lebesgue measure t .
2. For every component interval (g, d) of O , the jumps that X might have at g

and d have the same sign. When X has unbounded variation on finite intervals,
both jumps are zero.

3. If (g1, d1) and (g2, d2) are different component intervals of O , then their
slopes differ

Cd1 − Cg1

d1 − g1
�= Cd2 − Cg2

d2 − g2
.

Let I be the set of connected components of O ; we shall also call them ex-
cursion intervals. Associated with each excursion interval (g, d) are the vertices g

and d , the length d − g, the increment Cd − Cg and the slope (Cd − Cg)/(d − g).
Our main result is a simple description of the lengths and increments of the

excursion intervals of the convex minorant. Indeed, we will consider a random
ordering of them which uncovers a remarkable probabilistic structure.

THEOREM 1. Let (Ui) be a sequence of uniform random variables on (0, t)

independent of the Lévy process X which satisfies (CD). Let (g1, d1), (g2, d2), . . .

be the sequence of distinct excursion intervals which are successively discovered
by the sequence (Ui). Consider another i.i.d. sequence (Vi) of uniform random
variables on (0,1) independent of X, and construct the associated uniform stick-
breaking process L by

L1 = tV1 and for i ≥ 1 Li+1 = Vi+1(t − Si),
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where

S0 = 0 and for i ≥ 1 Si = L1 + · · · + Li.

Under hypothesis (CD), the following equality in distribution holds:(
(di − gi,Cdi

− Cgi
), i ≥ 1

) d= (
(Li,XSi

− XSi−1), i ≥ 1
)
.

The Poisson–Dirichlet distribution of parameter one is the law of the decreas-
ing rearrangement of the sequence L when t = 1. Theorem 1 implies that the
Poisson–Dirichlet distribution of parameter 1 is the universal distribution of the
ranked lengths of excursions intervals of the convex minorant of a Lévy process
with continuous distributions on [0,1]. What differs between each Lévy process
is the distribution of the order in which these lengths appear, that is, the law of
the composition of of [0,1] induced by the lengths of excursion intervals when
they are taken in order of appearance. Using Theorem 1 we can form a composi-
tion of [0,1] with that law in the following way. For each pair (Li,XSi

− XSi−1)

we generate a slope by dividing the second coordinate, the increment, by the first,
the length, and then create a composition of [0,1] by arranging the sequence L in
order of increasing associated slope.

Note that the second sequence of Theorem 1 can also be constructed as follows:
given a uniform stick-breaking process L, create a sequence Yi of random variables
which are conditionally independent given L and such that the law of Yi given L

is that of XLi
(X independent of L). Then

(
(Li, Yi) : i ≥ 1

) d= (
(Li,XSi

− XSi−1), i ≥ 1
)
.

Theorem 1 provides a way to perform explicit computations. For example, the
intensity measure νt of the point process �t with atoms at

{(d − g,Cd − Cg) : (g, d) is an excursion interval}
is given by

νt (A) = E

(∑
i

1(di−gi ,Cdi
−Cgi

)∈A

)

= E

(∑
i

1(Li,Xdi
−Xgi

)∈A

)
=

∫ t

0

∫
1A(l, x)

1

l
P(Xl ∈ dx)dl.

[This follows conditioning on L and then using the intensity measure of L obtained
by size-biased sampling; cf. formula (6) in Pitman and Yor (1997).]

We now apply Theorem 1 to fully describe the convex minorant of the Cauchy
process as first done in Bertoin (2000). Let X be a Cauchy process characterized
by

F(x) := P(X1 ≤ x) = 1/2 + arctan(x)/π.
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Let C be the convex minorant of X on [0,1] and D its right-hand derivative,

Dt = lim
h→0+

Ct+h − Ct

h
.

Consider

Ix = inf{t ≥ 0 :Dt > x} for x ∈ R.

Note that P(Xt < xt) = F(x) and that therefore, in the setting of Theorem 1, the
slopes (Cdi

− Cgi
)/(di − gi) are independent of the lengths di − gi . Also, let T be

a Gamma subordinator such that

E(e−qTt ) =
(

1

1 + q

)t

.

COROLLARY 1. 1. The symmetric Cauchy process is characterized by the in-
dependence of lengths and slopes of excursions intervals on [0,1].

2. (Ix, x ∈ R) and (TF(x)/T1, x ∈ R) have the same law.

Item 2 is due to Bertoin (2000), who used a technique allowing only the study
of the convex minorant of a Cauchy process on [0,1].

Integrating Theorem 1, we obtain a description of the convex minorant consid-
ered on the random interval [0, Tθ ] where Tθ is a exponential random variable of
parameter θ independent of X.

COROLLARY 2. Let T be exponential of parameter θ and independent of the
Lévy process X which satisfies (CD). Let �T be the point process with atoms
at lengths and increments of excursion intervals of the convex minorant of X on
[0, T ]. Then �T is a Poisson point process with intensity

μθ(dt, dx) = e−θt dt

t
P(Xt ∈ dx).

By conditioning on T (which essentially reduces to inverting Laplace trans-
forms and underlies the analysis of the relationship between the Gamma subor-
dinator and the Poisson–Dirichlet distribution), we see that Theorem 1 can be
deduced from Corollary 2. The latter can be deduced from the analysis of the
independence of pre- and post-minimum processes of a Lévy process run until
an independent exponential time found in Greenwood and Pitman (1980). These
relationships are discussed in Section 4, where we also explain the results on fluc-
tuation theory for Lévy processes which are found in the literature and which can
be deduced from our analysis of the convex minorant.

From Theorem 1 we can also derive the behavior of the convex minorant of X

on [0,∞) as described for a Brownian motion by Groeneboom (1983) and Pitman
(1983) and for a Lévy process by Nagasawa (2000). Let �∞ be the point process
of lengths of excursion interval and increments of the convex minorant on [0,∞).
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COROLLARY 3. The quantity l = lim inft→∞ Xt/t belongs to (−∞,∞] and
is almost surely constant if and only if the convex minorant of X on [0,∞) is
almost surely finite. In this case, under (CD), �∞ is a Poisson point process with
intensity

μ∞(dt, dx) = 1x<lt

t
P(Xt ∈ dx)dt.

Recall, for example, Kyprianou [(2006), Example 7.2], the strong law of large
numbers for Lévy processes, which says that if the expectation of X1 is defined,
then

lim
t→∞

Xt

t
= E(X1) almost surely.

Hence, if E(X−
1 ) < ∞, we can apply the second part of Corollary 3 with l =

E(X1). In the remaining case when E(X−
1 ) = E(X+

1 ) = ∞, let ν be the Lévy
measure of X and ν+ its right-tail given by

ν+(y) = ν((y,∞)).

Erickson (1973) provides the necessary and sufficient for −∞ < l, which implies
that, actually, l = ∞, ∫

(−∞,0)

|y|
ν+(|y|)ν(dy) < ∞

(see also Doney (2007), page 39, for a proof).
While it seems natural to first study the convex minorant of a Lévy process on

[0,∞), as was the approach of previous authors, the description of the convex
minorant with infinite horizon is less complete, as it is necessarily restricted to
slopes a < l.

As another application, we can use the stick-breaking representation of Theo-
rem 1 to study the absolute continuity of the location and the value of the minimum
of the Lévy process on [0,1]. Let

Xt = min
s≤t

Xs and ρt be such that Xρt ∧ Xρt− = Xt.

(Recall that under (CD), the minimum of a Lévy process on [0, t] is attained at an
almost surely unique place ρt , as deduced from Theorem 1 since P(Xt = 0) = 0.)

THEOREM 2. Let X be a Lévy process such that 0 is regular for both half-lines
(−∞,0) and (0,∞). Then:

1. The distribution of ρ1 is equivalent to Lebesgue measure on [0,1].
2. If Xt has an absolutely continuous distribution for each t > 0, then the dis-

tribution of (ρ1,X1) is equivalent to Lebesgue measure on (0,1] × (0,∞).
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3. If Xt has an absolutely continuous distribution for each t > 0, then the distri-
bution of (X1,X1 −X1) is equivalent to Lebesgue measure on (−∞,0)× (0,∞).

Chaumont (2010) also analyzes absolute continuity properties for the supre-
mum of a Lévy process on a fixed interval using excursion theory for the reflected
Lévy process. The densities provided by Theorem 2 (more importantly, the fact
that they are almost surely positive) provide one way to construct bridges of the
Lévy process X conditioned to stay positive. With these bridges, we can prove a
generalization of Vervaat’s theorem relating the Brownian bridge and the normal-
ized Brownian excursion [Vervaat (1979), Theorem 1] to a fairly general class of
Lévy processes. Details are provided in Uribe Bravo (2011).

Our next results will only consider convex minorants on a fixed interval, which
we take to be [0,1].

Theorem 1 gives a construction of the convex minorant by means of sampling
the Lévy process at the random, but independent, times of a uniform stick-breaking
process. Our second proof of it, which does not rely on fluctuation theory and gives
insight into the excursions of X above its convex minorant, depends on the use of
the following path transformation. Let u be an element of the excursion set O ,
and let (g, d) be the excursion interval which contains u. We then define a new
stochastic process Xu = (Xu

t )t≤1 by

Xu
t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Xu+t − Xu, 0 ≤ t < d − u,
Cd − Cg + Xg+t−(d−u) − Xu, d − u ≤ t ≤ d − g,
Cd − Cg + Xt−(d−g), d − g ≤ t < d ,
Xt, d ≤ t ≤ 1.

(1)

The idea for such a definition is that the graph of the convex minorant of Xu on
[d − g,1] can be obtained from the graph of C by removing (g, d) and closing up
the gap adjusting for continuity, while on [0, d − g], Xu goes from 0 to Cd − Cg .
(Property 2 of Proposition 1 is essential for the transformation to work like this;
see Figure 2.) A schematic picture of the path transformation is found in Figure 1
for a typical Brownian motion path.

FIG. 1. Visualization of the path transformation X 	→ Xu applied to a Brownian motion seen from
its convex minorant.
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FIG. 2. Visualization of the path transformation X 	→ Xu applied to a càdlàg path not satisfying
property 2 of Proposition 1.

