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Guided by the relationship between the breadth-first walk of a rooted tree
and its sequence of generation sizes, we are able to include immigration in the
Lamperti representation of continuous-state branching processes. We provide
a representation of continuous-state branching processes with immigration by
solving a random ordinary differential equation driven by a pair of indepen-
dent Lévy processes. Stability of the solutions is studied and gives, in partic-
ular, limit theorems (of a type previously studied by Grimvall, Kawazu and
Watanabe and by Li) and a simulation scheme for continuous-state branching
processes with immigration. We further apply our stability analysis to extend
Pitman’s limit theorem concerning Galton–Watson processes conditioned on
total population size to more general offspring laws.

1. Introduction.

1.1. Motivation. In this document, we extend the Lamperti representation of
continuous state branching processes so that it allows immigration. First, we will
see how to find discrete (and simpler) counterparts to our results in terms of the
familiar Galton–Watson process with immigration and its representation using two
independent random walks.

Consider a genealogical structure with immigration such as the one depicted in
Figure 1. When ordering its elements in breadth-first order (with the accounting
policy of numbering immigrants after the established population in each genera-
tion), χi will denote the number of children of individual i. Define a first version
of the breadth-first walk x̃ = (x̃i) by

x̃0 = 0 and x̃i+1 = x̃i + χi+1.

Consider also the immigration process y = (yn)n≥0 where yn is the quantity of
immigrants arriving at generations less than or equal to n (not counting the initial
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FIG. 1. A genealogical structure allowing immigration.

members of the population as immigrants). Finally, suppose the initial population
has k members. If cn denotes the number of individuals of generations 0 to n, cn+1
is obtained from cn by adding the quantity of sons of each member of the nth
generation plus the immigrants, leading to

cn+1 = cn + (χcn−1+1 + · · · + χcn) + (yn+1 − yn).

By induction we get

cn+1 = k + x̃cn + yn+1.

Let zn denote the number of individuals of generation n so that z0 = c0 = k and
for n ≥ 1

zn = cn − cn−1;
if ηi = χi − 1, we can define a second version of the breadth-first walk of the
population by setting

x0 = 0 and xi = xi−1 + ηi

(so that xi = x̃i − i). We then obtain

zn+1 = k + xcn + yn+1.(1)

This representation of the sequence of generation sizes z in terms of the breadth-
first walk x and the immigration function y can be seen as a discrete Lamperti
transformation. It is the discrete form of the result we aim at analyzing. However,
we wish to consider a random genealogical structure which is not discrete. Ran-
domness will be captured by making the quantity of sons of individuals an i.i.d. se-
quence independent of the i.i.d. sequence of immigrants per generation, so that the
model corresponds to a Galton–Watson with immigration. Hence x and y would
become two independent random walks, whose jumps take values in {−1,0,1, . . .}
and {0,1, . . .}, respectively. Discussion of nondiscreteness in the random geneal-
ogy model would take us far apart [we are motivated by Lévy trees with or without
immigration, discussed, e.g., by Abraham and Delmas (2009), Duquesne (2009),
Duquesne and Le Gall (2002), Lambert (2002)]. We only mention that continuum
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trees are usually defined through a continuum analogue of the depth-first walk; our
point of view is that generation sizes should be obtained in terms of the continuum
analogue of the breadth-first walk. Indeed, in analogy with the discrete model, we
just take X and Y as independent Lévy processes, the former without negative
jumps (a spectrally positive Lévy process) and the latter with increasing sample
paths (a subordinator). The discrete Lamperti transformation of (1) then takes the
form

Zt = x + X∫ t
0 Zs ds + Yt .(2)

This should be the continuum version of a Galton–Watson process with immi-
gration, namely, the continuous-state branching processes with immigration intro-
duced by Kawazu and Watanabe (1971).

1.2. Preliminaries.

1.2.1. (Possibly killed) Lévy processes. A spectrally positive Lévy process
(spLp) is a stochastic process X = (Xt)t≥0 which starts at zero, takes values on
(−∞,∞], has independent and stationary increments, càdlàg paths, and no nega-
tive jumps. Such a process is characterized by its Laplace exponent � by means
of the formula

E
(
e−λXt

) = et�(λ),

where

�(λ) = −κ + aλ + σ 2λ2

2
+

∫ ∞
0

(
e−λx − 1 + λx1x≤1

)
ν(dx)

for λ > 0; here ν is the so-called Lévy measure on (0,∞) and satisfies∫
1 ∧ x2ν(dx) < ∞.

The constant κ will be for us the killing rate; a Lévy process with killing rate κ

can be obtained from one with zero killing rate by sending the latter to ∞ at an
independent exponential time of parameter κ ; σ 2 is called the diffusion coefficient,
while a is the drift.

We shall also make use of subordinators, which are spLp with increasing trajec-
tories. The Laplace exponent 	 of a subordinator X is defined as the negative of
its Laplace exponent as a spLp, so

E
(
e−λXt

) = e−t	(λ).

Since the Lévy measure ν of a subordinator actually satisfies∫
1 ∧ xν(dx) < ∞,
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and subordinators have no Brownian component (i.e., σ 2 = 0), we can write

	(λ) = κ + dλ +
∫ (

1 − e−λx)
ν(dx).

So, we have the relationship

−d = a +
∫ 1

0
xν(dx)

between the parameters of X seen as a spLp and as a subordinator.

1.2.2. Continuous-state branching processes and the Lamperti representation.
Continuous-state branching (CB) processes are the continuous time and space ver-
sion of Galton–Watson processes. They were introduced in different levels of gen-
erality by Jiřina (1958), Lamperti (1967b) and Silverstein (1967/1968). They are
Feller processes with state-space [0,∞] (with any metric that makes it homeo-
morphic to [0,1]) satisfying the following branching property: the sum of two
independent copies started at x and y has the law of the process started at x + y.
The states 0 and ∞ are absorbing. The branching property can be recast by stating
that the logarithm of the Laplace transform of the transition semigroup is given by
a linear transformation of the initial state.

As shown by Silverstein (1967/1968), CB processes are in one to one corre-
spondence with Laplace exponents of (killed) spectrally positive Lévy processes,
which are called the branching mechanisms. In short, the logarithmic derivative of
the semigroup of a CB process at zero applied to the function x �→ e−λx exists and
is equal to x �→ x�(λ). The function � is the called the branching mechanism
of the CB process and it is the Laplace exponent of a spLp. A probabilistic form
of this assertion is given by Lamperti (1967a) who states that if X is a spLp with
Laplace exponent � , and for x ≥ 0, we set T for its hitting time of −x,

It =
∫ t

0

1

x + Xs∧T

ds

and C equal to its right-continuous inverse, then

Zt = x + XCt∧T

is a CB process with branching mechanism � , or CB(�). This does not seem to
be directly related to (2). The fact that it is related gives us what we think is the
right perspective on the Lamperti transformation and the generalization considered
in this work. Indeed, as previously shown in Ethier and Kurtz [(1986), Chapter 6,
Section 1], Z is the only process satisfying

Zt = x + X∫ t
0 Zs ds,(3)

which is absorbed at zero. This is (2) in the absence of immigration. To see that a
process satisfying (3) can be obtained as the Lamperti transform of X, note that if
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Ct = ∫ t
0 Zs ds, then while Z has not reached zero, C is strictly increasing so that it

has an inverse, say I , whose right-hand derivative I ′+ is given by

I ′+(t) = 1

C′+(It )
= 1

ZIt

= 1

x + XC◦I (t)

= 1

x + Xt

.

1.2.3. Continuous-state branching processes with immigration. Continuous-
state branching processes with immigration (or CBI processes) are the continuous
time and space version of Galton–Watson processes with immigration and were
introduced by Kawazu and Watanabe (1971). They are Feller processes with state-
space [0,∞] such that the logarithm of the Laplace of the transition semigroup
is given by an affine transformation of the initial state. [They thus form part of
the affine processes studied by Dawson and Li (2006).] As shown by Kawazu and
Watanabe (1971), they are characterized by the Laplace exponents of a spLp and
of a subordinator: the logarithmic derivative of the semigroup of a CB process at
zero applied to the function x �→ e−λx exists and is equal to the function

x �→ x�(λ) − 	(λ),

where � is the Laplace exponent of a spLp and 	 is the Laplace exponent of a
subordinator. They are, respectively, called the branching and immigration mech-
anisms and characterize the process which is therefore named CBI(�,	).

We aim at a probabilistic representation of CBI processes in the spirit of the
Lamperti representation.

1.3. Statement of the results. We propose to construct a CBI(�,	) that starts
at x by solving the functional equation

Zt = x + X∫ t
0 Zs ds + Yt .(4)

We call such a process Z the Lamperti transform of (X,x + Y) and denote it
by Z = L(X,x + Y); however, the first thing to do is to show that there exists a
unique process which satisfies (4). When Y is zero, a particular solution to (4) is
the Lamperti transform of X + x recalled above. Even in this case there could be
many solutions to (4), in clear contrast to the discrete case where one can proceed
recursively to construct the unique solution. Our stepping stone for the general
analysis of (4) is the following partial result concerning existence and uniqueness
proved in Section 2.

A pair of càdlàg functions (f, g) such that f has no negative jumps, g is non-
decreasing and f (0) + g(0) ≥ 0 is termed an admissible breadth-first pair; f and
g will be termed the reproduction and immigration functions, respectively. When
g is constant, we say that f + g is absorbed at zero if f (x) + g = 0 implies
f (y) + g = 0 for all y > x.
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THEOREM 1. Let (f, g) be an admissible breadth-first pair. There exists a
nonnegative h satisfying the equation

h(t) = f

(∫ t

0
h(s) ds

)
+ g(t).

Furthermore, the solution is unique when g is strictly increasing, when f + g(0)

is a strictly positive function or when g is constant and f + g is absorbed at zero.

In the context of Theorem 1, much is gained by introducing the function c given
by

c(t) =
∫ t

0
h(s) ds,

which has a right-hand derivative c′+ equal to h. This is because the functional
equation for h can then be recast as the initial value problem

IVP(f, g) =
{

c′+ = f ◦ c + g,

c(0) = 0.

Our forthcoming approximation results for the function h of Theorem 1 rely on
the study of a functional inequality. Let (f, g) be an admissible breadth-first pair.
We will be interested in functions c which satisfy∫ t

s
f− ◦ c(r) + g(r) dr ≤ c(t) − c(s) ≤

∫ t

s
f ◦ c(r) + g(r) dr

(5)
for s ≤ t .

Note that any solution c to IVP(f, g) satisfies (5): the second inequality is actu-
ally an equality by definition of IVP(f, g), and since f ≥ f− as f has no negative
jumps, we get the first inequality. Hence, the functional inequality (5) admits so-
lutions. Regarding uniqueness, if the solution to (5) is unique, then the solution
to IVP(f, g) is unique, and since the latter is nonnegative and nondecreasing, so
is the former. Also, similar sufficient conditions for uniqueness of IVP(f, g) of
Theorem 1 imply uniqueness of nondecreasing solutions of the functional inequal-
ity (5).

PROPOSITION 1. Let (f, g) be an admissible breadth-first pair. If either g is
strictly increasing, f− + g(0) is strictly positive or g is constant and f− + g(0) is
absorbed at zero, then (5) has an unique nondecreasing solution starting at zero.

However, as is shown in Section 4.1, assuming that (5) admits an unique solu-
tion is stronger than just assuming that IVP(f, g) has an unique solution.

As a consequence of the analytic Theorem 1, we solve a probabilistic question
raised by Lambert (1999, 2007).
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COROLLARY 1. Let X be a spectrally positive α-stable Lévy process. For any
càdlàg and strictly increasing process Y independent of X, there is weak existence
and uniqueness for the stochastic differential equation

Zt = x +
∫ t

0
|Zs |1/α dXs + Yt .(6)

When X is twice a Brownian motion and Yt = δt for some δ > 0, this might
be one of the simplest proofs available of weak existence and uniqueness of the
SDE defining squared Bessel processes, since it makes no mention of the Tanaka
formula or local times; it is based on Knight’s theorem and Theorem 1. When
X is a Brownian motion and dYt = b(t) dt for some Lipschitz and deterministic
b : [0,∞) → [0,∞), Le Gall (1983) actually proves pathwise uniqueness through
a local time argument. Our result further shows that if b is measurable and strictly
positive, then there is weak uniqueness. In the case Y is an (α − 1)-stable subordi-
nator independent of X, we quote Lambert (1999, 2007):

. . . whether or not uniqueness holds for (6) remains an open question.

