
Bernoulli 20(1), 2014, 190–206
DOI: 10.3150/12-BEJ481

Bridges of Lévy processes conditioned to
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We consider Kallenberg’s hypothesis on the characteristic function of a Lévy process and show that it
allows the construction of weakly continuous bridges of the Lévy process conditioned to stay positive. We
therefore provide a notion of normalized excursions Lévy processes above their cumulative minimum. Our
main contribution is the construction of a continuous version of the transition density of the Lévy process
conditioned to stay positive by using the weakly continuous bridges of the Lévy process itself. For this,
we rely on a method due to Hunt which had only been shown to provide upper semi-continuous versions.
Using the bridges of the conditioned Lévy process, the Durrett–Iglehart theorem stating that the Brownian
bridge from 0 to 0 conditioned to remain above −ε converges weakly to the Brownian excursion as ε → 0,
is extended to Lévy processes. We also extend the Denisov decomposition of Brownian motion to Lévy
processes and their bridges, as well as Vervaat’s classical result stating the equivalence in law of the Vervaat
transform of a Brownian bridge and the normalized Brownian excursion.
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1. Introduction and statement of the results

Our discussion will use the canonical setup: X = (Xt )t≥0 denotes the canonical process on
the Skorohod space of càdlàg trajectories, F denotes σ -field generated by X (also written
σ(Xs, s ≥ 0)), (Ft , t ≥ 0) is the canonical filtration, where Ft = σ(Xs, s ≤ t) and θt , t ≥ 0,
are the shift operators given by θt (ω)s = ωt+s . Emphasis is placed on the various probability
measures considered.

Focus will be placed on two special (Markovian) families of probability measures, denoted
(Px, x ∈ R) and (P

↑
x , x ≥ 0). The probability measure P0 corresponds to the law of a Lévy

process: under P0 the canonical process has independent and stationary increments and starts at 0.
Then Px is simply the law of x +X under P0, and under each Px the canonical process is Markov
and the conditional law of (Xt+s , s ≥ 0) given Ft is PXt . (Collections of probability measures
on Skorohod space satisfying the latter property are termed Markovian families.) We also make
use of the dual Lévy process by letting P̂x denote the law of x − X under P0. Associated to
Px, x ∈ R, P

↑
x can be interpreted as the law of the Lévy process conditioned to stay positive; as

this event can have probability zero, the precise definition of P
↑
x can be described as follows:

a Lévy process conditioned to stay positive is the (weak) limit of X conditioned to stay positive
until an independent exponential Tα of parameter α as α → 0 (cf. Chaumont and Doney [5],
Proposition 1). It is actually simpler to actually construct Lévy processes conditioned to stay
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positive by a Doob transformation and justifying this passage to the limit afterwards, as recalled
in Section 4.

Under very general conditions, given a Markovian family of probability laws like (Px, x ∈ R),
one can construct weakly continuous versions of the conditional laws of (Xs, s ≤ t) under Px

given Xt = y. They are termed bridges of Px between x and y of length t and usually de-
noted Pt

x,y . In Section 2, we review the construction of these bridges from Chaumont and
Uribe Bravo [9]. Our first result is to show that one can apply this general recipe to the laws
P

↑
x . To this end, we impose two conditions on the Lévy process.

(K) Under P0 and for any t > 0,
∫ |E0(eiuXt )|du < ∞.

(R) 0 is regular for both half-lines (−∞,0) and (0,∞).

Assumption (K) was introduced by Kallenberg as a means of imposing the existence of densities
for the law of Xt for any t > 0 which posses good properties (in particular continuity). A con-
struction of Lévy process bridges under hypothesis (K) was first accomplished in Kallenberg [16]
by means of convergence criteria for processes with exchangeable increments. This construction
is retaken as an example of the general construction of Markovian bridges in Chaumont and
Uribe Bravo [9].

Theorem 1. Under (K) and (R), we can construct bridges P
↑,t
x,y of P

↑
x for any x, y ≥ 0 and t > 0

and that they are weakly continuous as functions of x and y.