Theorem 1 then follows from the following invariance result. Indeed, by ap-
plying the following path transformation recursively, we can obtain a size-biased
sample of the excursion intervals. In particular, the excursion interval containing
an independent uniform variable has a uniform length, which begins to explain the
stick-breaking process appearing in Theorem 1.

THEOREM 3. If U is a uniform on (0,1) and independent of X and hypothesis
(CD) holds, the pairs (U,X) and (d − g,XU) have the same law.

Proof of Theorem 3 will be based on the analogous random walk result proved
by Abramson and Pitman (2011) as well as analysis on Skorohod space. Abra-
ham and Pitman’s discrete time result is an exact invariance property for a sim-
ilar transformation applied to the polygonal approximation Xn of X given by
Xn

t = X[nt]/n(
nt�/n− t)+X
nt�/n([nt]/n); that this approximation does not con-
verge in Skorohod space to X makes the passage to the limit technical, although it
simplifies considerably for Lévy processes with unbounded variation, and particu-
larly so for Lévy processes with continuous sample paths. The discrete time result
is combinatorial in nature and related to permutations of the increments. Indeed,
the discrete time result is based on the fact that for a random walk S with continu-
ous jump distribution, the probability that S lies strictly above the line from (0,0)

to (n, Sn) on {0, . . . , n} is known to be 1/n, and conditionally on this event, the law
of S can be related to a Vervaat-type transform of S. Hence, it is not only possible
to verify by combinatorial reasoning that the faces of the convex minorant have
the same law as the cycle lengths of a uniform random permutation when both are
placed in decreasing order, but also to characterize the path fragments on top of
each excursion interval.

Theorem 3 actually gives a much stronger result than Theorem 1 since it grants
access to the behavior of X between vertex points of the convex minorant. To see
this, consider the Vervaat transformation: for each t > 0 and each càdlàg func-
tion f , let ρt = ρt(f ) be the location of the last minimum f (t) of f on [0, t] and
define

Vtf (s) = f (ρt + s mod t) − f (t) for s ∈ [0, t].
This path transformation was introduced in Vervaat (1979) for the Brownian
bridge; its connection to Lévy processes was further studied for stable Lévy pro-
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cesses by Chaumont (1997), for spectrally positive Lévy processes in Miermont
(2001), and more general Lévy processes by Fourati (2005).

For each excursion interval (g, d) of O , associate an excursion e(g,d) given by

e(g,d)(s) = Xg+s − Cg+s for s ∈ [0, d − g];
note that e(g,d)(0) is positive if Xg > Cg . Finally, recalling the setting of Theo-
rem 1, let Ki be Knight’s bridge,

Ki
s = X(Si−1+t) − XSi−1 − s

XSi
− XSi−1

Li

, s ∈ [0,Li]

[the name is proposed because of remarkable universality theorems proven for Ki

in Knight (1996)].

THEOREM 4. The following equality in distribution holds under (CD):
((

di −gi,Cdi
−Cgi

, e(gi ,di )
)
, i ≥ 1

) d= ((
Li,XSi

−XSi−1,VLi
(Ki)

)
, i ≥ 1

)
.(2)

Note that the increment Cd − Cg cannot be obtained from the path fragment
e(g,d) when X jumps at g or d . This does not happen if X has unbounded variation,
thanks to Proposition 1.

The same remark of Theorem 1 holds, namely, the intensity measure of the
right-hand side of (2), seen as a point process, admits the expression

E

(∑
i

1(Li ,XSi
−XSi−1 ,VLi

(Ki))∈A

)
=

∫ 1

0

∫ ∫
1A(l, x, e)

1

l
κl(dx, de) dl

in terms of the law of X, where the measure κl is the joint law of Xl and the
Vervaat transform Vl of (Xt − tXl/ l, t ∈ [0, l]). The measure κl is related to Lévy
processes conditioned to stay positive [introduced in generality in Chaumont and
Doney (2005)] in Uribe Bravo (2011).

This document is organized as follows: we first study the basic properties of the
convex minorant of a Lévy process of Proposition 1 in Section 2. Then, examples
of the qualitative behaviors of the convex minorants are given in Section 3. Next,
we turn to the description of the process of lengths and slopes of excursion intervals
up to an independent exponential time in Section 4, where we also discuss how
this implies the description of the convex minorant to a deterministic and finite
time and on an infinite horizon. Section 4 also explains the relationship between
this work and the literature on fluctuation theory for Lévy processes. Section 5 is
devoted to the absolute continuity of the location and time of the minimum of a
Lévy process with a proof of Theorem 2. Finally, we pass to the invariance of the
path transformation (1) for Lévy processes stated as Theorem 3, in Section 6 and to
the description of the excursions above the convex minorant implied by Theorem 4
in Section 7.
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2. Basic properties of the convex minorant on a finite interval. In this sec-
tion we will prove Proposition 1. Let X = (Xt , t ∈ [0,1]) be a Lévy process and
consider its convex minorant C on [0,1] as well as the lower semicontinuous regu-
larization Xl of X given by Xl = X ∧ X− [with the convention X−(0) = X0 = 0].

2.1. Property 1 of Proposition 1. We will first be concerned with the measure
of

P = {t ∈ [0,1] :Xl = C}.
A first observation is that P does not vary under changes in the drift of X. We
now prove that P has Lebesgue measure zero almost surely. Indeed, it suffices to
see that for each t ∈ (0,1), t /∈ P almost surely. If X has unbounded variation,
Rogozin (1968) proves that

lim inf
h→0+

Xh

h
= −∞ almost surely (a.s.)

[see, however, the more recent proof at Vigon (2002)], and so by the Markov prop-
erty at each fixed time t , we get

lim inf
h→0+

Xt+h − Xt

h
= −∞ and lim sup

h→0+
Xt+h − Xt

h
= ∞ a.s.

However, at any τ ∈ P , we have

lim inf
h→0+

Xτ+h − Xτ

h
≥ D(τ) > −∞ a.s.,

where D is the right-hand derivative of C. If X has bounded variation, the proof is
similar, except that, according to Bertoin [(1996), Proposition 4, page 81], we get

lim
h→0+

Xt+h − Xt

h
= d

almost surely, where d is the drift coefficient. We then see that if t ∈ P ∩ (0,1),
then D(t) = d; the inequality D(t) ≤ d follows from the preceding display, and by
time reversal we also obtain d ≤ C′−(t). Taking away the drift, we see that t then
should be a place where the minimum is achieved. However, t is almost surely not
a time when the minimum is reached: defining

X̃s =
{

Xt+s − Xt, if s ≤ 1 − t,

X1 − Xt + Xs−(1−t), if 1 − t ≤ s ≤ 1,

we know that X̃ has the same law as X. Note that the minimum of X is reached
at t if and only if X̃ remains above zero, which happens with positive probabil-
ity only when 0 is irregular for (−∞,0). Hence, t does not belong to P almost
surely whenever 0 is regular for (−∞,0). If this is not the case, then 0 is reg-
ular for (0,∞) since X is nonatomic, and applying same argument to the time
reversed process (X(1−t)− − X1, t ≤ 1) we see then that t /∈ P almost surely in
this remaining case.
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2.2. Property 2 of Proposition 1. We will now show that for an excursion in-
terval (g, d) of X above C, the jumps of X at g and d , denoted 	Xg and 	Xd ,
satisfy 	Xg	Xd ≥ 0. We first prove that, thanks to (CD), X does not have jumps
of both signs on the two endpoints of an excursion. The proof depends on differ-
ent arguments for bounded and unbounded variation: with unbounded variation,
actually no jumps occur at the endpoints.

If X has unbounded variation, we again use Rogozin’s result:

lim inf
h→0+

Xh

h
= −∞ and lim sup

h→0+
Xh

h
= ∞,

and adapt Millar’s proof of his Proposition 2.4 [Millar (1977)] to see that X is
continuous on {Xl = C}. Indeed, for every ε > 0, let J ε

1 , J ε
2 , . . . be the jumps of X

with size greater than ε in absolute value. Then the strong Markov property applied
at J ε

i implies that

lim inf
h→0+

XJε
i +h − XJε

i

h
= −∞ and lim sup

h→0+
XJε

i +h − XJε
i

h
= ∞.

Hence, at any random time T which is almost surely a jump time of X, we get

lim inf
h→0+

XT +h − XT

h
= −∞;

however, if t ∈ {Xl = C}, we see that

lim inf
h→0+

Xt+h − Xt

h
≥ D(t) > −∞.

Suppose now that X has bounded variation but infinite Lévy measure. Since our
problem (jumping to or from the convex minorant) is invariant under addition of
drift, we can assume that the drift coefficient of X is zero, and so

lim
h→0+

Xh

h
= 0

by Bertoin (1996), Proposition 4, page 81. We will now prove that almost surely,
for every component (g, d) of {C < Xl}, we have

	Xg	Xd ≥ 0.(3)

The argument is similar to the unbounded variation case: at any random time T

which is almost surely a jump time of X, we have

lim
h→0+

XT +h − XT

h
= 0.

We deduce that if the slope of C on the interval (g, d) is strictly positive, then
	Xg ≥ 0, and so Xg− = Cg . By time-reversal, we see that if the slope of C is
strictly negative on (g, d), then 	Xd ≤ 0 and so Xd = Cd . Note that C only has
nonzero slopes. Indeed, a zero slope would mean that the infimum of X is attained
at least twice, a possibility, that is, ruled out by Proposition 2.2 of Millar (1977)
under assumption (CD).
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2.3. Property 3 of Proposition 1. We now see that, almost surely, all excur-
sion intervals of X above its convex minorant have different slopes. A different
argument is given for bounded and unbounded variation processes.

When X has unbounded variation on compact sets, let Ct denote the convex
minorant of X on [0, t] so that C = C1. Note that Ct and C agree up to some
random time, which we call τt ; for every fixed t ∈ (0,1), τt cannot equal t as
Ct < Xl

t almost surely, as proved in Section 2.1. We will first prove that, almost
surely, for every t ∈ (0,1) ∩ Q, whenever the post t process touches a line that
extends Ct linearly outwards from one of the excursion intervals of Ct , it crosses
it downwards. To see that this is enough, suppose that there were two excursion
intervals, (g1, d1) and (g2, d2), with the same associated slope. Then there would
exist t ∈ (g2, d2) ∩ Q such that g1 < d1 ≤ τt < t . If the post t process touches the
linear extension of the convex minorant over the interval (g1, d1) it must cross it
downwards. This should occur at d2, which contradicts Cd2 = Xl

d2
.