Corollary 1 answers affirmatively. Note that when Y = 0, the stated result fol-
lows from Zanzotto (2002), and is handled by a time-change akin to the Lamperti
transformation. Fu and Li (2010) obtain strong existence and pathwise uniqueness
for a different kind of SDE related to CBI processes with stable reproduction and
immigration.

Regarding solutions to (4), Theorem 1 is enough to obtain the process Z when
the subordinator Y is strictly increasing. When Y is compound Poisson, a solution
to (4) can be obtained by pasting together Lamperti transforms. However, further
analysis using the pathwise behavior of X when Y is zero or compound Poisson
implies the following result.

PROPOSITION 2. Let x ≥ 0, X be a spectrally positive Lévy process and Y an
independent subordinator. Then there is a unique càdlàg process Z which satisfies

Zt = x + X∫ t
0 Zs ds + Yt .

The above equation is satisfied by any càdlàg process Z satisfying the functional
inequality

x + X∫ t
0 Zs ds− + Yt ≤ Zt ≤ x + X∫ t

0 Zs ds + Yt ,

which also has a unique solution.

Our main result, a pathwise construction of a CBI(�,	), is the following.

THEOREM 2. Let X be a spectrally positive Lévy process with Laplace expo-
nent � and Y an independent subordinator with Laplace exponent 	. The unique
stochastic process Z which solves

Zt = x + X∫ t
0 Zs ds + Yt
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is a CBI(�,	) that starts at x.

We view Theorems 1 and 2 as a first step in the construction of branching pro-
cesses with immigration where the immigration can depend on the current value
of the population. One generalization would be to consider solutions to

Zt = x + X∫ t
0 a(s,Zs) ds + Y∫ t

0 b(s,Zs) ds,

where a is interpreted as the breeding rate, and b as the rate at which the arriving
immigration is incorporated into the population. For example, Abraham and Del-
mas (2009) consider a continuous branching process where immigration is propor-
tional to the current state of the population. This could be modeled by the equation

Zt = x + X∫ t
0 Zs ds + Y∫ t

0 αZs ds,

which, thanks to the particular case of Theorem 2 stated by Lamperti (1967a),
has the law of a CB(� − α	) started at x; this is the conclusion of Abraham and
Delmas (2009), where they rigorously define the model in terms of a Poissonian
construction of a more general class of CBI processes which is inspired in previous
work of Pitman and Yor (1982) for CBIs with continuous sample paths. Another
representation of CBI processes, this time in terms of solutions to stochastic dif-
ferential equations was given by Dawson and Li (2006) under moment conditions.

The usefulness of Theorem 2 is two-fold: first, we can use known sample path
properties of X and Y to deduce sample-path properties of Z, and second, this
representation gives a particular coupling with monotonicity properties which are
useful in limit theorems involving Z, as seen in Corollaries 6, 7 and Theorem 4.
Simple applications of Theorem 2 include the following.

COROLLARY 2 [Kawazu and Watanabe (1971)]. If � is the Laplace exponent
of a spectrally positive Lévy process, and 	 is the Laplace exponent of a subor-
dinator, there exists a CBI process with branching mechanism � and immigration
mechanism 	.

COROLLARY 3. A CBI(�,	) process does not jump downward.

Caballero, Lambert and Uribe Bravo (2009) give a direct proof of this when
	 = 0.

COROLLARY 4. Let Z be a CBI(�,	) that starts at x > 0, let 	̃ be the right-
continuous inverse of � , and define

α(t) = log|log t |
	̃(t−1 log|log t |) .

There exists a constant ζ (in general nonzero) such that

lim inf
t→0

Zt − x

α(xt)
= ζ.
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The case x = 0 in Corollary 4 is probably very different, as seen when �(λ) =
2λ2 and 	(λ) = dλ, which corresponds to the squared Bessel process of dimen-
sion d . Indeed, Itô and McKean [(1974), page 80] show that for a squared Bessel
process Z of integer dimension that starts at 0, we have

lim sup
t→0

Zt

2t log|log t | = 1.

We have not been able to obtain this result using the Lamperti transformation.
However, note that starting from positive states, we can obtain the lower growth
rate, since it is the reproduction function X that determines it, while starting
from 0, it is probably a combination of the local growth of X and Y that drives
that of Z.

A solution c to IVP(f, g) is said to explode if there exists t ∈ (0,∞) such that
c(t) = ∞. (Demographic) explosion is an unavoidable phenomena of IVP(f, g).
When f > 0 and g = 0, it is known that explosion occurs if and only if∫ ∞ 1

f (x)
dx < ∞.

Actually, even when there is immigration, the main function responsible for explo-
sion is the reproduction function.

PROPOSITION 3. Let (f, g) be an admissible pair, and let f + = max(f,0).

(1) If
∫ ∞ 1/f +(x) dx = ∞, then no solution to IVP(f, g) explodes.

(2) If
∫ ∞ 1/f +(x) dx < ∞, limx→∞ f (x) = ∞ and g(∞) exceeds the maxi-

mum of −f , then any solution to IVP(f, g) explodes.

We call f an explosive reproduction function if∫ ∞ 1

f +(x)
dx < ∞.

Recall that ∞ is an absorbing state for CBI processes; Proposition 3 has imme-
diate implications on how a CBI process might reach it. First of all, CBI processes
might jump to ∞, which happens if and only if either the branching or the im-
migration corresponds to killed Lévy processes. When there is no immigration
and the branching mechanism � has no killing rate, the criterion is due to Ogura
(1969/1970) and Grey (1974), who assert that the probability that a CB(�) started
from x > 0 is absorbed at infinity in finite time is positive if and only if∫

0+
1

�(λ)
dλ > −∞.

One can even obtain a formula for the distribution of its explosion time; cf. the
proof of Theorem 2.2.3.2 in Lambert (2008), page 95. We call such � an explosive
branching mechanism. From Proposition 3 and Theorem 2 we get:



1594 M. E. CABALLERO, J. L. PÉREZ GARMENDIA AND G. URIBE BRAVO

COROLLARY 5. Let x > 0.

(1) The probability that a CBI(�,	) Z that starts at x jumps to ∞ is positive
if and only if �(0) or 	(0) are nonzero.

(2) The probability that Z reaches ∞ continuously is positive if and only if
�(0) = 0 and � is an explosive branching mechanism.

(3) The probability that Z reaches ∞ continuously is equal to 1 if �(0) =
	(0) = 0, 	 is not zero and � is explosive.

We mainly use stochastic integration by parts in our proof of Theorem 2; how-
ever, a weak convergence type of proof, following the case 	 = 0 presented by
Caballero, Lambert and Uribe Bravo (2009), could also be achieved in conjunc-
tion with a stability result, based on the forthcoming Theorem 3.

The following result deals with stability of IVP(f, g) under changes in f and
g and even includes a discretization of the initial value problem, itself. Indeed,
consider the following approximation procedure: given σ > 0, called the span,
consider the partition

ti = iσ, i = 0,1,2, . . . ,

and construct a function cσ by the recursion

cσ (0) = 0

and for t ∈ [ti−1, ti),

cσ (t) = cσ (ti−1) + (t − ti−1)
[
f ◦ cσ (ti−1) + g(ti−1)

]+
.

Equivalently, the function cσ is the unique solution to the equation

IVPσ (f, g) : cσ (t) =
∫ t

0

[
f ◦ cσ (�s/σ�σ ) + g

(�s/σ�σ )]+
ds.

We will write IVP0(f, g) to mean IVP(f, g). Let D+ denote the right-hand deriva-
tive.

The stability result is stated in terms of the usual Skorohod J1 topology for
càdlàg functions: a sequence fn converges to f if there exist a sequence of home-
omorphisms of [0,∞) into itself such that

fn − f ◦ λn and λn − Id converge to zero uniformly on compact sets

(where Id denotes the identity function on [0,∞)). However, part of the theorem
uses another topology on nonnegative càdlàg functions introduced by Caballero,
Lambert and Uribe Bravo (2009), which we propose to call the uniform J1 topol-
ogy. Consider a distance d on [0,∞] which makes it homeomorphic to [0,1].
Then the uniform J1 topology is characterized by the following: a sequence fn

converges to f if there exist a sequence of homeomorphisms of [0,∞) into itself
such that

d(fn, f ◦ λn) → 0 and λn − Id → 0 uniformly on [0,∞).
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THEOREM 3. Let (f, g) be an admissible breadth-first pair and suppose there
is a unique nondecreasing function c which satisfies c(0) = 0 and (5) [and is there-
fore the unique solution to IVP(f, g)]; define its explosion time by

τ = inf
{
t ≥ 0 : c(t) = ∞} ∈ (0,∞].

Let (fn, gn) be admissible breadth-first pairs. Suppose fn → f and gn → g in
the Skorohod J1 topology and that σn is a sequence of nonnegarive real numbers
which tend to zero. Let cn be the unique solution to IVPσn(fn, gn) when σn > 0 and
any solution to IVP(fn, gn) when σn = 0. Then cn → c pointwise and uniformly
on compact sets of [0, τ ).

Furthermore, if f ◦ c and g do not jump at the same time, then D+cn → D+c:

(1) in the Skorohod J1 topology if τ = ∞, and
(2) in the uniform J1 topology if τ < ∞ if we additionally assume that

fn(x), f (x) → ∞ as x → ∞ uniformly in n.

It is not very hard to show that the jumping condition of Theorem 3 holds in a
stochastic setting.

PROPOSITION 4. Let X be a spLp, Y an independent subordinator with
Laplace exponents � and 	 and, for x ≥ 0, let Z the unique process such that

Zt = x + XCt + Yt where Ct =
∫ t

0
Zs ds.

Almost surely, the processes X ◦ C and Y do not jump at the same time.

From Theorem 3 and Propositions 2 and 4, we deduce the following weak con-
tinuity result.

COROLLARY 6. Let �n,� be Laplace exponents of spLps and 	n,	 be
Laplace exponents of subordinators and suppose that �n → � and 	n → 	

pointwise. If (xn) is a sequence in [0,∞] converging to x and Zn (resp., Z) are
CBIs with branching and immigration mechanisms �n and 	n (resp., � and 	)
and starting at xn (resp., x) then Zn → Z in the Skorohod J1 topology on càdlàg
paths on [0,∞] if � is nonexplosive and in the uniform J1 topology if � is explo-
sive.

Theorem 3 also allows us to simulate CBI processes. Indeed, if we can sim-
ulate random variables with distribution Xt and Yt for every t > 0, we can then
approximately simulate the process Z as the right-hand derivative of the solu-
tion to IVPσ (X,x + Y). (Alternatively, if we can approximate X and Y , e.g., by
compound Poisson processes with drift, we can also apply IVPσ to approximate
the paths of Z.) The procedure IVPσ (X,x + Y) actually corresponds to an Euler
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method of span σ to solve IVP(X,x + Y). Theorem 3 implies the convergence of
the Euler method as the span goes to zero when applied to IVP(X,x + Y), even
with the discontinuous driving functions X and Y !

We also give an application of Theorem 3 to limits of Galton–Watson processes
with immigration. Let Xn and Yn be independent random walks with step distribu-
tions μn and νn supported on {−1,0,1, . . .} and {0,1,2, . . .}, and for any kn ≥ 0,
define recursively the sequences Cn and Zn by setting

Cn
0 = Zn

0 = kn, Zn
m+1 = kn + Xn

Cn
m

+ Yn
m+1 and Cn

m+1 = Cn
m + Zn

m+1.