Theorem 1 presents another example of the applicability of Theorem 1 in Chaumont and
Uribe Bravo [9], and the proof of the former consists on verifying the technical hypotheses in
the latter. These technical hypotheses are basically: the existence of a continuous and positive
version of the densities of Xt under P

↑
x . For nonzero starting states, we will inherit absolute

continuity from that of the Lévy process killed upon becoming negative (in Lemma 3) and the
later can be studied by a technique inspired from Hunt [15] for the Brownian case, in which a
transition density for the killed Lévy process is obtained from a transition density of the Lévy
process using its bridges. (Cf. Equation (5.1) and Lemma 2.) Hunt’s technique has typically al-
lowed only the construction of lower semicontinuous versions of the density, but with weakly
continuous bridges one can show that Hunt’s density is actually continuous. This is one possible
application of the existence of weakly continuous Markovian bridges. Another problem is then
to characterize the points at which the density is positive. Hunt does this for Brownian motion
and the result has been extended to (multidimensional) stable Lévy processes in the symmetric
case by Chen and Song [10], Theorem 2.4 and in the asymmetric case by Vondraček [24], The-
orem 3.2. We study positivity of the density by exploiting the cyclic exchangeability property of
Lévy processes, following Knight [17].

Recall that when P0 is the law of Brownian motion, Pt
x,y is the law of the Brownian bridge

between x and y of length t and the corresponding law P
↑,t
0,0 is the law of a Brownian excursion

of length t . In this context, our next result is an extension to Lévy processes of the classical result
of Durrett, Iglehart and Miller [13], which covers the Brownian case.
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Corollary 1. The conditional law of (Xs, s ≤ t) under Pt
0,0 given Xt > −ε, where

Xt = inf
s≤t

Xs,

converges weakly, as ε → 0 to P
↑,t
0,0.

The Brownian case of Corollary 1 was first proved by Durrett, Iglehart and Miller [13] by
showing the convergence of finite-dimensional distributions and then tightness, which follows
from explicit computations with Brownian densities. Another proof for the Brownian case was
given by Blumenthal [3] this time using rescaling, random time change and simple infinitesimal
generator computations. For us, Corollary 1 is a simple consequence of Theorem 1.

We now present a generalization of a decomposition of the Brownian trajectory at the time it
reaches its minimum on a given interval due to Denisov [11].

Let ρt be the first time that X reaches its minimum on the interval [0, t]. Consider the pre- and
post-minimum processes on the interval [0, t] given by:

X←
s = X(ρt−s)+− − Xt and X→

s = X(ρt+s)∧t − Xt

defined for s ≥ 0, where Xs− is the left limit of X at s.
A Lévy meander of length t (following Chaumont and Doney [7]) is the weak limit as ε → 0

of X conditioned to remain above −ε on [0, t] under P0. Lévy meanders can also be character-
ized by an absolute continuity relationship with Lévy processes conditioned to stay positive as
recalled in Section 4. Denote by Pme,t the law of a meander of length t and by P̂me,t the meander
of the dual Lévy process.

Theorem 2. Assume conditions (K) and (R). Under P0, the conditional law of (X←,X→) given
ρt is P̂me,ρt ⊗ Pme,t−ρt .

The previous result is a consequence of results in Chaumont and Doney [5]. It is our stepping
stone on the way to our generalization of Vervaat’s relationship between the Brownian bridge and
the normalized Brownian excursion. This extension requires the following conditioned version
of Theorem 2.

Theorem 3. A regular conditional distribution of (X←,X→) given ρt = s and −Xt = y under

Pt
0,0 is P̂

↑,s
0,y ⊗ P

↑,t−s
0,y .

We finally turn to an extension of the classical relationship between the Brownian bridge
between 0 and 0 and the Brownian excursion of the same length.

Theorem 4. Define the Vervaat transformation V of X on [0, t] by

Vs = X(ρt+s) mod t − Xt .