To prove the claim that the post t process crosses the extended lines downwards
for each fixed t ∈ (0,1), let Li(s) = αi + βis be the lines extending the segments
of Ct (using any ordering which makes the αi and βi random variables). Let

Ti = inf{s ≥ 0 :Xl
t+s − Xt ≤ αi − Xt + βi(t + s)}.

Hence Ti is a stopping time for the filtration Ft+s = σ(Xr : r ≤ t + s), s ≥ 0, with
respect to which Xt+s − Xt, s ≥ 0, is a Lévy process. If X jumps below Li at
time Ti , then the excursion interval of C containing t cannot have slope βi (and
incidentally, βi is not a slope of C). Since X has infinite variation, Rogozin’s result
quoted above gives

lim inf
h→0+

XTi+h − Xti

h
= −∞.

Hence, if X is continuous at Ti then X goes below Li immediately after Ti and βi

cannot be a slope of C. We have seen, however, that in the unbounded variation
case, X does not jump at the vertices of excursion intervals.

When X has bounded variation, the argument is similar except in a few places.
Suppose the drift of X is zero. We first use

lim
h↓0+

Xt+h − Xt

h
= 0

to prove that for every t ∈ (0,1), whenever the post t process touches a linear
extension Li of Ct on an excursion interval with positive slope, by a jump, it
crosses it downwards: this is clear if X is continuous at Ti or if it jumps into Li

at Ti . However, X cannot reach Li from the left and jump away at Ti by quasi-
continuity of Lévy processes. By time reversal, we handle the case of negative
slopes, and therefore there are no two excursions above the convex minorant with
the same slope almost surely by the same arguments as in the unbounded variation
case. Again, note that slopes of C are nonzero since under (CD) the minimum of
X is attained only once by Proposition 2.2 of Millar (1977).
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3. Examples.

3.1. Lévy processes of bounded variation. Consider a Lévy process X with
paths of bounded variation on compact sets and zero drift such that 0 is regular for
(0,∞) but irregular for (−∞,0). Then the cumulative minimum of X is piecewise
constant and decreases by jumps; that is, X reaches a new minimum by jumping
downwards. It follows that the convex minorant of X on any finite interval has a
finite number of segments of negative slopes until it reaches the minimum of X,
and all the excursions above the convex minorant end by a jump (and begin con-
tinuously). However, since the minimum is attained at a jump time, say at ρ, then
limt→0(Xρ+t − Xρ)/t = 0, and since Xρ+· − Xρ visits (0,∞) on any neighbor-
hood of 0, there cannot be a segment of the convex minorant with slope zero, nor
a first segment with positive slope. Hence 0 is an accumulation point for positive
slopes.

3.2. The convex minorant of a Cauchy process.

PROOF OF COROLLARY 1. Let X be a symmetric Cauchy process, such that

F(x) := P(X1 ≤ x) = 1/2 + arctan(x)/π.

Since

E(eiuXt ) = e−t |u|,

we see that X is 1-selfsimilar, which means that Xt has the same law as tX1 for
every t ≥ 0.

If �1 is the point process of lengths and increments of excursions intervals for
the convex minorant on [0,1], its intensity measure ν1 has the following form:

ν1(dl, dx) = 1

l
P(Xl ∈ dx)dl.

Therefore, the intensity ν̃1 of the point process of lengths and slopes of excursions
intervals for the convex minorant on [0,1], say �̃1, factorizes as

ν̃1(dl, ds) = 1

l
P(X1 ∈ ds) dl.

Let Y1, Y2, . . . be an i.i.d. sequence of Cauchy random variables independent of L;
recall that F is their distribution function. From the analysis of the point pro-
cess �1 in the forthcoming proof of Lemma 1, the above factorization of the in-
tensity measure ν̃1 implies that �̃1 has the law of the point process with atoms

{(Li, Yi) : i ≥ 1};(4)

otherwise said: lengths and slopes are independent for the Cauchy process.
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In the converse direction, we see that if lengths and slopes are independent
then X is a 1-selfsimilar Lévy process. Indeed, using Theorem 1, we see that
XL1/L1 and L1 are independent. Let G be the law of XL1/L1. Independence of L1
and XL1/L1 implies that Xt/t has law G for almost all t ∈ (0,1), so that G = F .
As the law of Xt/t is weakly continuous, we see that Xt/t has law F for all
t ∈ (0,1) and the independence and homogeneity of increments of X implies that
Xt/t has law F for all t . However, it is known that a 1-selfsimilar Lévy process
is a symmetric Cauchy process, although perhaps seen at a different speed. See
Theorem 14.15 and Example 14.17 of Sato (1999).

We finish the proof by identifying the law of (Ix, x ∈ R). Informally, Ix is the
time in which the convex minorant of X on [0,1] stops using slopes smaller than x.
We then see that I has the same law as

Ĩ =
( ∞∑

i=1

Li1Yi≤x, x ∈ R

)
.

In contrast, if Ui, i ≥ 1, is an i.i.d. sequence of uniform random variables on (0,1)

independent of L, the process (Tt/T1, t ∈ [0,1]) has the representation( ∞∑
i=1

Li1Ui≤t , t ∈ [0,1]
)
.

With the explicit choice Ui = F(Yi), we obtain the result. �

As a consequence of Corollary 1, we see that the set C = {t ∈ [0,1] :Ct =
Xt ∧ Xt−} is perfect.

3.3. The convex minorant of stable processes. Let C be the convex minorant
of the Lévy process X on [0,1]. We now point out a dichotomy concerning the set
of slopes

S =
{
Cd − Cg

d − g
: (g, d) is an excursion interval

}
,

when X is a stable Lévy process of index α ∈ (0,2] characterized either by the
scaling property

Xst
d= s1/αXt , s > 0,

or the following property of its characteristic function:

|E(eiuXt )| = e−tc|u|α .

COROLLARY 4. When α ∈ (1,2], S has no accumulation points, and S ∩
(a,∞) and S ∩ (−∞,−a) are almost surely infinite for all a > 0. If α ∈ (0,1],
then S is dense in R+, R−, or R depending on if X is a subordinator, −X is a
subordinator or neither condition holds.
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PROOF. When α ∈ (1,2], Fourier inversion implies that X1 admits a contin-
uous and bounded density which is strictly positive. We now make an intensity
measure computation for a < b:

E
(
#S ∩ (a, b)

) =
∫ 1

0

∫ b

a

1

t
P

(
Xt/t ∈ (a, b)

)
dt.

Using the scaling properties of X, we see that near t = 0, the integrand is asymp-
totic to ct−1/α where c is the density of X1 at zero. Since

E
(
#S ∩ (a, b)

)
< ∞

for all a < b, then S does not contain accumulation points in R.
If a > 0, a similar argument implies that

E
(
#S ∩ (a,∞)

) = ∞
since P(X1 > 0) > 0. Unfortunately, this does not imply that #S ∩ (a,∞) = ∞
almost surely. However, from Theorem 1, we see that S ∩ [a,∞) has the same
law as ∑

i≥1

1
Yi≥aL

1−1/α
i

,

where L and Y are independent, and Yi has the same law as X1. Since 1 − 1/α >

0 and Li → 0, we see that Yi ≥ aL
1−1/α
i infinitely often, implying that #S ∩

(a,∞) = ∞ almost surely.
We have already dealt with the Cauchy case, which corresponds to α = 1, so

consider α ∈ (0,1). Arguing as before, we see that

#S ∩ (a, b)
d= ∑

i≥1

1
Yi∈L

1−1/α
i (a,b)

.

Since 1 − 1/α < 0, we see that Yi ∈ L
1−1/α
i (a, b) infinitely often as long as

P(X1 ∈ (a, b) > 0). Finally, recall that the support of the law of X1 is R+, R−
or R depending on if X is a subordinator, −X is a subordinator or neither condi-
tion holds. �

4. Splitting at the minimum and the convex minorant up to an independent
exponential time. In this section, we analyze the relationship between Theo-
rem 1 and Corollary 2 and how they link with well-known results of the fluctuation
theory of Lévy processes. We also give a proof of Corollary 3.

We will first give a proof of Corollary 2 and show how it leads to a proof of
Theorem 1. While the implication is based on very well-known results of fluctu-
ation theory, it is insufficient to prove the more general Theorem 4. Our proof of
Theorem 4 is independent of the results of this section.

Let X denote a Lévy process with continuous distributions, C its convex mi-
norant on an interval [0, T ] (which can be random), Xl the lower-semicontinuous
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regularization of X given by Xl
t = Xt ∧Xt− and O = {s ≤ T :Cs < Xl

s} is the open
set of excursions from the convex minorant on [0, T ]. Thanks to Proposition 1 on
the basic properties of the convex minorant, proved in Section 2, we see that the
point process of lengths and increments of excursion intervals are equivalently ob-
tained by the following construction, taken from Nagasawa [(2000), Chapter XI]:
define

Xa
t = Xt − at and Xa

t = min
s≤t

Xa
s

as well as

ρa = sup{s ≤ T :Xa
t ∧ Xa

t− = Xa
t } and ma = Xl

ρa
.