As discussed in Section 1.1, the sequence Zn is a Galton–Watson process with
immigration with offspring and immigration distributions μn and νn. However, if
Xn and Yn are extended by constancy on [m,m + 1) for m ≥ 0 (keeping the same
notation), then Cn is the approximation of the Lamperti transformation with span 1
applied to Xn and Yn and Zn is the right-hand derivative of Cn. In order to apply
Theorem 3 to these processes, define the scaling operators Sb

a by

Sb
af (t) = 1

b
f (at).

COROLLARY 7. Suppose the existence of sequences an, bn such that

Xn
an

/n and Yn
bn

/n

converge weakly to the infinitely divisible distributions μ and ν corresponding to
a spectrally positive Lévy process and a subordinator; denote by � and 	 their
Laplace exponents. Suppose that bn → ∞ and, for any α > 0, a�αn�/n → ∞. Let
kn → ∞, and suppose that either

knb�kn/x�
xa�kn/x�

→ c ∈ [0,∞) or
xa�kn/x�
knb�kn/x�

→ 0

as n → ∞. Setting en = b�kn/x� in the first case and en = xa�kn/x�/kn in the sec-
ond, we have that

Skn/x
en

Zn

converges in distribution, toward a CBI(c�,	) in the first case and toward a
CB(�) in the second. The convergence takes place in the Skorohod J1 topology if
� is nonexplosive and in the uniform J1 topology, otherwise.

When � is nonexplosive and 	 = 0, the above theorem was proved by Grimvall
(1974). He also proved the convergence of finite-dimensional distributions in the
explosive case, which we complement with a limit theorem. For general 	, but
nonexplosive � , a similar result was proven by Li (2006). However, as will be
seen in the proof (which relies on the stability of the Lamperti transformation
stated in Theorem 3), if the convergence of Sn

an
Xn and Sn

bn
Y n takes place almost

surely, then Sn
en

Zn also converges almost surely.
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The stability result of Theorem 3 applies not only in the Markovian case of CBI
processes. As an example, we generalize work of Pitman (1999) who considers the
scaling limits of conditioned Galton–Watson processes in the case of the Poisson
offspring distribution. Let μ be an offspring distribution with mean 1 and suppose
that Zn is a Galton–Watson process started at kn and conditioned on

∞∑
i=0

Zn
i = n.

We shall consider the scaling limit of Zn as n → ∞ whenever the shifted repro-
duction law μ̃k = μk+1 is in the domain of attraction of a stable law without the
need of centering. The scaling limit of a random walk with step distribution μ̃ is
then a spectrally positive stable law of index α ∈ (1,2] with which one can define,
for every l > 0 the first passage bridge F l starting at l and ending at 0 of length 1 of
the associated Lévy process. Informally this is the stable process started at l, con-
ditioned to be above 0 on [0,1] and conditioned to end at 0 at time 1. This intuitive
notion was formalized by Chaumont and Pardo (2009). The Lamperti transform of
F l will be the right-hand derivative of the unique solution to IVP(F l,0).

THEOREM 4. Let Zn be a Galton–Watson process with critical offspring law
μ which starts at kn and is conditioned on

∑∞
i=1 Zn

i = n. Let S be a random walk
with step distribution μ and suppose there exist constants an → ∞ such that (Sn −
n)/an converges in law to a spectrally positive stable distribution with Laplace
exponent � . Let X be a Lévy process with Laplace exponent � and F l its first
passage bridge from l > 0 to 0 of length 1. If kn/an → l, then the sequence

S
an

n/an
Zn

converges in law to the Lamperti transform of F l in the Skorohod J1 topology.

When α = 2, the process F l is a Bessel bridge of dimension 3 between l and 0
of length 1, up to a normalization factor. In this case, Pitman [(1999), Lemma 14]
tells us that the Lamperti transform Zl of F l satisfies the SDE⎧⎪⎨

⎪⎩
dZl

v = 2
√

Zl
v dBv +

[
4 − (Zl

v)
2

1 − ∫ v
0 Zl

u du

]
dv,

Zl
0 = l,

driven by a Brownian motion B , and it is through stability theory for SDEs that
Pitman (1999) obtains Theorem 4 when μ is a Poisson distribution with mean 1.
Theorem 4 is a complement to the convergence of Galton–Watson forests con-
ditioned on their total size and number of trees given in Chaumont and Pardo
(2009). When l = 0, our techniques cease to work. Indeed, the corresponding pro-
cess F 0 would be a normalized Brownian excursion above zero, and the problem
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IVP(F 0,0) does not have a unique solution, as discussed at the beginning of Sec-
tion 2. Hence, even if our techniques yield tightness in the corresponding limit
theorem with l = 0, we would have to give further arguments to prove that any
subsequential limit is the correct solution IVP(F 0,0). The limit theorem when
l = 0 and α = 2 was conjectured by Aldous (1991), and proved by Drmota and
Gittenberger (1997) by analytic methods. For any α ∈ (1,2], the corresponding
statement was stated and proved by Kersting (1998) by working with the usual
Lamperti transformation, which chooses a particular solution to IVP(F 0,0).

The paper is organized as follows. Theorem 1, Proposition 2 and Corollary 1 are
proved in Section 2 which focuses on the analytic aspects of the Lamperti transfor-
mation and its basic probabilistic implications. The representation CBI processes
of Theorem 2 is then proved in Section 3, together with Proposition 4, Corollaries
4 and 5. Finally, Section 4 is devoted to the stability of the Lamperti transforma-
tion with a proof of Theorem 3, Proposition 1, Corollaries 6, 7 and Theorem 4.
(Corollaries 2 and 3 are considered to follow immediately from Theorem 2; proofs
have been omitted.)

2. The generalized Lamperti transformation as an initial value problem.
Let (f, g) be an admissible breadth-first pair, meaning that f and g are càdlàg
functions with g increasing, f without negative jumps and f (0) + g(0) ≥ 0. We
begin by studying the existence of a nonnegative càdlàg function h which satisfies

h(t) = f

(∫ t

0
h(s) ds

)
+ g(t);(7)

a priori there might be many solutions.
When g is identically equal to zero, a solution is found by the method of time-

changes: let τ be the first hitting time of zero by f , let

it =
∫ t

0

1

f (s ∧ τ)
ds

and consider its right-continuous inverse c so that

h = f ◦ c

satisfies (7) with g = 0, and it is the only solution for which zero is absorbing.
A generalization of this argument is found in Ethier and Kurtz (1986), Chapter 6,
Section 1. In this case the transformation which takes f to h is called the Lamperti
transformation, introduced by Lamperti (1967a). There is a slight catch: if f is
never zero and goes to infinity, then h exists up to a given time (which might be
infinite) when it also goes to infinity. After this time, which we call the explosion
time, we set h = ∞. With this definition, note that c and h become infinite at the
same time.
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Solutions to (7) are not unique even when g = 0 as the next example shows:
take f (x) = √|1 − x|, l > 0, and consider

h1(t) = (2 − t)+

2
and h2(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

2 − t

2
, if t ≤ 2,

0, if 2 ≤ t ≤ 2 + l,
t − 2 − l

2
, if t ≥ 2 + l.

Then h1 and h2 are both solutions to (7). As we discussed in the Introduction,
a probabilistically relevant example of nonuniqueness is obtained when g = 0 and
f is the typical sample path of a normalized Brownian excursion e = (et , t ≥ 1).
[See Chapter 11, Section 3 of Revuz and Yor (1999) for its definition as a
3-dimensional Bessel bridge.] Indeed, with probability 1, e has a continuous tra-
jectory which is positive exactly on (0,1). Hence, 0 is a solution to IVP(e,0).
However, its link with the 3-dimensional Bessel process (and time reversal) al-
lows one to prove that

√
s = o(es) as s → 0+ (and a corresponding statement as

s → 1−) so that almost surely ∫ 1

0

1

es

ds < ∞.

Hence, one can define the Lamperti transform of e, which is a nontrivial solu-
tion to IVP(e,0). The Lamperti transformation is well defined under more general
excursion laws as discussed by Miermont (2003).

We propose to prove Theorem 1 by the following method: we first use the so-
lution for the case g = 0 to establish the theorem when g is piecewise constant.
When g is strictly increasing, we approximate it by a strictly decreasing sequence
of piecewise constant functions gn > g and let hn be the solution to (7) which
uses gn. We then consider the primitive cn of hn starting at zero, show that it
converges, and this is enough to prove the existence of a function whose right-
continuous derivative exists and solves (7). Actually, it is by using primitives that
one can compare the different solutions to (7) (and study uniqueness), and this is
the point of view adopted in what follows. To this end, we generalize (7) into an
initial value problem for the function c.

IVP(f, g, x) =
{

c′+(t) = f ◦ c(t) + g(t),

c(0) = x.

[The most important case for us is x = 0, and we will write IVP(f, g) when refer-
ring to it.] We shall term:

• f the reproduction function,
• g the immigration function,
• x the initial cumulative population,
• c the cumulative population, and
• c′+ the population profile.
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• A solution c to IVP(f, g, x) is said to have no spontaneous generation if the
condition c′+(t) = 0 implies that c(t + s) = c(t) as long as g(t + s) = g(t).

In the setting of Theorem 1, spontaneous generation is only relevant when g is
piecewise constant, and it will be the guiding principle to chose solutions in this
case.

A solution to IVP(f, g, x) without spontaneous generation when g is a constant
γ is obtained by setting fx(s) = f (x + s) + γ , calling hx the Lamperti transform
of fx and setting

ct = x +
∫ t

0
hx(s) ds.

We then have

c′+(t) = hx(t) = fx

(∫ t

0
hx(s) ds

)
= f

(
x +

∫ t

0
hx(s) ds

)
+ γ = f

(
c(t)

) + g(t).

Let g be piecewise constant, say

g =
n∑

i=1

γi1[ti−1,ti )

with γ1 < γ2 < · · · < γn and 0 = t0 < t1 < · · · < tn. Let us solve (7) by pasting
the solutions on each interval: let ψ1 solve IVP(f, γ1,0) on [0, t1] without sponta-
neous generation. Let c equal ψ1 on [0, t1]. Now, let ψ2 solve IVP(f, γ2, c(t1))

without spontaneous generation. [If c(t1) = ∞, we set ψ2 = ∞.] Set c(t) =
ψ2(t − t1) for t ∈ [t1, t2] so that c is continuous. Also, for t ∈ [t1, t2], we have

c′+(t) = ψ ′
2+(t − t1) = f

(
ψ2(t − t1)

) + γ2 = f
(
c(t)

) + g(t).

We continue in this manner. Note that if c′+ reaches zero in [ti−1, ti), say at t , then
c is constant on [t, ti) and that c′+ solves (7) when g is piecewise constant. By
uniqueness of solutions to (7) which are absorbing at zero when g = 0, we deduce
the uniqueness of solutions to IVP(f, g,0) without spontaneous generation when
the immigration is piecewise constant.

We first tackle the nonnegativity assertion of Theorem 1. Since f is only defined
on [0,∞), negative values of c do not make sense in equation (7). One possible
solution is to extend f to R by setting f (x) = f (0) for x ≤ 0.

LEMMA 1. Any solution h to (7) is nonnegative.

PROOF. Let h solve (7) where f is extended by constancy on (−∞,0], and
define

c(t) =
∫ t

0
h(s) ds,
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so that c solves IVP(f, g). We prove that h ≥ 0 by contradiction. Assume there
exists t ≥ 0 such that h(t) < 0. Note that since h has no negative jumps, h can
only reach negative values continuously, and, since h is right-continuous, if it is
negative at a given t , then there exists t ′ > t such that h is negative on [t, t ′). Hence
there exists ε > 0 such that{

t ≥ 0 :h(t) = 0 and h < 0 on (t, t + ε)
} �= ∅.

Let τ be its infimum. We assert that τ > 0 and c(τ ) > 0. Indeed, if τ = 0, then c

would be strictly decreasing and negative on (0, ε), which would imply that

h(t) = f ◦ c(t) + g(t) = f (0) + g(t) ≥ f (0) + g(0) ≥ 0 for t ∈ (0, ε),

a contradiction. A similar argument tells us that c(τ ) > 0. We finish the proof
by showing the existence of t1 ≤ τ and t2 ∈ (τ, τ + ε) such that h(t1) > 0 and
c(t1) = c(t2), implying the contradiction

0 < h(t1) = f ◦ c(t1) + g(t1) = f ◦ c(t2) + g(t1) ≤ f ◦ c(t2) + g(t2) ≤ 0.

Indeed, given that c(τ ) > 0 we can assume that c(τ + ε) > 0 by choosing a
smaller ε, and then let τ1 be the last time before τ that c is below c(τ + ε) and
τ2 the first instant after τ1 that c equals c(τ ). Note that τ2 ≤ τ . Since∫ τ2

τ1

h(r) dr = c(τ2) − c(τ1) = c(τ ) − c(τ + ε) > 0,

there exists r ∈ (τ1, τ2) such that h(r) > 0 and by construction c(r) ∈ c((τ, τ + ε)).
�

2.1. Monotonicity and existence. We now establish a basic comparison lemma
for solutions to IVP(f, g) which will lead to the existence assertion of Theorem 1.

LEMMA 2. Let c and c̃ solve IVP(f, g) and IVP(f̃ , g̃). If

g(0) + f (0) < g̃(0) + f̃ (0), f ≤ f̃ , g ≤ g̃

and either g− < g̃− or f− < f̃−, then ct < c̃t for every t that is strictly positive
and strictly smaller than the explosion time of c.

It is important to note that the inequality c ≤ c̃ cannot be obtained from the
hypothesis g ≤ g̃ using the same reproduction function f . Indeed, we would oth-
erwise have uniqueness for IVP(f, g) which, as we have seen, is not the case even
when g = 0. Also, since both c and c̃ begin at 0 and equal ∞ after their explosion
time, we always have the inequality c ≤ c̃ under the conditions of Lemma 2.

PROOF OF LEMMA 2. Let τ = inf{t > 0 : c(t) = c̃(t)}. Since

c′+(0) = f (0) + g(0) < f (0) + g̃(0) = c̃′+(0),
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and the right-hand derivatives of c and c̃ are right-continuous, then τ > 0 and c < c̃

on (0, τ ). Note then that the explosion time of c cannot be smaller than τ , since
this would force c̃ to explode before τ and so c would equal c̃ before τ .

We now argue by contradiction. If τ were finite, we know that

c(τ ) = c̃(τ ),

leaving us with two cases,

c(τ ) = c̃(τ ) = ∞ and c(τ ) = c̃(τ ) < ∞.

In the former, we see that τ is the explosion time of c and so the statement of
Lemma 2 holds. In the latter case,

c′−(τ ) = f
(
c(τ )−) + g(τ−) = f

(
c̃(τ )−) + g(τ−)

< f̃
(
c̃(τ )−) + g̃(τ−) = c̃′−(τ ).

It follows that c′− < c̃′− in some interval (τ − ε, τ ). However, for 0 < t < τ , we
have c(t) < c̃(t), and this implies the contradiction

c(τ ) < c̃(τ ). �

PROOF OF THEOREM 1, EXISTENCE. Consider a sequence of piecewise con-
stant càdlàg functions gn satisfying gn+1(0) < gn(0), gn+1− < gn− and such that
gn → g pointwise. Let cn solve IVP(f, gn) with no spontaneous generation. By
Lemma 2, the sequence of nonnegative functions cn is decreasing, so that it con-
verges to a limit c. Let

τ = inf
{
t ≥ 0 : c(t) = ∞} = lim inf

n→∞
{
t ≥ 0 : cn(t) = ∞}

.

Since f is right-continuous and c < cn, f ◦cn+gn converges pointwise to f ◦c+g

on [0, τ ). By bounded convergence, for t ∈ [0, τ ),

c(t) = lim
n→∞ cn(t) = lim

n→∞

∫ t

0
f ◦ cn(s) + gn(s) ds =

∫ t

0
f ◦ c(s) + g(s) ds.

Hence, h = c′+ proves the existence part of Theorem 1. �

2.2. Uniqueness. To study uniqueness of IVP(f, g), we use the following
lemma.

LEMMA 3. If g is strictly increasing, and c solves IVP(f, g), then c is strictly
increasing.
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PROOF. Note that by Lemma 1, the right-hand derivative of c is nonnegative,
so that c is nonnegative and nondecreasing. By contradiction, if c had an interval
of constancy [s, t], with t > s, then

0 = c′+
(

t + s

2

)

= f ◦ c

(
t + s

2

)
+ g

(
t + s

2

)

> f ◦ c(s) + g(s)

= 0. �

REMARK. As we shall see in the proof of the uniqueness assertion of Theo-
rem 1, if we can guarantee that all solutions to IVP(f, g) are strictly increasing,
then uniqueness holds for IVP(f, g). Note that if f + g(0) is strictly positive, then
f (x) + g(t) > 0 for all x ≥ 0 and t ≥ 0, so that all solutions to IVP(f, g) are
strictly increasing.

PROOF OF THEOREM 1, UNIQUENESS. Let c and c̃ solve IVP(f, g). To show
that c = c̃, we argue by contradiction by studying their inverses i and ĩ.

Suppose that c and c̃ are strictly increasing. Then i and ĩ are continuous. If
c �= c̃, then i �= ĩ, and we might without loss of generality suppose there is x1 such
that i(x1) < ĩ(x1). Let

x0 = sup
{
x ≤ x1 : i(x) ≥ ĩ(x)

}
,

and note that, by continuity of i and ĩ, x0 < x1 and i ≤ ĩ on (x0, x1]. Since i and ĩ

are continuous, they satisfy

i(y) =
∫ y

0

1

f (x) + g ◦ i(x)
dx.

There must exist x ∈ [x0, x1] such that i ′(x) and ĩ′(x) both exist, and the former
is strictly smaller since otherwise the inequality ĩ ≤ i would hold on [x0, x1]. For
this value of x,

f (x) = 1

ĩ′(x)
− g ◦ ĩ(x) <

1

i ′(x)
− g ◦ i(x) = f (x),

which is a contradiction.
Note that all solutions to IVP(f, g) are strictly increasing whenever g is strictly

increasing (by Lemma 3) or f is strictly positive, which implies uniqueness to
IVP(f, g) in these cases.

When g is constant, and f +g is absorbed at 0, meaning that if f (s)+g(0) = 0,
then f (t) + g(0) = 0 for all t ≥ s, we can directly use the Lamperti transforma-
tion to obtain uniqueness. Indeed, solutions to IVP(f, g) do not have spontaneous
generation and, as stated in the introduction to Section 2 (cf. page 1598), there is
an unique solution to IVP(f + g(0),0) without spontaneous generation. �



1604 M. E. CABALLERO, J. L. PÉREZ GARMENDIA AND G. URIBE BRAVO

2.3. Uniqueness in the stochastic setting. We now verify that solutions to (4)
are unique even if the subordinator Y is compound Poisson.

PROOF OF PROPOSITION 2. Let X be a spLp and Y an independent subordi-
nator. We first prove that there is an unique process Z which satisfies

Zt = x + X

(∫ t

0
Zs ds

)
+ Yt .

When Y is an infinite activity subordinator (its Lévy measure is infinite or equiv-
alently it has jumps in any nonempty open interval) or it has positive drift, then its
trajectories are strictly increasing, and so uniqueness holds, thanks to Theorem 1.

It then suffices to consider the case when Y is a compound Poisson process.
There is a simple case we can establish: if X is also a subordinator, and x > 0,
then all solutions to IVP(X,x + Y) are strictly increasing, and so uniqueness holds
(again by Theorem 1). It remains to consider two cases: when X is a subordina-
tor and x = 0 and when X is not a subordinator. In the first, note that zero solves
IVP(X,0), and since every solution is nonnegative, zero is the smallest one. To
prove uniqueness, let Cx be the (unique) solution to IVP(X,x), so that Cx is
greater than any solution to IVP(X,0) by Lemma 2. If we prove that as x → 0,
Cx → 0, then all solutions to IVP(X,0) are zero, and so uniqueness holds. For
this, use the fact that as t → 0, Xt/t converges almost to the drift coefficient of X,
say d ∈ [0,∞) [cf. Bertoin (1996), Chapter III, Proposition 8, page 84] so that∫

0+
1

Xs

ds = ∞.

Let I x be the (continuous) inverse of Cx (note that Cx is strictly increasing). Since

I x(t) =
∫ t

0

1

x + Xs

ds,

we see, by Fatou’s lemma, that I x → ∞ as x → 0, so that Cx → 0. Now with X

still a subordinator and Y compound Poisson, the preceding case implies that the
solution to IVP(X,Y ) is unique until the first jump time of Y ; after this jump time,
all solutions are strictly increasing, and hence uniqueness holds.

The only remaining case is when Y is compound Poisson and X is not a sub-
ordinator. The last hypothesis implies that 0 is regular for (−∞,0), meaning that
on every interval [0, ε), X visits (−∞,0); cf. Bertoin (1996), Chapter VII, Theo-
rem 1, page 189. From this, it follows that if T is any stopping time with respect to
the filtration σ(Xs, s ≤ t) ∨ σ(Y ), t ≥ 0, then X visits (−∞,XT ) on any interval
to the right of T . Let C be any solution to IVP(X,x + Y); we will show that it
has no spontaneous generation. Since there is an unique solution without sponta-
neous generation when Y is piecewise constant (as discussed in the introduction to
Section 2), we get uniqueness. Let

[Ti−1, Ti), i = 1,2, . . . ,
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be the intervals of constancy of Y ; if C has spontaneous generation on one of these,
say [Ti−1, Ti), then X reaches the level −YTi−1 and then increases, which we know
does not happen since the hitting time of {−YTi−1} by the process X is a stopping
time with respect to the filtration σ(Xs, s ≤ t) ∨ σ(Y ), t ≥ 0.

We end the proof by showing that any càdlàg process Z satisfying

x + X−
(∫ t

0
Zs ds

)
+ Yt ≤ Zt ≤ x + X

(∫ t

0
Zs ds

)
+ Yt(8)

actually satisfies

Zt = x + X

(∫ t

0
Zs ds

)
+ Yt .

Let

Ct =
∫ t

0
Zs ds.

When Y is strictly increasing, an argument similar to the proof of the Mono-
tonicity lemma (Lemma 2) tells us that C is strictly increasing, so that C actually
satisfies IVP(X,x + Y).

When Y = 0, the previous argument shows that, as long as Z has not reached 0,
C coincides with the solution to IVP(X,x). If Z is such that

inf{t ≥ 0 :Zt = 0} = inf{t ≥ 0 :Zt− = 0},
then C solves IVP(X,x), which has an unique solution, so that (8) has an unique
solution. We then see that the only way in which Z can cease to solve IVP(X,x)

is if X is such that

T0+ = inf{t ≥ 0 :x + Xt− = 0} < inf{t ≥ 0 :x + Xt = 0} = T0,

which is ruled out almost surely by quasi left-continuity of X. Indeed, T0+ is the
increasing limit of the stopping times

Tε = inf{t ≥ 0 :x + Xt < ε},
which satisfy Tε < Tε′ if ε < ε′ since X has no negative jumps. Hence X is almost
surely continuous at T0+ which says that x + XT0+ = 0 almost surely. In the re-
maining case when Y is a (nonzero) compound Poisson process, we condition on
Y and argue similarly on constancy intervals of Y . �

2.4. Explosion. We now turn to the explosion criteria of solutions of IVP(f, g)

of Proposition 3.

PROOF OF PROPOSITION 3. (1) If
∫ ∞ 1/f +(x) = ∞, let c be any solution

to IVP(f, g). We show that c is finite at every t > 0. Indeed, using the arguments
of Lemma 2, we see that c is bounded by any solution to IVP(f,1 + g(t)) on the
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interval [0, t]. A particular solution to IVP(f,1 + g(t)) is obtained by taking the
right-continuous inverse of

y �→
∫ y

0

1

f (x) + 1 + g(t)
dx.