The idea behind such definitions is that if a 	→ ρa jumps at a, it is because the
convex minorant on [0, t] begins using the slope a at ρa− and ends using it at ρa ,
while the value of the convex minorant at the beginning of this interval is ma−,
and at the end it is ma . For every fixed a, we know that Xa reaches its minimum
only once almost surely. However, at a random a at which ρa jumps, the minimum
is reached twice, since we know that slopes are used only once on each excursion
interval. From this analysis, we see that

Cρa = Xl
ρa = ma

and obtain the following important relationship:

�T is the point process {(ρa − ρa−,ma − ma−) :ρa− < ρa}.
We characterize the two-dimensional process (ρ,m) with the help of the following
results. First of all, according to Millar’s analysis of the behavior of a Lévy process
at its infimum [cf. Millar (1977), Proposition 2.4], if 0 is irregular for (−∞,0)

then, since 0 is regular for (0,∞), Xa
ρa = Xa

ρa almost surely for each fixed a; cf.
also the final part of Section 2.2. With this preliminary, Theorem 5 and Lemma 6
from Bertoin [(1996), Chapter VI] can be written as follows:

THEOREM 5. Let T be exponential with parameter θ and independent of X.
For each fixed a ∈ R, there is independence between the processes(

Xa
(t+ρa)∧T − ma, t ≥ 0

)
and (Xa

t∧ρa , t ≥ 0).

Furthermore,

E
(
exp

(−αρa + β(ma − aρa)
))

(5)

= exp
(
−

∫ ∞
0

∫ 0

−∞
(1 − e−αt+βx)

e−θt

t
P(Xt − at ∈ dx)dt

)
.
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Formula (5) was proved initially by Pečerskiı̆ and Rogozin (1969). Later,
Greenwood and Pitman (1980) showed how to deduce it by splitting at the min-
imum of the trajectory of a Lévy process up to an independent exponential time,
a theme which was retaken by Bertoin (1996) to produce the independence asser-
tion of the previous theorem.

PROOF OF COROLLARY 2. The proof follows [Nagasawa (2000)]. We first
show that (ρ,m) is a process with independent increments. Let a < b. Note that
ρb − ρa is the last time that t such that Xρa+t − ma − bt reaches its minimum, so
that Theorem 5 implies the independence of ρa+b − ρa and σ(X·∧ρa ); denote the
latter σ -field as F a . Also, note that mb −ma is the minimum of X(ρa+t)∧T −ma −
bt, t ≥ 0. Hence there is also independence between mb − ma and F a . Finally,
note that if a′ ≤ a, (ρa′

,ma′
) are F a measurable since ρa′

is the last time that
X·∧ρa − a′· reaches its minimum on [0, ρa], and ma′

is the value of this minimum.
From the above paragraph, we see that the point process of jumps of (ρ,m),

that is, �, is a Poisson random measure: this would follow from (a bidimensional
extension of) Theorem 2 and Corollary 2 in Gihman and Skorohod [(1975), Chap-
ter IV.1, pages 263–266] which affirm that the jump process of a stochastically
continuous process with independent increments on R+ is a Poisson random mea-
sure on R+ × R+. To show that (ρ,m) is stochastically continuous, we show that
it has no fixed discontinuities; this follows because for every fixed a ∈ R, the min-
imum of Xa is reached at an unique point almost surely, which implies that, for
every fixed a, almost surely, neither ρ nor m can jump at a. To compute the inten-
sity measure ν of �T , note that the pair (ρa,ma) can be obtained from �T as

(ρa,ma) = ∑
(u,v)∈I

Cv−Cu≤a(v−u)

(v − u,Cv − Cu).(6)

The above equality contains the nontrivial assertion that the additive process
(ρ,m) has no deterministic component or, stated differently, that it is the sum
of its jumps. For the process ρ, this follows because∑

(u,v)∈I
Cv−Cu≤a(v−u)

(v − u) = Leb(O ∩ {t ≤ T :C ′
t ≤ a})

which, since Leb(O) = T and C′ is nondecreasing, gives∑
(u,v)∈I

Cv−Cu≤a(v−u)

(v − u) = sup{t ≤ T :C ′
t ≤ a} = ρa.

To discuss the absence of drift from m, let mC be the signed measure which assigns
each interval (u, v) the quantity Cv −Cu. (Because C′ is nondecreasing, it is trivial
to prove the existence of such a signed measure, to give a Hahn decomposition of it
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and to see that it is absolutely continuous with respect to Lebesgue measure.) Then∑
(u,v)∈I

Cv−Cu≤a(v−u)

(Cv − Cu) = mC(O ∩ {t ≤ T :C ′
t ≤ a})

= mC({t ≤ T :C′
t ≤ a}) = Cρa = Xl

ρa = ma.

From (6), we get

E
(
exp(−αρa + βma)

) = exp
(
−

∫ ∞
0

∫ at

−∞
(1 − e−αt+βx)ν(dt, dx)

)
,

while from the Pečerskiı̆–Rogozin formula (5), we obtain

E
(
exp(−αρa + βma)

)
= exp

(
−

∫ ∞
0

∫ 0

−∞
(
1 − e−(α−aβ)t+βx)e−θt

t
P(Xt − at ∈ dx)dt

)

= exp
(
−

∫ ∞
0

∫ at

−∞
(1 − e−αt+βx)

e−θt

t
P(Xt ∈ dx)dt

)

giving

ν(dt, dx) = e−θt

t
P(Xt ∈ dx)dt. �

We now remark on the equivalence between Theorem 1 and Corollary 2 and
how either of them implies Corollary 3.

Let L be an uniform stick-breaking sequence and X a Lévy process with con-
tinuous distributions which are independent. Let S be the partial sum sequence
associated to L, and consider the point process �̃t with atoms at

{(tLi,XtSi
− XtSi−1)}.

LEMMA 1. If T an exponential random variable of parameter θ independent
of (X,L), �̃T is a Poisson point process with intensity

μθ(dt, dx) = e−θt

t
dt P(Xt ∈ dx).(7)

PROOF. We recall the relationship between the Gamma subordinator and the
stick-breaking process, which was found by McCloskey in his unpublished PhD
thesis [McCloskey (1965)] and further examined and extended by Perman, Pit-
man and Yor (1992). Recall that a Gamma process is a subordinator (�t , t ≥ 0)

characterized by the Laplace exponent

E(e−q�t ) =
(

θ

θ + q

)t

= exp
(
−t

∫ ∞
0

(1 − e−qx)
e−θx

x
dx

)
;



THE CONVEX MINORANT OF A LÉVY PROCESS 1653

the law of �1 is exponential of parameter θ . It is well known that (�t/�1,

t ≤ 1) is independent of �1. Also, it was proved [McCloskey (1965); Perman, Pit-
man and Yor (1992)] that the size-biased permutation of the jumps of (�t/�1, t ∈
[0,1]) has the same law as the stick-breaking process on [0,1]. Hence if L is a
stick-breaking process independent of the exponential T of parameter θ , then the
point process with atoms at {T L1, T L2, . . .} has the same law as the point process
with atoms at the jumps of a Gamma subordinator (of parameter θ ) on [0,1] or,
equivalently, a Poisson point process with intensity e−θx/x dx.

If S is the partial sum sequence associated to L, conditionally on T = t and
L = (l1, l2, . . .), (XT Si

− XT Si−1, i ≤ 1) are independent and the law of XT Si
−

XT Si−1 is that of Xtli . We deduce that the point process with atoms {(T Li,XT Si
−

XT Si−1), i ≥ 1} is a Poisson point process with the intensity μθ of (7), as shown,
for example, in Kallenberg [(2002), Proposition 12.3, page 228] using the notion
of randomization of point processes. �

Lemma 1 shows how Theorem 1 implies Corollary 2.
Conversely, if we assume Corollary 2, we know that �̃T has the same law as

the point process of lengths and increments of excursions intervals on the interval
[0, T ]. However, if �t is the point process of lengths and increments of excursion
intervals on [0, t], then∫ ∞

0
θe−θtE(e−�tf ) dt = E(e−�̃T f ) =

∫ ∞
0

θe−θtE(e−�̃t f ) dt

which implies that

E(e−�tf ) = E(e−�̃t f )

for continuous and nonnegative f . However, this implies the identity in law be-
tween �t and �̃t , giving Theorem 1.

Let us pass to the proof of Corollary 3. Abramson and Pitman show the discrete
time analog using a Poisson thinning procedure.

PROOF OF COROLLARY 3. Suppose l = lim inft→∞ Xt/t ∈ (−∞,∞]. Then
there exists a ∈ R and T > 0 such that Xt > at for all t > T . If CT is the convex
minorant of X on [0, T ], and ρa is the first instant at which the derivative of CT is
greater than a, then the convex function

C̃t =
{

CT , if t < ρa,

CT
Ta

+ a(t − T ), if t ≥ ρa,

lies below the path of X on [0,∞), implying C∞, the convex minorant of X on
[0,∞), is finite for every point of [0,∞).

Conversely, if C∞ is finite on [0,∞), for any t > 0 we can let a =
limh→0+(Ct+h − Ct)/h ∈ R and note that lim infs→∞ Xs/s ≥ a.
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From Erickson (1973) we see that, actually, limt→∞ Xt/t exists and it is finite if
and only if E(|X1|) < ∞ and E(X1) = l. Note that the right-hand derivative of C∞
is never strictly greater than l. This derivative cannot equal l: if l = ∞ this is clear
while if l < ∞, it follows from the fact that the zero mean Lévy process Xt − lt

visits (−∞,0) [as can be proved, e.g., by embedding a random walk and using,
for example, by Chung and Fuchs (1951); Chung and Ornstein (1962)]. However,
the derivative also surpasses any level a < l. This follows from the definitions of l

and C∞: if the derivative of C∞ were always less than l − ε, since Xt eventually
stays above every line of slope l − ε/2, we would be able to construct a convex
function greater than C∞ and below the path of X.

If a < l, let La be the last time the derivative of C∞ is smaller than a. Then for
t > La , we see that

CLa = Ct = C∞ on [0,La].
We will now work with CTθ , where Tθ is exponential of parameter θ and inde-
pendent of X. Then on the set {La < Tθ }, which has probability tending to 1 as
θ → 0, we have CLa = CTθ = C∞ on [0,La]. Recall, however, that if �θ is a
Poisson point process with intensity

μθ(dt, dx) = e−θt

t
P(Xt ∈ dx)dt,

then �θ has the law of the lengths and increments of excursions of X above CTθ by
Corollary 2. We deduce that for every a < l the restriction of �θ to {(t, x) :x < at}
converges in law as θ → 0 to the point process with atoms at the lengths and incre-
ments of excursions of X above C∞ with slope less than a. Hence, the excursions
of X above C∞ with slopes < a form a Poisson point process with intensity

1x<at

t
P(Xt ∈ dx)dt.