Since ∫ ∞
0

1

f +(x) + 1 + g(t)
dx = ∞,

the particular solution we have considered is everywhere finite.
(2) Let c be a solution to IVP(f, g) where f is an explosive reproduction func-

tion, limx→∞ f (x) = ∞ and g(∞) exceeds the maximum of −f . To prove that c

explodes, choose T > 0 such that f (x) + g(t) > 0 for all x ≥ 0 and t ≥ T . Then
f ◦ c + g > 0 on [T ,∞). Let M = c(T ). We then consider the right-continuous
inverse i of c (which is actually an inverse on [M,∞)) and note that for y > M ,

i(y) − i(M) =
∫ y

M

1

f (x) + g ◦ i(x)
dx ≤

∫ y

M

1

f (x)
dx.

Hence, i(y) converges to a finite limit as y → ∞ so that c explodes. �

2.5. Application of the analytic theory. We now pass to a probabilistic appli-
cation of Theorem 1.

PROOF OF COROLLARY 1. We consider first the case where Y is determin-
istic. Since Y is assumed to be strictly increasing, we can consider the unique
nonnegative stochastic process Z which satisfies

Zt = x + X∫ t
0 Zs ds + Yt .

(The reader can be reassured by Lemma 5 regarding any qualms on measurability
issues.) Since Z is nonnegative, Theorems 4.1 and 4.2 of Kallenberg (1992) imply
the existence of a stochastic process X̃ with the same law as X such that

Zt = x +
∫ t

0
Z1/α

s dX̃s + Yt .

Hence Z is a weak solution to (6).
Conversely, if Z is a solution to (6), we apply Theorems 4.1 and 4.2 of

Kallenberg (1992) to deduce the existence of a stochastic process X̃ with the same
law as X such that

Zt = x + X̃∫ t
0 Zs ds + Yt .

Considering the mapping (f, g) �→ F(f,g) that associates to every admissible
breadth-first pair the solution h to (7), we see that Z has the law of F(X̃, x + Y).
Hence, weak uniqueness holds for (6).

When Y is not deterministic but independent of X, we just reduce to the pre-
vious case by conditioning on Y [or by augmenting the filtration with the σ -field
σ(Yt : t ≥ 0)]. �
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3. CBI processes as Lamperti transforms. We now move on to the analysis
of Theorem 2. Let X and Y be independent Lévy processes such that X is spec-
trally positive and Y is a subordinator under the probability measure P. Call �

and 	 their Laplace exponents (taking care to have 	 ≥ 0 as for subordinators).
Note that the trajectories of Y are either zero, piecewise constant (in the compound
Poisson case), or strictly increasing.

Let Z be the stochastic process that solves

Zt = x + X∫ t
0 Zs ds + Yt

and has no spontaneous generation (when Y is compound Poisson). To prove that
Z is a CBI(�,	), we should see that it is a càdlàg and homogeneous Markov pro-
cess and that there exist functions ut : (0,∞) → (0,∞) and vt : (0,∞) → (0,∞),
satisfying ⎧⎨

⎩
∂

∂t
ut (λ) = −� ◦ ut (λ),

u0(λ) = λ,

and

⎧⎨
⎩

∂

∂t
vt (λ) = 	

(
ut (λ)

)
,

v0(λ) = 0,

(9)

and such that for all λ, t ≥ 0,

E
(
e−λZt

) = e−xut (λ)−vt (λ).

[At this point it should be clear that the equation for u characterizes it and that,
actually, for fixed λ > 0, t �→ ut (λ) is the inverse function to

x �→
∫ λ

x

1

�(y)
dy.

]

3.1. A characterization lemma and a short proof of Lamperti’s theorem. The
way to compute the Laplace transform of Z is by showing, with martingale argu-
ments to be discussed promptly, that

E
(
e−λZt

) =
∫ t

0
E

([
�(λ)Zs − 	(λ)

]
e−λZs

)
ds.(10)

We are then in a position to apply the following result.

LEMMA 4 (Characterization lemma). If Z is a nonnegative homogeneous
Markov process with càdlàg paths starting at x and satisfying (10) for all λ > 0,
then Z is a CBI(�,	) that starts at x.

REMARK. Note that the hypotheses on the process Z of Lemma 4 do not allow
us to use generator arguments which would shorten the proof, for example, by
using the characterization of the infinitesimal generator of a CBI process through
exponential functions.
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PROOF OF LEMMA 4. Let us prove that the function

G(s) = E
(
e−ut−s (λ)Zs−vt−s (λ))

satisfies G′(s) = 0 for s ∈ [0, t], so that it is constant on [0, t], implying the equal-
ity

E
(
e−λZt

) = G(t) = G(0) = e−xut (λ)−vt (λ).

We then see that Zt has the same one-dimensional distributions as a CBI(�,	)

that starts at x, so that by the Markov property, Z is actually a CBI(�,	).
To see that G′ = 0, we first write

G(s + h) − G(s) = (
G(s + h) − E

(
e−ut−s−h(λ)Zs−vt−s−h(λ)))

(11)
+ (

E
(
e−ut−s−h(λ)Zs−vt−s−h(λ)) − G(s)

)
.

We now analyze both summands to later divide by h and let h → 0.
For the first summand, use (10) to get

G(s + h) − E
(
e−Zsut−s−h(λ)−vt−s−h(λ))

= e−vt−s−h(λ)
∫ s+h

s
E

(
e−Zrut−s−h(λ)[Zr� ◦ ut−s−h(λ) − 	 ◦ ut−s−h(λ)

])
dr,

so that, since Z has càdlàg paths, we get

lim
h→0

1

h

[
G(s + h) − E

(
e−Zsut−s−h(λ)−vt−s−h(λ))]

= E
(
e−ut−s (λ)Zs−vt−s (λ)[Zs� ◦ ut−s(λ) − 	 ◦ ut−s(λ)

])
.

For the second summand in the right-hand side of (11), we differentiate under
the expectation to obtain

lim
h→0

1

h
E

(
e−ut−s−h(λ)Zs−vt−s−h(λ) − e−ut−s (λ)Zs−vt−s (λ))

= E

(
e−ut−s (λ)Zs−vt−s (λ)

[
Zs

∂ut−s(λ)

∂s
+ ∂vt−s(λ)

∂s

])
.

We conclude that G′(s) = 0 for all s ∈ [0, t], using (9). �

A simple case of our proof of Theorem 2 arises when Y = 0. Recall from Propo-
sition 4 the notation

Ct =
∫ t

0
Zs ds.

PROOF OF THEOREM 2 WHEN 	 = 0. This is exactly the setting of Lam-
perti’s theorem stated by Lamperti (1967a).
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When 	 = 0 (or equivalently, Y is zero), then Ct is a stopping time for X

[since the inverse of C can be obtained by integrating 1/(x + X)]. Since Z is the
time-change of X using the inverse of an additive functional, Z is a homogeneous
Markov process. [Another proof of the Markov property of Z, based on proper-
ties of IVP(X,x + Y) is given in (3) of Lemma 5.] Also, we can transform the
martingale

e−λXt − �(λ)

∫ t

0
e−λXs ds

by optional sampling into the martingale

e−λZt − �(λ)

∫ t

0
e−λZsZs ds.

We then take expectations and apply Lemma 4. �

3.2. The general case. For all other cases, we need the following measur-
ability details. Consider the mapping Ft which takes a càdlàg function f with
nonnegative jumps and starting at zero, a càdlàg g starting at zero (either piece-
wise constant or strictly increasing), and a nonnegative real x to c′+(t) where c

solves IVP(f, x + g) and has no spontaneous generation (if g is piecewise con-
stant). [Note that these conditions uniquely specify a solution to IVP(f, x + g).]
Then

Zt+s = Ft(XCs+· − XCs ,Ys+· − Ys,Zs).(12)

The mapping Ft is measurable. Indeed, we can view it as the composition of three
measurable mappings. The first one is the mapping that associates to (f, g +x) the
unique solution to IVP(f, g) (without spontaneous generation), from the space of
admissible breadth-first pairs equipped with the σ -fields generated by the projec-
tions (f, g) �→ f (t) and (f, g) �→ g(t) for any t ≥ 0 to the space of nondecreasing
continuous functions with càdlàg derivative (equipped also with the σ -field gen-
erated by projections). This mapping is measurable when g = 0 by measurability
of the Lamperti transformation. Next, when g is piecewise constant this follows
by concatenation of Lamperti transforms as in the introduction to Section 2, and
for strictly increasing g, this follows since the unique solution to IVP(f, g) is the
limit of solutions to IVP(f, gn) with piecewise constant functions gn, as seen in
the proof of Theorem 1. The second mapping sends a continuous function with
càdlàg derivative to its derivative, which is measurable by approximation of the
derivative by a sequence of differential quotients. The third mapping is simply the
projection of a càdlàg function to its value at time t ; its measurability is proved in
Theorem 12.5, page 134 of Billingsley (1999).

We suppose that our probability space (�,F ,P) is complete, and let T stand
for the sets in F of probability zero. For fixed y, t ∈ [0,∞], let G t

y = FX
y ∨

F Y
t ∨ T .
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LEMMA 5 (Measurability details). (1) The filtration (G t
y , y ≥ 0) satisfies the

usual hypotheses.
(2) Ct is a stopping time for the filtration (G t

y , y ≥ 0), and we can therefore
define the σ -field

G t
Ct

= {
A ∈ F :A ∩ {Ct ≤ y} ∈ G t

y

}
.

(3) Z is a homogeneous Markov process with respect to the filtration (G t
Ct

,

y ≥ 0).

PROOF. (1) We just need to be careful to avoid one of the worst traps involv-
ing σ -fields by using independence; cf. Chaumont and Yor (2003), Example 25,
page 29.

(2) We are reduced to verifying

{Ct < y} ∈ G t
y .(13)

We prove (13) in two steps, first when Y is piecewise constant, then when Y is
strictly increasing.

Let Y be piecewise constant, jumping at the stopping times T1 < T2 < · · · , and
set T0 = 0. We first prove that

{CTn < y} ∩ {Tn ≤ t} ∈ G t
y(14)

and this result and a similar argument will yield (13). The membership in (14)
is proved by induction using the fact that C can be written down as a Lamperti
transform on each interval of constancy of Y . Let It be the functional on the sub-
space of Skorohod space consisting of functions with nonnegative jumps that aids
in defining the Lamperti transformation: when applied to a given function f , we
first define

T0(f ) = inf
{
t ≥ 0 :f (t) = 0

}
and then

It (f ) =
∫ t∧T0(f )

0

1

f (s)
ds.

We then have

{CT1 < y} ∩ {T1 ≤ t} = {
Iy(X + Y0) > T1 ∧ t

} ∩ {T1 ≤ t} ∈ G t
y .

If we suppose that

{CTn < y} ∩ {Tn ≤ t} ∈ G t
y ,
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then the decomposition

{CTn+1 < y} ∩ {Tn+1 ≤ t}

= ⋃
q∈(0,y)∩Q

∞⋃
m=1

2−m�2m(y−q)�⋃
k=0

{
k

2m
≤ CTn <

k + 1

2m

}
∩ {Tn+1 ≤ t}

∩ {
Iq(x + X(k/2m)+· + YTn) > Tn+1 − Tn

}
allows us to obtain (14). Then the decomposition

{Ct < y} =
∞⋃

n=0

⋃
q∈(0,y)∩Q

∞⋃
m=1

2−m�2m(y−q)�⋃
k=0

{Tn ≤ t < Tn+1}

∩
{

k

2m
≤ CTn <

k + 1

2m

}

∩ {
Iq(x + X(k/2m)+· + YTn) > t − Tn

}
gives (13) when Y is piecewise constant.

When Y is strictly increasing, consider a sequence εn decreasing strictly to zero
and a decreasing sequence (πn) of partitions of [0, t] whose norms tend to zero,
with

πn = {
tn0 = 0 < tn1 < · · · < tnkn

= t
}
.

Consider the process Yn = (Y n
s )s∈[0,t] defined by

Yn
s = εn +

kn∑
i=1

Ytni
1[tni−1,t

n
i )(s) + Yt1s=t .

Since πn is contained in πn+1 and εn > εn+1, Yn > Yn+1. If Cn is the solution
to IVP(X,x + Yn) with no spontaneous generation (defined only on [0, t]), then
Lemma 2 gives Cn > Cn+1. Hence, (Cn) converges as n → ∞, and since the limit
is easily seen to be a solution to IVP(X,x + Y), the limit must equal C by the
uniqueness statement in Theorem 1. To obtain (13), we note that{

Cn
t < y

} ∈ FX
y ∨ F Yn

t ⊂ FX
y ∨ F Y

t

and

{Ct < y} = ⋃
n

{
Cn

t < y
}
.

(3) Mimicking the proof of the Strong Markov Property for Brownian motion
[as in Kallenberg (2002), Theorem 13.11] and using (13), one proves that the pro-
cess

(XCt+s − XCt , Yt+s − Yt )s≥0
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has the same law as (X,Y ) and is independent of G t
Ct

, which we can restate as

(XCt+s − XCt , Yt+s − Yt )s≥0 has the same law as (X,Y ) and is indepen-

dent of (XCt , Y t ) where X
Ct
s = XCt∧s and Y t

s = Yt∧s .

Equation (12) implies that the conditional law of Zt+s given G s
Cs

is actually Zs

measurable, implying the Markov property. The transition semigroup is homoge-
neous and in t units of time is given by the law Pt(x, ·) of Ft(X,Y, x) under P.
Note that this semigroup is conservative on [0,∞]. �

We will need Proposition 4 for our proof of Theorem 2.

PROOF OF PROPOSITION 4. Consider the filtration G = (Gt ) given by

Gt = σ(Xs : s ≤ t) ∨ σ(Ys : s ≥ 0) ∨ T .

If Y is strictly increasing, then C is strictly increasing and continuous. For fixed
ε > 0, let T1 < T2 < · · · be the jumps of Y of magnitude greater than ε. Arguing as
in Lemma 5, we see that CTi

is a G -stopping time which is the almost sure limit
of the G -stopping times C(Ti−1/n)+ as n → ∞. Since X is a G -Lévy process and
C(Ti−1/n)+ < CTi

for all n, quasi left-continuity of X implies that X ◦ C does not
jump at Ti almost surely. Since this is true for any ε > 0, then X ◦ C and Y do not
jump at the same time.

If Y is compound Poisson, we argue on its constancy intervals, denoted
[Ti−1, Ti), i = 1,2, . . . . On the set {Cs < CTi

for all s < Ti}, we can argue as
above, using quasi left-continuity. On the set {Cs = CTi

for some s < Ti}, we note
that X reaches −YTi

for the first time at CTi
. The hitting time of −YTi

by X is a
G -stopping time which is the almost sure limit of the hitting times of −YTi

+ 1/n

as n → ∞. The latter are strictly smaller than the former since X has no negative
jumps. Hence, by quasi left-continuity, X is almost surely continuous at CTi

. �

PROOF OF THEOREM 2. Since(
e−λXy − �(λ)

∫ y

0
e−λXs ds

)
t≥0

is a (G t
y )y≥0-martingale, it follows that M = (Mt)t≥0, given by

Mt = e−λXCt − �(λ)

∫ t

0
e−λXCs Zs ds,

is a (G t
Ct

)t≥0-local martingale. With respect to the latter filtration, the stochastic
process N = (Nt)t≥0 given by

Nt = e−λYt + 	(λ)

∫ t

0
e−λYs ds
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is a martingale. Hence e−λX◦C and e−λ(x+Y ) are semimartingales to which we may
apply integration by parts to get

e−λZt = local martingale +
∫ t

0
e−λZs

[
�(λ)Zs − 	(λ)

]
ds

+ [
e−λX◦C, e−λx−λY ]

t ,

where the local martingale part is

t �→
∫ t

0
e−λ(x+Ys) dMs +

∫ t

0
e−λX◦Cs dNs.

Since X ◦C and Y do not jump at the same time by Proposition 4 and Y is of finite
variation, we see that [

e−λX◦C, e−λx−λY ] = 0;
cf. Kallenberg (2002), Theorem 26.6(vii).

We deduce that

e−λZt −
∫ t

0
e−λZs

[
�(λ)Zs − 	(λ)

]
ds

is a martingale, since it is a local martingale whose sample paths are uniformly
bounded on compacts thanks to the nonnegativity of Z. Taking expectations, we
get (10), and we conclude by applying Lemma 4 since Z is a Markov process
thanks to Lemma 5. �

3.3. Translating a law of the iterated logarithm.

PROOF OF COROLLARY 4. Let X be a spLp with Laplace exponent � , 	̃ be
the right-continuous inverse of � and

α(t) = log|log t |
	̃(t−1 log|log t |) .

Recall that 	̃ is the Laplace exponent of the subordinator T = (Tt , t ≥ 0) where

Tt = inf{s ≥ 0 :Xs ≤ −t};
cf. Bertoin (1996), Chapter VII, Theorem 1. If d̃ is the drift coefficient of 	̃, then
Proposition 1 of Bertoin [(1996), Chapter III] gives

lim
λ→∞

	̃(λ)

λ
= d̃.

Hence,

as t → 0+
{

α(t) ∼ t/d̃, if d̃ > 0,
t = o

(
α(t)

)
, if d̃ = 0.
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We now assert that if at → 1 as t → 0, then

lim
t→0

α(at t)

α(t)
= 1.

This is clear when d̃ > 0, so suppose that d̃ = 0. Since t �→ log|log t | is slowly
varying at zero, it suffices to show that if bλ → 1 as λ → ∞, then

lim
λ→∞

	̃(bλλ)

	̃(λ)
= 1.(15)

However, concavity of 	̃, increasingness and nonnegativity give (if b > 1)

	̃(bλ)/b ≤ 	̃(λ) ≤ 	̃(bλ),

which implies (15).
As noted by Bertoin (1995), Fristedt and Pruitt (1971) prove the existence of a

constant ζ �= 0 such that

lim inf
t→0

Xt

α(t)
= ζ.

Let Z be the unique solution to

Zt = x + X∫ t
0 Zs ds + Yt

with x > 0, where X and Y are independent Lévy processes, with X spectrally
positive of Laplace exponent � and Y a subordinator with Laplace exponent 	.
Since Z0 = x, and Z is right-continuous, then

lim
t→0+

1

t

∫ t

0
Zs ds = x

almost surely. Hence

lim
t→0+

α(
∫ t

0 Zs ds)

α(xt)
= 1

and so

lim inf
t→0+

X∫ t
0 Zs ds

α(xt)
= ζ.

On the other hand, if d is the drift of 	, then

lim
t→0

Yt

t
= d

[cf. Bertoin (1996), Chapter III, Proposition 8] so that if d̃ = 0, Yt = o(α(t)) and

lim inf
t→0+

Zt − x

α(xt)
= ζ.
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If d̃ > 0, then by Proposition 8 of Bertoin [(1996), Chapter III], we actually have

lim inf
t→0

Xt

α(t)
= −1

so that

lim inf
t→0+

Zt − x

α(xt)
= −1 + dd̃

x
. �

3.4. Explosion criteria for CBI. As a probabilistic application of the deter-
ministic explosion criteria of Proposition 3, we prove Corollary 5.

PROOF OF COROLLARY 5. Let x > 0, and consider a spectrally positive Lévy
process X with Laplace exponent � independent of a subordinator Y with Laplace
exponent 	. Let Z be the unique solution to

Zt = x + X∫ t
0 Zs ds + Yt ,

which is a CBI(�,	) that starts at x. Also, let

Ct =
∫ t

0
Zs ds.

(1) Let Y be a nonzero subordinator. Path by path, we see that Z jumps to
infinity if and only if either X jumps to infinity or Y does. However, the probability
that either X or Y jumps to infinity is positive if and only if either �(0) > 0 or
	(0) > 0. When Y is zero, Z jumps to infinity if X jumps to infinity and never
reaches −x, which has positive probability.

(2) The Ogura–Grey explosion criterion for continuous state branching pro-
cesses (as stated just before Corollary 5) can be restated as follows: a CBI(�,0)

started at x reaches ∞ continuously at a finite time with positive probability if and
only if �(0) = 0, and � is an explosive branching mechanism. It is also simple to
see that a CBI(�,0) jumps to ∞ at a finite time with positive probability if and
only if �(0) > 0.

Path by path, we see that if Z reaches ∞ continuously (say at time τ ), then
Y does not jump to infinity on [0, τ ). Also, if we let C̃ be the unique solu-
tion to IVP(x + Yτ− + ε + X,0) and Z̃ as the right-hand derivative of C̃, where
ε > 0, then C < C̃ on (0, τ ) (as follows from the argument proving Lemma 2).
Hence C̃ explodes on [0, τ ). We conclude that the branching mechanism of
Z̃ is explosive by the Ogura–Grey explosion criterion. Hence, the assumption
P(Z reaches ∞ continuously) > 0 implies that �(0) = 0 and that � is an explo-
sive branching mechanism.

On the other hand, if �(0) = 0 and � is explosive, let 	̃ = 	 − 	(0), Y be
a subordinator independent of X with Laplace exponent 	̃, so that sending Y
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to infinity at an exponential random variable with parameter 	(0) (independent
of both X and Y ) leaves us with a subordinator with Laplace exponent 	 inde-
pendent of X. Let C1 be a solution to IVP(x/2 + X,0) and C2 be a solution to
IVP(x + X,Y ) so that C1 ≤ C2, and hence C2 explodes if C1 does. Let Zi be
the right-hand derivative of Ci . Z1 is a CBI(�,0) starting at x/2 while Z2 is a
CBI(�, 	̃) started at x; notice that the process Z obtained by sending Z2 to in-
finity at the same exponential as Y leaves us with a CBI(�,	). By assumption,
X cannot jump to infinity and Z1 explodes with positive probability. Hence, Z2

explodes with positive probability and can only do so continuously. Hence,

P(Z reaches ∞ continuously) ≥ e−t	(0)P
(
Z2 reaches ∞ continuously by time t

)
and the right-hand side is positive for t large enough.

(3) We also deduce that

P(Z reaches ∞ continuously) = 1

if and only if 	(0) = 0 and P(Z2 reaches ∞ continuously) = 1. A necessary and
sufficient condition for the latter is that, additionally, 	 is not zero. Indeed, when
	 is not zero, then Yt → ∞ as t → ∞. Since � is explosive and 	(0) = 0, then
limt→∞ Xt = ∞ and so Proposition 3 implies that the solution to IVP(X,x + Y)

explodes. If 	 = 0, then Z2 is a CBI(�,0), which cannot explode continuously
almost surely since the probability that Z2 is absorbed at zero is the probability
that X goes below −x, which is positive. �

4. Stability of the generalized Lamperti transformation. We now turn to
the proof of Theorems 3 and 4, and of Corollaries 6 and 7, which summarize the
stability theory for IVP(f, g).

4.1. Proof of the analytic assertions. In order to compare the initial value
problem IVP(f, g) with the functional inequality (5), we now construct an ex-
ample of an admissible breadth-first pair (f, g) such that IVP(f, g) has an unique
solution, but (5) has at least two. Indeed, consider g = 0, and take

f (x) =
{√

1 − x, if x < 1,
1, if x ≥ 1.

Then IVP(f, g) has a unique solution, by Theorem 1, since f is strictly positive.
The solution is the function c given by

c(t) =
{

t − t2/4, if t ≤ 2,
c(2) + t − 2, if t ≥ 2.

Since c is strictly increasing, it also solves (5). However, the function

c̃(t) =
{

c(t), if t ≤ 2,
c(2), if t ≥ 2,
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is also a solution to (5). Hence, the assumption of Theorem 3 is stronger than just
uniqueness of IVP(f, g) although related (as seen by comparing Theorem 1 and
Proposition 1).

We start with a proof of Proposition 1.