It suffices then to increase a to l to obtain the stated description of �∞. �

Basic to the analysis of this section has been the independence result for the
pre and post minimum processes up to an independent exponential time as well as
the Pečerskiı̆ and Rogozin formula stated in Theorem 5. Theorem 5 is the building
block for the fluctuation theory presented in Bertoin [(1996), Chapter VI] and is
obtained there using the local time for the Lévy process reflected at its cumula-
tive minimum process. In the following sections, we will reobtain Theorem 1 and
Corollaries 2 and 3 appealing only to the basic results of the convex minorant of
Section 2 (and without the use of local time). In particular, this implies the first part
of Theorem 5, from which the full theorem follows as shown by Bertoin (1996).
Indeed, assuming Theorem 4, if T is exponential with parameter θ and indepen-
dent of X, if ρa is the last time Xl

t − at reaches its minimum on [0, T ], and ma is
the value of this minimum, we see that(

Xa
(t+ρa)∧T − ma, t ≥ 0

)
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can be obtained from the Poisson point process of excursions of X above its convex
minorant with slopes > a, while

(Xa
t∧ρa , t ≥ 0)

is obtained from the excursions with slopes ≤ a. Since the process of excursions
(up to an independent time) is a Poisson point process, we obtain the independence
of the pre and post minimum processes.

Here is another example of how the description of the convex minorant up to an
independent exponential time leads to a basic result in fluctuation theory: accord-
ing to Rogozin’s criterion for regularity of half-lines, 0 is irregular for (0,∞) if
and only if ∫ 1

0
P(Xt ≤ 0)/t dt < ∞.(8)

To see how this might be obtained from Corollary 2, we note that the probability
that X does not visit (0,∞) on some (0, ε) is positive if and only if the convex
minorant up to Tθ has positive probability of not having negative slopes. By The-
orem 2 this happens if and only if∫ ∞

0
P(Xt ≤ 0)e−θt /t dt < ∞,

which is of course equivalent to (8).

5. Absolute continuity of the minimum and its location.

PROOF OF THEOREM 2. Since 0 is regular for both half-lines, the Lévy pro-
cess X satisfies assumption (CD), and we can apply Theorem 1.

Let L be an uniform stick-breaking process independent of X, and define its
partial sum and residual processes S and R by

S0 = 0, Si+1 = Si + Li+1 and Ri = 1 − Si.

Set

	i = XSi
− XSi−1 .

Then the time of the minimum of the Lévy process X on [0,1], has the same law
as

ρ =
∞∑
i=1

Li1	i<0,

while the minimum of X on [0,1] (denoted X1) and X1 − X1 have the same laws
as

∞∑
i=1

	i1	i<0 and
∞∑
i=1

	i1	i>0.
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The basic idea of the proof is to decompose these sums at a random index J ; in
the case of ρ, into

�J =
J∑

i=1

Li1	i<0 and �J =
∞∑

i=J+1

Li1	i<0.(9)

The random index (actually a stopping time for the sequence 	) is chosen so that
�J and �J are both positive, and (RJ ,�J ) has a joint density, which is used to
provide a density for � using the conditional independence between �J and �J

given RJ .
Let I be any stopping time for the sequence 	 which is finite almost surely. We

first assert that the sequence (	I+i−1)i≥1 has both nonnegative and strictly neg-
ative terms if 0 is regular for both half-lines. Indeed, if 0 is regular for (−∞,0),
this implies that the convex minorant of X has a segment of negative slope al-
most surely, which implies the existence of i such that 	i < 0 almost surely. If 0
is regular for (0,∞), a time-reversal assertion proves also the existence of non-
negative terms in the sequence 	. On the other hand, conditionally on I = i and
L1 = l1, . . . ,Li = li , the sequence (	i−1+j , j ≥ 1) has the same law as the se-
quence 	 but obtained from the Lévy process X(1−l1−···−li )t,t≥0 which shares the
same regularity as X, which implies the assertion.

1. Let I and J be defined by

I = min{i ≥ 1 :	i ≥ 0} and J = min{j ≥ I :	j < 0}.
By the preceding paragraph, we see that I and J are both finite almost surely.
Hence, the two sums �J and �J of (9) are both in the interval (0,1) and we have

ρ = �J + �J .

We now let

f (t) = P(Xt ≤ 0)

which will allow us to write the density of (�J ,RJ ); this follows from the com-
putation

P(J = j,L1 ∈ dl1, . . . ,Lj ∈ dlj )

=
j−1∑
i=1

∏
k<i

f (lk)
∏

i≤k<j

(
1 − f (lk)

)
f (lj )P(L1 ∈ l1, . . . ,Lj ∈ lj )

valid for j ≥ 2. For 2 ≤ i < j , let

gi,j (l1, . . . , lj ) = (l1, . . . , li−1, li, . . . , lj−2, l1 + · · · + li + lj ,1 − li − · · · − lj ),

and define

g1,2(l1, l2) = (l2,1 − l2 − l2)
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as well as

g1,j (l1, . . . , lj ) = (l1, . . . , lj−2, lj ,1 − l1 − · · · − lj )

for j ≥ 3. Then gi,j is an invertible linear transformation on Rj , and so if B is
a Borel subset of Rj of Lebesgue measure zero, then g−1

i,j (B) also has Lebesgue

measure zero. If A is a Borel subset of R2 with Lebesgue measure zero, we get

P
(
(�J ,RJ ) ∈ A

) ≤
∞∑

j=2

j−2∑
i=1

P
(
(L1, . . . ,Lj ) ∈ g−1

i,j (Rj−2 × A)
) = 0.

Hence, there exists a function g which serves as a joint density of (�J ,RJ ). We
can then let

gr(l) = g(l, r)∫
g(l′, r) dl′

be a version of the conditional density of �J given RJ = r .
Using the construction of the stick breaking process and the independence of

increments of X we deduce that

L̃ =
(

LJ+i

RJ

, i ≥ 1
)

is independent of (Li∧J ,	i∧J , i ≥ 1) and has the same law as L. Furthermore, the
sequence (	J+i , i ≥ 1) is conditionally independent of (Li∧J ,	i∧J ) given RJ .

We therefore obtain the decomposition

ρ = �J + RJ ρJ ,

where

ρJ =
∞∑
i=1

Li+J

RJ

1	i+J <0 = �J

RJ

.

Since ρJ is a function of L̃, (	J+i , i ≥ 1) and RJ , then ρJ and �J are condition-
ally independent given RJ . Hence gRJ

is also a version of the conditional density
of �J given RJ and ρJ , and we can then write

P(ρ ∈ dt) = dt

∫
gr(t − ry)P(RJ ∈ dr,ρJ ∈ dy)(10)

on {J < ∞}.
Finally, it remains to see that the density for ρ displayed in equation (10) is

positive on (0,1). We remark that the density of (RJ ,�J ) is positive on

{(r, σ ) : 0 < σ < 1 − r < 1}.
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Indeed, taking r, σ as in the preceding display, we have the explicit computation

P(J = 2,�J ∈ dσ,RJ ∈ dr)

= P(	1 > 0,	2 < 0,L2 ∈ dσ,1 − L1 − L2 ∈ dr)

= (
1 − f (1 − σ − r)

)
f (σ)10<σ<1−r<1

1

1 − σ − r
dr dσ.

On the other hand, given t ∈ (0,1), P(RJ < 1 − t) > 0. Indeed,

P(RJ < 1 − t) ≥ P(RJ < 1 − t, J = 2)

=
∫ ∫

P(	1 ≥ 0,	2 < 0,L1 ∈ dl1,1 − L1 − L2 ∈ dl2)1l2≤1−t

=
∫ ∫ (

1 − f (l1)
)
f (1 − l1 − l2)

1

1 − l1
10<l2<1−l11l2<1−t

> 0,

since f and 1−f are strictly positive on (0,1) since 0 is regular for both half lines
and so the support of the law of Xt is R for all t > 0. Going back to equation (10),
we see that, given t ∈ (0,1), on the set {(r, y) : 0 < r < 1− t} we have t − ry < t <

1 − r , and so the density gr(t − ry) is positive. Hence the integral in equation (10)
is positive.

2. The proof of absolute continuity of the time and value of the minimum of X

on [0,1] is similar, except that further hypotheses are needed.
First, the value of the minimum of X on [0,1] has the same distribution as

m :=
∞∑
i=1

	i1	i≤0.

Since the law of Xt is absolutely continuous with respect to Lebesgue measure for
all t > 0, we have

(ρ,m) = (�J ,mJ ) + (RJ ρJ ,mJ ),

where

mJ = ∑
i≤J

	i1	i<0 and mJ =
∞∑
i=1

	J+i1	J+i>0.

We now prove that:

(a) (ρJ ,mJ ) has a conditional density with respect to RJ ;
(b) (ρJ ,mJ ) and (ρJ ,mJ ) are conditionally independent given RJ .

The second assertion follows from our previous analysis of conditional indepen-
dence in the sequences L and 	. The first assertion follows from the fact that
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(�J ,RJ ,	J ) admit a density on {J = j}, by a computation similar to the one for
(�J ,RJ )

P(J = j,L1 ∈ dl1, . . . ,Lj ∈ dlj ,	1 ∈ dx1, . . . ,	j ∈ dxj )

=
j−1∑
i=1

1x1....,xi−1<0,xi ,...,xj−1>0,xj<0P(Xl1 ∈ dx1) · · ·P(Xlj ∈ dxj )

× P(L1 ∈ dl1, . . . ,Li ∈ dlj )

so that on {J = j}, (L1, . . . ,LJ ,	1, . . . ,	J ) admit a density with respect to
Lebesgue measure, and since (	J ,RJ ,	J ) is the image under a surjective lin-
ear map of the former variables, the latter admit a joint density. Let fr be a version
of the conditional density of (�J ,	J ) given RJ = r . We then get

P(ρ ∈ dt,m ∈ dx)
(11)

= dt dx

∫
fr(t − rs, x − y)P(ρJ ∈ ds,mJ ∈ dy,RJ ∈ dr).