PROOF OF PROPOSITION 1. Let c be any nondecreasing solution to∫ t

s
f− ◦ c(r) + g(r) dr ≤ c(t) − c(s) ≤

∫ t

s
f ◦ c(r) + g(r) dr for s ≤ t

such that c(0) = 0. This automatically implies continuity of c and so f ◦ c + g is
càdlàg and does not jump downwards.

Note that c is strictly increasing if f− + g(0) is strictly positive or g is strictly
increasing, we have equalities in (5), implying that c solves IVP(f, g) which has
a unique solution with these hypotheses. Indeed, if f− + g(0) is a positive func-
tion, then the lower bound integrand is strictly positive, and so c cannot have a
constancy interval. If on the other hand g is strictly increasing, note first that the
nondecreasing character of c implies, through (5), that f ◦ c + g is nonnegative
(first almost everywhere, but then everywhere since it is càdlàg). Also, f ◦ c + g

can only reach zero continuously since it lacks negative jumps. If c had a constancy
interval [s, t] with s < t , there would exist r ∈ (s, t) such that

f− ◦ c(s) + g(s) = f− ◦ c(s) + g(r) = 0,

which implies that g has a constancy interval on [0, t], a contradiction. Hence,
c has no constancy intervals.

When g is a constant and f− +g is absorbed at zero, then also f +g is absorbed
at zero and at the same time. Hence, c is strictly increasing until it is absorbed, so
that again both bounds for the increments of c are equal. Then c solves IVP(f, g)

which has a unique solution under this hypothesis. �

We now continue with a proof of Theorem 3. It is divided in two parts: con-
vergence of the cumulative population which is then used to prove convergence of
population profiles. The strategy is simple: we first use the functional equations
satisfied by (cn) to prove that cn ∧ K is uniformly bounded and equicontinuous.
Then, we pass to the limit in the functional equations satisfied by cn to see that
any subsequential limit of cn ∧K equals c ∧K . [This is where the assumption that
(5) has an unique solution comes into play.] Having established convergence of
cn to c, we then verify some technical hypotheses enabling us to apply results on
continuity of composition and addition on adequate subspaces of Skorohod space
and deduce that fn ◦ cn + gn converges to f ◦ c + g.

PROOF OF THEOREM 3, CONVERGENCE OF CUMULATIVE POPULATIONS.
Let K,ε > 0 and consider the sequence cn ∧ K consisting of nondecreasing func-
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tions with càdlàg right-hand derivatives. Since

0 ≤ D+cn ∧ K(t)

= 1cn(t)≤K ×
{[

fn ◦ cn

(�t/σn�σn

) + gn(t)
]+

, if σn > 0,
fn ◦ cn(t) + gn(t), if σn = 0,

≤ sup
y≤K

f (y) + g(t) + ε

for n large enough (by the convergence of fn → f on [0,K] with the J1 topology
and gn → g on [0, t] with the J1 topology), we see that the sequence cn ∧K is uni-
formly bounded and equicontinuous on compacts. To prove convergence of cn ∧ K

(uniformly on compact sets), it is enough to prove by Arzelà–Ascoli that any sub-
sequential limit is the same. Let t > 0 and cnk

∧ K be a uniformly convergent
subsequence on [0, t]. Denote by c̃ its uniform limit, which is then nondecreasing.
If s ∈ [0, t] is such that c̃(s) < x, then cnk

(s) < x for k large enough. Since f has
no negative jumps, then

lim inf
x→y

f (x) = f−(y) and lim sup
x→y

f (x) = f (y)

so that

f− ◦ c̃ ≤ lim inffnk
◦ cnk

≤ lim supfnk
◦ cnk

≤ f ◦ c̃.

By Fatou’s lemma, for any s1 ≤ s2 ≤ s,∫ s2

s1

[
f− ◦ c̃(r) + g(r)

]+
dr ≤ c̃(s2) − c̃(s1) ≤

∫ s2

s1

[
f ◦ c̃(r) + g(r)

]+
dr.

As c̃ is nondecreasing, we might remove the positive parts in the above display
and conclude, from uniqueness to (5), that c̃ = c on [0, s]. If, on the other hand,
c̃(s) = K , then cnk

∧ K(s) → K which implies that cnk
∧ K → c ∧ K uniformly

on compact sets.
Let τ be the explosion time of c. If t < τ , then c(t) < ∞, and so [choosing

K > c(t) in the paragraph above] we see that cn → c uniformly on [0, t]. If t ≥ τ ,
then c(t) = ∞, and so cn(t) ∧ K → K for any K > 0. Hence cn(t) → ∞ = c(t).

�

PROOF OF THEOREM 3, CONVERGENCE OF POPULATION PROFILES. Let

hn = D+cn and h = D+c.

We now prove that hn → h in the Skorohod J1 topology if the explosion time τ is
infinite. Recall that h = f ◦ c + g and that

hn =
{

fn ◦ cn + gn, if σn = 0,[
fn ◦ cn

(�t/σn�σn

) + gn

(�t/σn�σn

)]+
, if σn > 0.
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Assume that σn = 0 for all n, the case σn > 0 being analogous. Then the as-
sertion hn → h is reduced to proving that fn ◦ cn → f ◦ c, which is related to
the continuity of the composition mapping on (adequate subspaces of) Skorohod
space, and then deducing that fn ◦ cn + gn → f ◦ c + g, which is related to con-
tinuity of addition on (adequate subspaces of) Skorohod space. Both continuity
assertions require conditions to hold: the convergence fn ◦ cn → f ◦ c can be de-
duced from Wu [(2008), Theorem 1.2] if we prove that f is continuous at every
point at which c−1 is discontinuous, and then the convergence of fn ◦ cn + gn will
hold because of Whitt [(1980), Theorem 4.1] since we assumed that f ◦ c and g do
not jump at the same time. Hence, the convergence hn → h is reduced to proving
that f is continuous at discontinuities of c−1.

If c is strictly increasing [which happens when g is strictly increasing or f +
g(0) > 0], then c−1 is continuous. (This is the most important case in the stochastic
setting, since otherwise immigration is compound Poisson, therefore piecewise
constant, and one might argue by pasting together Lamperti transforms.)

Suppose that c is not strictly increasing, and let x be a discontinuity of c−1. Let

s = c−1(x−) < c−1(x) = t,

so that c = x on [s, t] while c < x on [0, s) and c > x on (t,∞). Since D+c =
f ◦ c + g = 0 on [s, t), we see that g is constant on [s, t). We assert that

inf
{
y ≥ 0 :f (y) = −g(s)

} = x.

Indeed, if f reached −g(s) at x′ < x, there would exist s′ < s such that

0 = f ◦ c
(
s′) + g(s) ≥ f ◦ c

(
s′) + g

(
s′) ≥ 0,

so that actually g is constant on [s ′, t). Hence, c has spontaneous generation which
implies there are at least two solutions to IVP(f, g): one that is constant on (s ′, t],
and c. This contradicts the assumed uniqueness to (5). Since f has no negative
jumps and reaches the level −g(s) at time x, then f is continuous at x.

Finally, we assume that the explosion time τ is finite but that fn(x), f (x) → ∞
as x → ∞ uniformly in n and prove that hn → h in the uniform J1 topology. Let
ε > 0, d be a bounded metric on [0,∞] that makes it homeomorphic to [0,1],
and consider M > 0 such that d(x, y) < ε if x, y ≥ M . Let K > 0 be such that
f (x), fn(x) > M if x > K and n is large enough. Let T < τ be such that f is
continuous at c(T ) and K < c(T ). Then fn → f in the usual J1 topology on
[0, c(T )] and, arguing as in the nonexplosive case, we see that

hn = fn ◦ cn + gn → f ◦ c + g = h

in the usual J1 topology on [0, T ]. Hence, there exists a sequence (λn) of increas-
ing homeomorphisms of [0, T ] into itself such that hn − h ◦ λ̃n → 0 uniformly on
[0, T ]. Define now λn to equal λ̃n on [0, T ] and the identity on [T ,∞). Then (λn)

is a sequence of homeomorphisms of [0,∞) into itself which converges uniformly
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to the identity, and since K < c(T ), then K < cn(T ) eventually and so M < hn,h

eventually thanks to the choice of K , so that d(hn(t), h(t)) < ε on [T ,∞) eventu-
ally. Hence, hn → h in the uniform J1 topology. �

In order to apply Theorem 3 to Galton–Watson-type processes, we need a
lemma relating the discretization of the Lamperti transformation and scaling. De-
fine the scaling operators Sb

a by

Sb
af (t) = 1

b
f (at).

Let also cσ be the approximation of span σ to IVP(f, g), which is the unique
function satisfying

cσ (t) =
∫ t

0

[
f ◦ cσ (

σ�s/σ�) + g
(
σ�s/σ�)]+ ds.

We shall denote cσ (f, g) to make the dependence on f and g explicit in the fol-
lowing lemma and denote by hσ (f, g) the right-hand derivative of cσ (f, g).

LEMMA 6. We have

Sb
acσ (f, g) = cσ/a(

S
b/a
b f, Sb/a

a g
)

and Sb/a
a hσ (f, g) = hσ/a(

S
b/a
b f, Sb/a

a g
)
.

The proof is an elementary change of variables.

4.2. Weak continuity of CBI laws.

PROOF OF COROLLARY 6. Let Xn and X be spLps with Laplace exponents
�n and � and Yn and Y be subordinators with Laplace exponents 	n and 	 such
that Xn (resp., X) is independent of Yn (resp., Y ).

The hypotheses �n → � and 	n → 	 imply that (Xn,Yn) converges weakly
to (X,Y ) in the Skorohod J1 topology. By Skorohod’s representation theorem,
we can assume that the convergence takes place almost surely on an adequate
probability space.

Let Zn (resp., Z) be the Lamperti transform of (Xn, xn +Yn) [resp., (X,x +Y)].
When X is nonexplosive, Propositions 2 and 4 and Theorem 3 then imply that Zn

converges almost surely to Z, which is a CBI(�,	), thanks to Theorem 2.
When X is explosive, let ρ be a distance on [0,∞] which makes it homeomor-

phic to [0,1] and, for any ε > 0, choose Mε such that ρ(x, y) < ε if x, y ≥ Mε .
Recall that d∞ stands for the uniform J1 topology. Since the Xn → X and Yn → Y

in the usual Skorohod topology as n → ∞ almost surely, then reasoning as in the
proof of uniform J1 convergence of Theorem 3, we see that, for any ε > 0,

P
(
d∞

(
Zn,Z

)
> ε,Xn

s ,Xs > Mε for all s ≥ t
) → 0 as n → ∞.
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However, choosing t and M big enough, we can make

P
(
Xn

s ≤ M for some s ≥ t
)

arbitrarily small for all n large enough, so that d∞(Zn,Z) → 0 in probability,
which is enough to guarantee that Zn → Z weakly in the uniform J1 topology.
Indeed, since X is explosive, we have that � ′(0+) = −∞ [cf. Lambert (2008),
proof of Theorem 2.2.3.2, page 95] which means that X drifts to ∞; cf. Bertoin
(1996), Chapter VII, Corollary 2.ii. Since the latter result implies that the negative
of the infimum of X has an exponential distribution of parameter η, where

η = inf
{
λ > 0 :�(λ) = 0

}
,

we see that

P(Xs ≤ M for some s ≥ t)

≤ P(Xt ≤ 2M) + P(Xt > 2M and Xs ≤ M for some s ≥ t)

≤ P(Xt ≤ 2M) + e−ηM.

Since X drifts to infinity, the term P(Xt ≤ 2M) goes to zero as t → ∞. Asymp-
totically, the same bounds hold for Xn since �n → � and hence, by convexity
of � ,

lim
n→∞

(
inf

{
λ > 0 :�n(λ) = 0

}) = inf
{
λ > 0 :�(λ) = 0

} = η. �

4.3. A limit theorem for Galton–Watson processes with immigration.

PROOF OF COROLLARY 7. By Skorohod’s theorem, if X and Y are Lévy
processes whose distributions at time 1 are μ and ν, then

Sn
an

Xn → X and Sn
bn

Y n → Y,

where the convergence is in the J1 topology. Assume first that X is nonexplosive.
We can apply Lemma 6 to get either

S
kn/x
b�kn/x�Z

n = h1/b�kn/x�(Skn/x
knb�kn/x�/xX

n, x + S
kn/x
b�kn/x�Y

n)
or

S
kn/x
xa�kn/x�/kn

Zn = hkn/(xa�kn/x�)(x + Skn/x
a�kn/x�X

n,S
kn/x
xa�kn/x�/kn

Y n)
.