Regarding the equivalence of the law of (ρ,m) and Lebesgue measure on (0,1) ×
(−∞,0), note that a version of the density of (RJ ,ρJ ,mJ ) is positive on

{(r, s, x) : 0 ≤ r + s ≤ 1, x < 0}.
Indeed, we have, for example,

P(	1 < 0,	2 > 0,RI ∈ dr,�I ∈ ds,mI ∈ dx)

= P(Xs ∈ dx)
(
1 − f (1 − r − s)

) 1

1 − s
10≤r+s≤11x≤0.

Since the law of (ρJ ,mJ ,RJ ), by analogy with the case of ρ, is seen to charge
the set {(s, y, r) : t < 1 − r, x < y}, we conclude that the expression for the joint
density of (ρ,m) given in equation (11) is strictly positive.

3. The proof of the absolute continuity of (X1,X1 − X1) follows the same
method of proof, starting with the fact that these random variables have the same
joint law as

(	−,	+) =
∞∑
i=1

	i(1	i<0,1	i>0),

which we can again decompose at the random index

I = min{i ≥ 1 : there exist j, j ≤ i such that 	j < 0, 	j ′ > 0}
into

(	−,	+) = (	−
I ,	+

I ) + (	−,I ,	+,I ),
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where

(	−
I ,	−

I ) = ∑
i≤I

	i(1	i<0,1	i>0).

Since:

(a) (RI ,	
−
I ,	+

I ) have a joint density which can be taken positive on (0,1) ×
(−∞,0) × (0,∞), and

(b) (	−
I ,	+

I ) and (	−,I ,	+,I ) are conditionally independent given RI ,

we see that (	−,	+) admit a joint density which can be taken positive on
(−∞,0) × (0,∞). �

6. An invariant path transformation for Lévy processes. The aim of this
section is to prove Theorem 3. This will be done (almost) by applying the contin-
uous mapping theorem to the embedded random walk (Xk/n, k = 0, . . . , n) and a
continuous function on Skorohod space. The argument’s technicalities are better
isolated by focusing first on some special cases in which the main idea stands out.
Therefore, we first comment on the case when X has continuous sample paths,
then we handle the case when X has paths of unbounded variation on compact
intervals, to finally settle the general case.

We rely on a discrete version of Theorem 3, which was discovered by Abramson
and Pitman (2011). Let Sn = (Sn

t , t ∈ [0, n]) be the process obtained by interpo-
lating between the values of n steps of a random walks which jumps every 1/n,
and let Cn be its convex minorant. Let V n

0 ,V n
1 , . . . , V n

k be the endpoints of the
segments defining the convex minorant Cn. Let Un be uniform on {1/n, . . . ,1}.
Since there exists an unique j such that

Un ∈ (V n
j ,V n

j+1],
let us define

gn = V n
j and dn = V n

j+1

as the excursion interval of Sn above Cn which straddles Un. Mimicking the defi-
nition of the path transformation (1), let us define

S
n,Un
t =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Sn
Un+t − Sn

Un
, if 0 ≤ t ≤ dn − Un,

Sn
dn

− Sn
Un

+ Sn
gn+t−(dn−Un) − Sn

gn
, if dn − Un ≤ t ≤ dn − gn,

Sn
dn

+ Sn
t−(dn−gn), if dn − gn ≤ t ≤ dn,

Sn
t , if dn ≤ t.

THEOREM 6 [Abramson and Pitman (2011)]. If the distribution function of
Sn

1/n is continuous, then the pairs

(Un,S
n) and (dn − gn, S

n,Un)

have the same law.
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To prove Theorem 3 we will use Theorem 6 with the random walk obtained
by sampling our Lévy process X at points of the form 1/n and take the limit as
n → ∞. The details are a bit technical in general but simplify considerably when X

is continuous or when it reaches its convex minorant continuously.
The main tool for the passage to the limit is a lemma regarding approximation

of the endpoints of the interval of the convex minorant that contains a given point.
Let f : [0,1] → R be a càdlàg function which starts at zero and is left continuous
at 1 and c its convex minorant. Let also f l = f ∧ f− be the lower semicontinuous
regularization of f , and define with it the excursion set away from the convex
minorant O = {c < f l}. For all u belonging to the open set O we can define the
quantities g < u < d as the left and right endpoints of the excursion interval of O
that contains u. We define the slope of c at u as the quantity

mu = c(d) − c(g)

d − g
= c′(u).

The notations gu(f ), du(f ) and mu(f ) will be preferred when the function f or
the point u are not clear from context. We will first be interested in continuity
properties of the quantities gu, du and mu when varying the function f .

Recall that a sequence fn in the space of càdlàg functions on [0,1] converges
to f in the Skorohod J1 topology if there exist a sequence of increasing homeo-
morphisms from [0,1] into itself such that fn − f ◦ λn converges uniformly to 0
on [0,1].

LEMMA 2. If:

1. f is continuous at u;
2. u ∈ O ;
3. the function

f l(t) − d − t

d − g
f l(g) + t − g

d − g
f l(d) for t ∈ [0,1]

is zero only on {g, d};
4. fn → f in the Skorohod J1 topology and un → u, then

gun(fn) → gu(f ), dun(fn) → du(f ) and mun(fn) → mu(f ).

The proof is presented in Section 6.3. We now pass to the analysis of the partic-
ular cases when our Lévy process X has continuous paths, or when it reaches its
convex minorant continuously.

6.1. Brownian motion with drift. In this subsection, we will prove Theo-
rem 3 when X is a (nondeterministic) Lévy process with continuous paths, that
is, a (nonzero multiple of) Brownian motion with drift.
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Let f be a continuous function on [0,1], and consider the continuous function
ϕuf given by

ϕuf (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f (u + t) − f (u), if 0 ≤ d − u,
f (d) − f (u) + f

(
g + t − (d − u)

) − f (g),

if d − u ≤ t ≤ d − g,
f (d) − f (g) + f

(
t − (d − g)

)
, if d − g ≤ t ≤ d,

f (t), if t ≤ d.

(12)

If f , fn, u and un satisfy the hypotheses of Lemma 2 (which implies that fn → f

uniformly), then g(fn) → g(f ) and d(fn) → d(f ). Therefore, it is simple to ver-
ify that (u, f ) 	→ (d − g,ϕuf ) is continuous at (u, f ) when the space of contin-
uous functions on [0,1] is equipped with the uniform norm. When X is a Lévy
process with continuous paths and distributions, that is, a Brownian motion with
drift, consider its polygonal approximation with step 1/n obtained by setting

Xn
k/n = Xk/n for k ∈ {0,1, . . . , n}

and extending this definition by linear interpolation on [0,1]. Then Xn → X

uniformly on [0,1]; it is at this point that the continuity of the paths of X is
important. Now, if U is uniform on [0,1] and independent of X, and we set
Un = n
U/n�, then (dn −gn,ϕUnX

n) → (d −g,ϕUX). However, Theorem 6 says
that (Un,X

n) and (dn − gn,ϕUnX
n) have the same law. We conclude that (U,X)

and (d − g,ϕUX) have the same law, which is the conclusion of Theorem 3 in this
case.

6.2. Absence of jumps at the convex minorant. In this subsection, we will
prove Theorem 3 when X is a Lévy process of unbounded variation on compact
sets [which automatically satisfies (CD)]. We now let f be a càdlàg function on
[0,1] and let c stand for its convex minorant. We will suppose that f is continuous
on the set {c = f l}, which holds whenever f is the typical trajectory of X, thanks
to 2 of Proposition 1.

Again, for all u ∈ {c < f } = {c < f ∧ f−} = O we define g and d as the left
and right endpoints of the excursion interval that contains u. Since f has jumps,
its polygonal approximation does not converge to it in Skorohod space, but if we
define

fn(t) = f ([nt]/n),

then fn converges in the Skorohod J1 topology to f as n → ∞; cf. Billingsley
(1999), Chapter 2, Lemma 3, page 127. This will called the piecewise constant
approximation to f with span 1/n and is the way we will choose to approximate
a Lévy process when it has jumps. The first complication in this case is that the
discrete invariant path transformation was defined for the polygonal approxima-
tion and not for the piecewise constant approximation to our Lévy process. For
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this reason, we will have to define a more flexible path transformation than in the
continuous case: for u1 < u2 < u3 ∈ (0,1), we define ϕu1,u2,u3f by

ϕu1,u2,u3f (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

f (u2 + t) − f (u2), 0 ≤ t < u3 − u2,

f (u3) − f (u2) + f
(
u1 + t − (u3 − u2)

) − f (u1),

u3 − u2 ≤ t ≤ u3 − u1,

f (u3) − f (u1) + f
(
t − (u3 − u1)

)
,

u3 − u1 ≤ t < u3,

f (t), u3 ≤ t.

(13)

The path transformation ϕu of (12) corresponds to ϕg,u,d . We are interested in
ϕg,U,dX, which will be approximated by ϕ

g̃n,Un,d̃n
Xn where g̃n and d̃n are the left

and right endpoints of the excursion of the polygonal approximation to X of span
1/n which contains Un = 
Un�/n, and Xn is the piecewise constant approxima-
tion to X with span 1/n. We are forced to use both the vertices of the convex
minorant of the polygonal approximation and the piecewise constant approxima-
tion, since Xn → X (in the Skorohod J1 topology), but with (g̃n, d̃n) we can define
a nice invariant transformation: Theorem 6 asserts that

(Un,ϕg̃n,Un,d̃n
Xn) and (d̃n − g̃n,X

n)

have the same law. Indeed, Theorem 6 is an assertion about the increments of a
random walk and the polygonal and piecewise approximations to X of span 1/n

are constructed from the same increments.
Lemma 2 tells us that (g̃n, d̃n) → (d, g). It is therefore no surprise that

ϕ
g̃n,Un,d̃n

Xn → ϕg,U,dX,

telling us that (U,X) and (d − g,ϕg,U,dX) have the same law whenever X sat-
isfies (CD) and has unbounded variation on finite intervals. Convergence follows
from the following continuity assertion:

LEMMA 3. If f is continuous at (u1, u2, u3), fn → f in the Skorohod J1
topology, and un

i → ui for i = 1,2,3, then

ϕun
1,un

2,un
3
fn → ϕu1,u2,u3f.