Let Z be the unique process satisfying

Zt = x + Xc
∫ t

0 Zs ds + Yt

as in Proposition 2. If kn

x
b�kn/x�/a�kn/x� → c ∈ [0,∞), we see that

S
kn/x
b�kn/x�Z

n → Z,
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thanks to Propositions 2 and 4 and Theorems 2 and 3.
When kn

x
b�kn/x�/a�kn/x� → ∞, let Z instead be the unique solution to

Zt = x + X∫ t
0 Zs ds.

Then

S
kn/x
xa�kn/x�/kn

Zn → Z.

When X is explosive, the arguments in the proof of Corollary 6 show that, in
order to obtain the stated convergence in the uniform J1 topology, it is enough to
prove that for all M > 0,

lim
M→∞ lim

t→∞ lim sup
n

P

(
1

n
Xn�san� ≤ M for some s ≥ t

)
= 0.

Since X drifts to infinity if it is explosive, � has an unique positive root which we
denote η.

Let

Gn(λ) = E
(
e−λXn

1
)
.

Recall that since the increments of Xn are bounded below by −1, minus the ran-
dom variable

In = min
m≥0

Xn
m

has a geometric distribution with parameter e−ηn where ηn is the greatest nonneg-
ative real number at which Gn achieves the value 1; cf. Asmussen [(2003), Part B,
Chapter VIII, Section 5, Corollary 5.5, page 235] or the forthcoming Lemma 7. By
log-convexity of Gn, ηn = inf{λ > 0 :Gn(λ) > 1}. If we assume the convergence
of nηn to η as n → ∞, we see that

lim sup
n

P

(
−1

n
In ≥ M

)
= e−ηM.

We now use the Markov property to conclude that if the distribution of X1 is con-
tinuous at M , then

lim sup
n

P

(
1

n
Xn�san� ≤ M for some s ≥ t

)
≤ P(Xt ≤ 2M) + P(Xt ≥ 2M)e−ηM.

To conclude, we should prove that nηn → η. This, however, is implied by the
following convergence of Laplace transforms:

E
(
e−λ/nXn

an
) → E

(
e−λX1

) = e�(λ).

Indeed, recall that E(e−λX1) < 1 exactly on (0, η) and that E(e−λ/nXn
an ) < 1 ex-

actly on (0, nηn). If we consider λ < η then E(e−λ/nXn
an ) < 1 for large enough n,

so that λ ≤ nηn for large enough n. This implies η ≤ lim infn nηn; the upper bound
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is proved similarly. Convergence of Laplace transforms is actually the condition
imposed by Li (2006) to prove limit theorems for Galton–Watson processes with
immigration. That this already follows from our hypotheses is the content of the
following lemma, which concludes the proof of Corollary 7. �

LEMMA 7. Let Xn be a sequence of random walks with jumps in {−1,0,1, . . .}
satisfying the conditions of Corollary 7, and suppose that X is not a subordinator.
Then

E
(
e−λ/nXn

an
) → e�(λ)

for all λ > 0.

This is the content of Theorem 2.1 of Grimvall (1974); we present a proof using
basic fluctuation theory for independent increment processes.

PROOF OF LEMMA 7. Using Skorohod’s theorem again, we assume that
Xn�an·�/n converges almost surely to X in the Skorohod J1 topology. Also, en-
large the probability space so that it admits an exponential random variable Rλ of
parameter λ which is independent of X and Xn.

Let

Gn(λ) = E
(
e−λXn

1
)
.

Since X is not a subordinator, then P(Xn
1 = −1) > 0 for large enough n, and we

can assume that this happens for every n. Hence, Gn(λ) → ∞ as λ → ∞, and we
can define

Fn(s) = inf
{
λ > 0 :Gn(λ) > 1/s

}
for s ∈ (0,1].

Using optional sampling at the first time T n
k at which Xn reaches −k for the first

time, applied to the martingale

e−λXn
mGn(λ)−m,

we obtain

E
(
sT n

k
) = e−kFn(s)

for s ∈ (0,1]. Define the random variables

Iλ = min
s≤Rλ

Xs and In
λ = min

s≤Rλ

1

n
Xn�ans�.

Since �anRλ� has a geometric distribution of parameter e−λ/an , it follows that

P
(−nIn

λ ≥ k
) = P

(
T n

k < �anRλ�) = E
(
e−λ/anT n

k
) = e−kFn(e−λ/an )
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so that −nIn
λ has a geometric distribution. Also, from Corollary 2 in Bertoin

[(1996), Chapter VII], Iλ has an exponential distribution of parameter 	̃(λ) where

	̃(λ) = inf
{
λ̃ > 0 :�(λ̃) > λ

}
.

However, since X does not jump almost surely at Rλ and the minimum is a con-
tinuous functional on Skorohod space (on the interval [0,Rλ]), we see that In

λ

converges weakly to Iλ. This implies

nFn

(
e−λ/an

) → 	̃(λ),

and by passing to inverses, we get

Gn(λ/n)an → e�(λ)

for λ > 	̃(0).
Finally, if λ ∈ (0, 	̃(0)], pick p > 1 such that pλ > 	̃(0); we have just proved

that the sequence

Gn(pλ/n)an, n ≥ 1,

and being convergent, it is bounded. Hence the sequence

e−λ/nXn
an , n ≥ 1,

is bounded in Lp and converges weakly to e−λX1 . We then get

Gn(λ/n)an = E
(
e−λ/nXn

an
) → E

(
e−λX1

) = e�(λ). �

4.4. A limit theorem for conditioned Galton–Watson processes.

PROOF OF THEOREM 4. Let Zn be a Galton–Watson process with critical
offspring law μ such that Zn

0 = kn and is conditioned on
∑∞

i=1 Zn
i = n. Then, Zn

has the law of the discrete Lamperti transformation of the n steps of a random
walk with jump distribution μ̃ (the shifted reproduction law) which starts at 0 and
is conditioned to reach −kn in n steps; call the latter process Xn, so that

Zn = h1(
kn + Xn,0

)
.

Thanks to Chaumont and Pardo (2009), if kn/an → l, then

San
n Xn → F l.

Thanks to Lemma 6, we see that

S
an

n/an
Zn = han/n(

San
n Xn,0

)
.

Let α ∈ (1,2] be the index of the stable process in the statement of Theorem 4,
and recall that an is of the form n1/αL(n) where L is a slowly varying function,
so that an = o(n). Since F l is absorbed at zero [as is easily seen by the pathwise
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construction of F l by Chaumont and Pardo (2009), Theorem 4.3], then Proposi-
tion 1 guarantees that the Lamperti transform Z of F l is the unique process which
satisfies ∫ t

s
F l∫ r

0 Zu du− ≤
∫ t

s
Zr dr ≤

∫ t

s
F l∫ r

0 Zu du
.

Theorem 3 implies that

S
an

n/an
Zn → Z. �

Acknowledgments. G. Uribe Bravo would like to thank Jim Pitman for his
constant encouragement as a postdoctoral supervisor and stimulating conversa-
tions around conditioned Galton–Watson processes. We would like to thank the
referee for a conscientious and detailed analysis of our work which helped us re-
move an important number of misprints and clarify some obscure points.

REFERENCES

ABRAHAM, R. and DELMAS, J.-F. (2009). Changing the branching mechanism of a continuous
state branching process using immigration. Ann. Inst. Henri Poincaré Probab. Stat. 45 226–238.
MR2500236

ALDOUS, D. (1991). The continuum random tree. II. An overview. In Stochastic Analysis (Durham,
1990). London Mathematical Society Lecture Note Series 167 23–70. Cambridge Univ. Press,
Cambridge. MR1166406

ASMUSSEN, S. (2003). Applied Probability and Queues: Stochastic Modelling and Applied Proba-
bility, 2nd ed. Applications of Mathematics (New York) 51. Springer, New York. MR1978607

BERTOIN, J. (1995). On the local rate of growth of Lévy processes with no positive jumps. Stochastic
Process. Appl. 55 91–100. MR1312150

BERTOIN, J. (1996). Lévy Processes. Cambridge Tracts in Mathematics 121. Cambridge Univ. Press,
Cambridge. MR1406564

BILLINGSLEY, P. (1999). Convergence of Probability Measures, 2nd ed. Wiley, New York.
MR1700749

CABALLERO, M. E., LAMBERT, A. and URIBE BRAVO, G. (2009). Proof(s) of the Lamperti repre-
sentation of continuous-state branching processes. Probab. Surv. 6 62–89. MR2592395

CHAUMONT, L. and PARDO, J. C. (2009). On the genealogy of conditioned stable Lévy forests.
ALEA Lat. Am. J. Probab. Math. Stat. 6 261–279. MR2534486

CHAUMONT, L. and YOR, M. (2003). Exercises in Probability: A Guided Tour from Measure The-
ory to Random Processes, via Conditioning. Cambridge Series in Statistical and Probabilistic
Mathematics 13. Cambridge Univ. Press, Cambridge. MR2016344

DAWSON, D. A. and LI, Z. (2006). Skew convolution semigroups and affine Markov processes.
Ann. Probab. 34 1103–1142. MR2243880

DRMOTA, M. and GITTENBERGER, B. (1997). On the profile of random trees. Random Structures
Algorithms 10 421–451. MR1608230

DUQUESNE, T. (2009). Continuum random trees and branching processes with immigration.
Stochastic Process. Appl. 119 99–129. MR2485021

DUQUESNE, T. and LE GALL, J.-F. (2002). Random trees, Lévy processes and spatial branching
processes. Astérisque 281 vi+147. MR1954248

ETHIER, S. N. and KURTZ, T. G. (1986). Markov Processes: Characterization and Convergence.
Wiley, New York. MR0838085

http://www.ams.org/mathscinet-getitem?mr=2500236
http://www.ams.org/mathscinet-getitem?mr=1166406
http://www.ams.org/mathscinet-getitem?mr=1978607
http://www.ams.org/mathscinet-getitem?mr=1312150
http://www.ams.org/mathscinet-getitem?mr=1406564
http://www.ams.org/mathscinet-getitem?mr=1700749
http://www.ams.org/mathscinet-getitem?mr=2592395
http://www.ams.org/mathscinet-getitem?mr=2534486
http://www.ams.org/mathscinet-getitem?mr=2016344
http://www.ams.org/mathscinet-getitem?mr=2243880
http://www.ams.org/mathscinet-getitem?mr=1608230
http://www.ams.org/mathscinet-getitem?mr=2485021
http://www.ams.org/mathscinet-getitem?mr=1954248
http://www.ams.org/mathscinet-getitem?mr=0838085


1626 M. E. CABALLERO, J. L. PÉREZ GARMENDIA AND G. URIBE BRAVO

FRISTEDT, B. E. and PRUITT, W. E. (1971). Lower functions for increasing random walks and
subordinators. Z. Wahrsch. Verw. Gebiete 18 167–182. MR0292163

FU, Z. and LI, Z. (2010). Stochastic equations of non-negative processes with jumps. Stochastic
Process. Appl. 120 306–330. MR2584896

GREY, D. R. (1974). Asymptotic behaviour of continuous time, continuous state-space branching
processes. J. Appl. Probab. 11 669–677. MR0408016

GRIMVALL, A. (1974). On the convergence of sequences of branching processes. Ann. Probab. 2
1027–1045. MR0362529

ITÔ, K. and MCKEAN, H. P. JR. (1974). Diffusion Processes and Their Sample Paths, 2nd ed. Die
Grundlehren der Mathematischen Wissenschaften 125. Springer, Berlin. MR0345224
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