Lemma 3 is an immediate consequence of the following convergence criterion
found in Ethier and Kurtz (1986), Proposition III.6.5, page 125.

PROPOSITION 2. A sequence fn of càdlàg functions on [0,1] converges to f

in the Skorohod J1 topology if and only if for every sequence (tn) ⊂ [0,1] converg-
ing to t :

1. |fn(tn) − f (t)| ∧ |fn(tn) − f (t−)| → 0;
2. if |fn(tn) − f (t)| → 0, tn ≤ sn → t , then |fn(sn) − f (t)| → 0;
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3. if |fn(tn) − f (t−)| → 0, sn ≤ tn and sn → t , then |fn(sn) − f (t)| → 0.

In particular, we see that if f is continuous at t , then fn(tn) → f (t). The above
criterion is clearly necessary for convergence since if fn → f , then there exist
a sequence (λn, n ∈ N) of increasing homeomorphisms of [0,1] into itself such
that fn − f ◦ λn converges to zero uniformly. If tn → t , then fn(tn) will be close
to either f (t−) or f (t) depending on if λn(tn) < t or λn(tn) ≥ t . By using the
above criterion, we focus on the real problem for continuity for the transformation
ϕu1,u2,u3 , namely, that nothing wrong happens at u3 − u2, u3 − u1 and u3.

PROOF OF LEMMA 3. Let us prove that for every t ∈ [0,1], the conditions of
Proposition 2 hold for ϕun

1,un
2,un

3
fn and ϕu1,u2,u3f .

Let λn be increasing homeomorphisms of [0,1] into itself such that

fn − f ◦ λn → 0

uniformly. We proceed by cases.

t < u3. Eventually t < un
3, so that ϕun

1,un
2,un

3
fn(t) = fn(t) and ϕu1,u2,u3f (t) =

f (t). Since fn and f satisfy the conditions of Proposition 2 at time t , the same
holds for their images under the path transformation.

t < u3 − u2. Eventually t < un
3 − un

2 so that

ϕu1,u2,u3f (t) = f (u2 + t)−f (u2) and ϕun
1,un

2,un
3
f n(t) = f n(un

2 + t)−f n(un
2).

Since f is continuous at u2, Proposition 2 implies that f n(un
2) → f (u), so

that ϕun
1,un

2,un
3
f n(t) can be made arbitrarily close to either ϕu1,u2,u3f (t) or

ϕu1,u2,u3f (t−) depending on if

un + tn < λ−1
n (u + t) or un + tn ≥ λ−1

n (u + t).

t ∈ (u3 − u2, u3) \ {u3 − u1} is analogous to the preceding case. For t ∈ {u3 −
u2, u3 − u1, u3} set

v1 = u3 − u2, v2 = u3 − u1 and v3 = u3.

Since f is continuous at u3, condition 3 gives

fn(u
n
i ) → f (ui) for i = 1,2,3,

and so

ϕu1,u2,u3f (vn
i ) → ϕu1,u2,u3f (vi) for i = 1,2,3. �
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6.3. The general case. In this subsection, we prove Theorem 3 for a Lévy
process X under the sole assumption (CD).

The challenge to overcome in the remaining case, in which X can jump into and
out of the convex minorant, is to show how one can handle the jumps; although a
result in the vein of Lemma 3 will play a prominent role in our analysis, a more
careful inspection of how gn differs from g is needed in order to sort the following
problem: in general, the operation of rearranging pieces of càdlàg paths is not
continuous and depends sensitively on the points at which the rearrangement is
made. A simple example helps to clarify this: consider f = 1[1/3,1] + 1[2/3,1], so
that if u1 = 1/3, u2 = 1/2 and u3 = 2/3, we have ϕu1,u2,u3f = 1[1/6,1] + 1[2/3,1].
Note that if un

1 → u1 and un
1 ∈ (0,1/2), then

ϕun
1,u2,u3f =

{
1[1/6,1] + 1[1/6+1/3−un

1 ,1], if un
1 ∈ (0,1/3],

1[1/6,1] + 1[1−un
1,1], if un

1 ∈ [1/3,1/2).

We conclude that ϕun
1,u2,u3f → ϕu1,u2,u3f if and only if un

1 ≥ 1/3 eventually.
Let f : [0,1] → R be a càdlàg function which starts at zero and c its convex mi-

norant on [0,1]. Let also f l = f ∧ f− be the lower semicontinuous regularization
of f . As before, the component intervals of the open set O = {c < f l} are called
the excursion intervals of f , and that for u ∈ O , (g, d) is the excursion interval
that contains u.

We first give the proof of Lemma 2; the proof depends on another lemma with
a visual appeal, which is to be complemented with Figure 3.

LEMMA 4. If for a càdlàg function f : [0,1] → R:

1. there exist closed intervals A and B in [0,1] such that infB − supA > 0 and
2. there exists δ > 0 and

h < δ
infB − supA

infB ∨ (1 − supA)

FIG. 3. Visual content of Lemma 4.
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such that

f > δ on [0,1] \ A ∪ B and min
x∈A∪B

f l(x) < h,

then for all u ∈ (supA, infB),

gu ∈ A, du ∈ B and mu ≤ h

infB − supA
.

PROOF. This assertion can be checked by cases. We consider 3 possible po-
sitions for gu and three other for du :gu < infA, gu ∈ A and gu ∈ (supA,u) and
similarly du ∈ (u, infB), du ∈ B and du > supB . We number each from 1 to 3 and
write Ci,j for the corresponding case. We trivially discard the cases

C1,1,C1,3,C3,1,C3,3

for each one would force c(g) to be above the zero slope line through (0, δ), hence
to pass above g on A and B . The case C2,1 would force c (hence f ) to be above δ

on B while C3,2 would force f to be above δ on A, hence both are discarded.
We finally discard the case C2,3 (and by a similar argument C3,2) because of our
choice of h, since a line from a point of A × [0, h] to [supB,1] × [δ,∞) passes
above h on B . �

PROOF OF LEMMA 2. Set u ∈ {c < f l}, and write g and d for gu(f ) and
du(f ) so that g < u < d . Recall that c is linear on (gu(f ), du(f )). By considering
instead

t 	→ f (t) − d − t

d − g
f l(g) + t − g

d − g
f l(d) and

t 	→ fn(t) − d − t

d − g
f l(g) + t − g

d − g
f l(d),

our assumptions allow us to reduce to the case

f l(g) = f l(d) = 0 and f l > 0 on [0,1] \ {g, d}.
We will now consider the case 0 < g < d < 1, the cases g = 0 or d = 1 being
handled similarly.

For every

ε < g ∧ (1 − d) ∧ d − g

2

we can define

δ(ε) = inf{f (t) : t ∈ [0, g − ε] ∪ [g + ε, d − ε] ∪ [d + ε,1]}
= min{f l(t) : t ∈ [0, g − ε] ∪ [g + ε, d − ε] ∪ [d + ε,1]}.
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Then δ(ε) > 0 for ε > 0 and δ(ε) → 0 as ε → 0. Since g < u < d , we can choose
ε small enough so that

u ∈ (g + ε, d − ε).

Since fn → f , there exists a sequence of increasing homeomorphisms λn of [0,1]
converging uniformly to the identity such that

fn − f ◦ λn

converges uniformly to zero. (If f is continuous, λn can be taken equal to the
identity function.)

Also, given hn eventually bounded away from 0,

min{f l(t) : t ∈ (g − ε, g + ε)} < hn and min{f l(t) : t ∈ (d − ε, d + ε)} < hn

for large enough n. Hence

min
{
f l

n(t) : t ∈ (
λ−1

n (g − ε), λ−1
n (g + ε)

)}
< hn

and

min
{
f l

n(t) : t ∈ (
λ−1

n (d − ε), λ−1
n (d + ε)

)}
< hn

for large enough n. The particular hn we will consider is

hn = δ(ε)
λ−1

n (d − ε) − λ−1
n (g + ε)

λ−1
n (d − ε) ∨ (1 − λ−1

n (g + ε))

→ δ(ε)
(d − g − 2ε)

((d − ε) ∨ (1 − g − ε))
> 0

which is eventually positive. Since f > δ(ε) on [0, g − ε] ∪ [g + ε, d − ε] ∪ [d +
ε,1], then

fn > δ on [0, λ−1
n (g − ε)] ∪ [λ−1

n (g + ε), λ−1
n (d − ε)] ∪ [λ−1

n (d + ε),1],
and Lemma 4 now tells us that

gun(fn) ∈ (
λ−1

n (g − ε), λ−1
n (g + ε)

)
,

dun(fn) ∈ (
λ−1

n (d − ε), λ−1
n (d + ε)

)
and

mun(gn) ≤ hn/
(
λn(d − ε) − λn(g + ε)

)
,

so that eventually

gun(fn) ∈ (g − 2ε, g + 2ε), dun(fn) ∈ (d − 2ε, d + 2ε) and

mun(fn) ≤ 2δ/(d − ε) ∨ (1 − g − ε). �
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REMARK. In the context of the above proof, if we suppose that f (g−) =
c(g) < f (g) and f (d−) = c(d), then for hn eventually bounded away from zero,
we actually have

min{f l(t) : t ∈ [g − ε, g)} < hn

for large enough n, and so we get

gun(fn) < λ−1
n (g).

This remark is crucial to the proof of Theorem 3.

REMARK. Let cn be the convex minorant of fn. Under the hypotheses of
Lemma 2, we can actually deduce that if tn → g, then cn(tn) → c(g), while if
tn → d , then cn(tn) → c(d). This is because of the following result about conver-
gence of convex functions.

PROPOSITION 3. If cn and c are convex functions on [0,1], for some a ∈ (0,1)

we have cn(a) → c(a), and if the two sequences (cn(0)) and (cn(1)) are bounded,
then for every sequence an → a we have cn(an) → c(a).

PROOF. If an ≤ a, we can use the inequalities

cn(an) ≤ cn(a)
an

a
+ cn(0)

a − an

a

and

cn(an) ≥ cn(a)
1 − a

1 − an

+ cn(1)
a − an

1 − an

.

We get an analogous pair of inequalities when an ≥ a, which allows us to conclude
that the sequence (cn(a) − cn(an)) goes to zero. �

Given u1 < u2 < u3, we now define a new càdlàg function ψu1,u2,u3f as fol-
lows:

ψu1,u2,u3f (t) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

f (u2 + t) − f (u2), 0 ≤ t < u3 − u2,

c(u3) − c(u1) + f
(
u1 + t − (u3 − u2)

) − f (u2),

u3 − u2 ≤ t ≤ u3 − u1,

c(u3) − c(u1) + f
(
t − (u3 − u1)

)
, u3 − u1 ≤ t < u3,

f (t), u3 ≤ t .

The difference with the path transformations of (12) and (13) is that we now use the
convex minorant c instead of only the function f . This has the effect of choosing
where to place the jumps that f might make as it approaches its convex minorant.
Note, however, that ψu1,u2,u3f = ϕu1,u2,u3f if f = c at u1 and u3.
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Our next task will be to analyze the continuity of f 	→ ψg,u,df on Skorohod
space, with special emphasis on the approximations we will use. For every n, fn

and f̃n will be the piecewise constant and polygonal approximations to f with
span 1/n, we set un = 
nu�/n, and

gn = gun(fn), dn = dun(fn), g̃n = gun(f̃n) and d̃n = dun(f̃n).

LEMMA 5. Under the hypotheses of Lemma 2, if either

f (g) = c(g) and f (d) = c(d) or f (g−) = c(g) and f (d−) = c(d),

then

ψ
g̃n,un,d̃n

fn → ψg,u,df

in the Skorohod J1 topology.

PROOF. Since we have already analyzed what happens when f is continuous
at g and d , the essence of the argument will be illustrated when

f (g) = c(g) < f (g−) and f (d) = c(d) < f (d−).

As in the proof of Lemma 3, we verify that for every t ∈ [0,1], the conditions of
Proposition 2 hold for ψ

g̃n,un,d̃n
fn and ψd,u,gf at time t .

Let λn be a sequence of increasing homeomorphisms of [0,1] such that

fn − f ◦ λn → 0

uniformly. The crucial part of the argument is to use the remarks after Lemma 2
from which we deduce that

λ−1
n (g) ≤ gn and λ−1

n (d) ≤ dn.

Since fn is the piecewise constant approximation to f , then λ−1
n must eventually

take g and d to [ng]/n and [nd]/n. But comparing the convex minorants of the
piecewise constant and polygonal approximations to f with span 1/n leads to

gn − 1/n ≤ g̃n and dn − 1/n ≤ d̃n

so that

λ−1
n (g) ≤ g̃n and λ−1

n (d) ≤ d̃n.

Again using the remarks after the proof of Proposition 13, we see that

cn(g̃n) → c(g) and cn(d̃n) → c(d).

The conditions of Proposition 2 can now be verified at times t ∈ [0,1] \d − u,d

as in the proof of Lemma 13, while for t ∈ {d −u,d}, the proof is similar and hence
will be illustrated when t = d −g. Since fn −f ◦λn → 0 uniformly, the jump of f
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at g is approximated by the jump of fn at λ−1
n (g). We reduce to cases by taking

subsequences: when tn > d̃n − un for all n, then tn + un > λ−1
n (d) so that

ψ
g̃n,un,d̃n

f (tn) → f (d) − f (g) + f (g) − f (u) = f (d) − f (u).

On the other hand, when tn ≤ dn − un for all n, we see that

ψ
g̃n,un,d̃n

f (tn) is close to f (d−) − f (u) or f (d) − f (u)

depending on if

tn + un < λ−1
n (d) or tn + un ≥ λ−1

n (d).

Hence, the conditions of Proposition 2 are satisified at t = d − u. �

We finally proceed to the proof of Theorem 3.

PROOF OF THEOREM 3. Thanks to Proposition 1, X almost surely satisfies
the conditions of Lemma 5 at U . Hence, (dn −gn,ψg̃n,Un,d̃n

(Xn)) converges in law
to (d −g,ψd,U,gX) thanks to Lemmas 2 and 5, as well as the continuous mapping
theorem. Since (Un,X

n) converges in law to (U,X) and the laws of (Un,X
n) and

(dn − gn,ψg̃n,Un,d̃n
(Xn)) are equal by Theorem 6, then (U,X) and (d − g,XU)

have the same law. �

7. Excursions above the convex minorant on a fixed interval. In this sec-
tion we will prove Theorem 4, which states the equality in law between two se-
quences. We recall the setting: X is a Lévy process such that Xt has a continuous
distribution for every t > 0, C is its convex minorant on [0,1], Xl = X ∧ X− is
the lower semicontinuous regularization of X, O = {C < Xl} is the excursion set,
I is the set of excursion intervals of O , for each (g, d) ∈ I , and we let e(g,d) be
the excursion associated to (g, d) given by

e(g,d)
s = X(g+s)∧d − C(g+s)∧d .

We ordered the excursion intervals to state Theorem 1 by sampling them with an
independent sequence of uniform random variables on [0, t].

The first sequence of interest is((
di − gi,Cdi

− Cgi
, e(gi,di )

)
, i ≥ 1

)
.

The second sequence is obtained with the aid of an independent stick-breaking
process and the Vervaat transformation. Recall that Vtf stands for the Vervaat
transform of f on [0, t]. Let V1,V2, . . . be an i.i.d. sequence of uniform random
variables on (0,1), and construct

L1 = V1, Ln = Vn(1 − V1) · · · (1 − Vn−1) and Si = L1 + · · · + Li.
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This sequence helps us to break up the paths of X into the independent pieces Y i ,
i = 1,2, . . . given by

Y i
t = XSi−1+t − XSi−1, 0 ≤ t ≤ Li,

from which we can define the sequence of Knight bridges,

Ki
t = Y i

t − t

Li

Y i
Li

, 0 ≤ t ≤ Li.

Our second sequence is((
Li,XSi

− XSi−1,VLi
(Ki)

)
, i ≥ 1

)
.

To prove the equality in law, we will use Theorem 3 to obtain a process X̃ which
has the same law as X, as well as a stick-breaking sequence L̃ independent of X̃

such that, with analogous notation, the pointwise equality((
di − gi,Cdi

− Cgi
, e(gi ,di )

)
, i ≥ 1

) = ((
Li, X̃S̃i

− X̃
S̃i−1

,V
L̃i

(K̃i)
)
, i ≥ 1

)
holds. This proves Theorem 4.

Let us start with the construction of X̃ and L̃. Apart from our original Lévy
process X, consider an i.i.d. sequence of uniform random variables U1,U2, . . .

independent of X. Consider first the connected component (g1, d1) of {C < X ∧
X−} which contains U1 and let X1 be the result of applying the path transformation
of Theorem 3 to X at the points g1, U1 and d1. We have then seen that Ṽ1 = d1 −g1
is uniform on [0,1] and independent of X1. Set S̃0 = 0 and L̃1 = Ṽ1.

Consider now the convex minorant C1 of

Z1 = X1
L̃1+· − X1

L̃1

on [0,1 − L̃1]: we assert that it is obtainable from the graph of C by erasing the
interval (g1, d1) and closing up the gap, arranging for continuity. Formally, we
assert the equality

C1
t =

{
Ct, if t ∈ [0, g1),

Ct−g1+d1 − (Cd1 − Cg1), if t ∈ [g1,1 − L̃1].
Note that C1 is continuous on [0,1 − L̃1] by construction and it is convex by a
simple analysis. To see that C1 is the convex minorant of Z1, we only need to
prove that at g1 it coincides with Z1

g1
∧ Z1

g1−; cf. Figure 2 to see how it might go
wrong. If Xd1 = Cd1 , then

Z1
g1

= Xd1 − (Cd1 − Cg1) = Cg1 = C1
d1

,

while if Xd1− = C(d1) < Xd1 , then property 2 of Proposition 1 implies that
Xg1− = C(g1) and

Z1
d1− = X1

d1− − X1
L̃1

= Cd1 − Cg1 + Xg1− − (Cd1 − Cg1) = Cg1 = C1
g1

.
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Let (g2, d2) be the connected component of {C1 < Z1} ⊂ [0,1 − L̃1] that con-
tains U2(1 − L̃1) and define

L̃2 = d2 − g2, Ṽ2 = d2 − g2

1 − Ṽ1

as well as the process X2 which will be the concatenation of X1 on [0, Ṽ1] as well
as the path transformation of Z1 on [0,1 − Ṽ1]; that is, Z1 transformed according
to the path transformation of Theorem 3 with parameters g2,U2(1− L̃1), d2. From
Theorem 3 and the independence of

Z2 = X1
·+Ṽ1

− X1
Ṽ1

and X1
·∧Ṽ1

we see that:

1. X2 has the same law as X1;
2. Ṽ1 and Ṽ2 are independent of X2, and Ṽ2 is independent of Ṽ1 and has an

uniform distribution on (0,1);
3. the convex minorant C2 of Z2 on [0,1 − L̃1 − L̃2] is obtained from C1 by

deleting the interval (g2, d2) and closing up the gap arranging for continuity.

Now it is clear how to continue the recursive procedure to obtain, at step n a se-
quence Ṽ1, . . . , Ṽn and a process Xn such that if L̃n = Ṽn(1 − Ṽn−1) · · · (1 − Ṽ1)

and S̃n = L̃1 + · · · + L̃n; then:

1. Xn has the same law as X.
2. Xn, Ṽ1, . . . , Ṽn are independent an the latter n variables are uniform on

(0,1).
3. Let Cn is the convex minorant of

Zn = Xn

S̃n+· − Xn

S̃n

on [0,1 − S̃n]. Then Cn is obtained from Cn−1 by removing the selected interval
(gn, dn) and closing up the gap arranging for continuity.

4. Xn coincides with Xn−1 on [0, S̃n−1].
From property 4 above, it is clear that Xn converges pointwise on [0,1] almost

surely: it clearly does on [0,1) and Xn
1 = X1. Also, we see that X̃ has the same

law as X and that it is independent of V1,V2, . . . , which is an i.i.d. sequence of
uniform random variables.
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