Under (K) and (R), the law of V under Pt
0,0 is P

↑,t
0,0.
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Theorem 4 was found by Vervaat [23] for Brownian motion and proved there using approxi-
mation by a simple random walk. Biane [2] gives a proof using excursion theory for Brownian
motion. Then Chaumont [4] gave a definition of normalized stable excursion and proved The-
orem 4 in the case of stable Lévy processes, again using excursion theory. This extension of
Vervaat’s theorem is the closest to the one in this work. Miermont [18] gives a version of Theo-
rem 4 for spectrally positive Lévy processes in the context of the intensity measures for excur-
sions above the cumulative minimum, with an explicit link with the Lévy process conditioned
to stay positive. Finally, Fourati [14] gives an abstract version of Theorem 4 for Lévy processes,
again as a relation between two σ -finite measures which can be though of as bridges of random
length, although there is no explicit link with Lévy processes conditioned to stay positive. After
establishing this link, Theorem 4 would follow from the theory developed in Fourati [14] using
regularity results for bridges (like weak continuity) in order to condition by the length. Instead
of that, we propose a direct proof.

The paper is organized as follows. In Sections 2 and 3, we review the construction of Marko-
vian and Lévy bridges of Chaumont and Uribe Bravo [9]. In Section 4, we define, following
Chaumont and Doney [5], Lévy processes conditioned to stay positive and meanders. Section 5
is devoted to the construction of bridges of Lévy processes conditioned to stay positive, where
we prove Theorem 1 and Corollary 1. In Section 6, we consider extensions and consequences of
Denisov’s theorem, proving in particular Theorems 2 and 3. Finally, in Section 7, we prove our
extension of Vervaat’s theorem, which is Theorem 4.

2. Weakly continuous bridges of Markov processes

Let Px be the law of a Feller process which starts at x which is an element of a polish space S

(for us either R, (0,∞), or [0,∞)). Suppose P is its semigroup and assume that:

(AC) There is a σ -finite measure μ and a function ht (x, ·) such that

Ptf (x) =
∫

f (y)ht (x, y)μ(dy).

(C) The function (s, x, y) �→ hs(x, y) is continuous.
(CK) The Chapman–Kolmogorov equations

hs+t (x, z) =
∫

hs(x, y)ht (y, z)μ(dy)

are satisfied.

Let us denote by Bδ(y) the ball of radius δ centered at y and

Px,t = {
y ∈ S: ht (x, y) > 0

}
.

Theorem 5 (Chaumont and Uribe Bravo [9]). Under (AC), (C) and (CK), the law of X on
[0, t] under Px given Xt ∈ Bδ(y) converges weakly in the Skorohod J1 topology to a measure
Pt

x,y for every y ∈ Px,t . Furthermore:
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1. The family {Pt
x,y : y ∈ Px,t } is a regular conditional distribution for X on [0, t] given Xt

under Px .
2. The finite-dimensional distributions of Pt

x,y are given by

Pt
x,y(Xt1 ∈ dx1, . . . ,Xtn ∈ dxn)

= ht1(x, x1)ht2(x1, x2) · · ·htn−tn−1(xn−1, xn)
ht−tn (xn, y)

ht (x, y)
dx1 · · · dxn.

3. As y′ → y and x′ → x, Pt
x′,y′ converges weakly to Pt

x,y .

Remark. The finite-dimensional distributions of the bridge laws can be written succinctly using
the following local absolute continuity condition valid for s < t :

Pt
x,t |Fs

= ht−s(Xs, y)

ht (x, y)
· Px |Fs

. (2.1)

The reasoning in Revuz and Yor [21], Chapter VIII, implies that for any stopping time T taking
values in [0, t):

Pt
x,t |FT

= ht−T (XT , y)

ht (x, y)
· Px |FT

. (2.2)

3. Lévy processes and their bridges

Let Px be the Markovian family of a Lévy process which satisfies assumptions (K) and (R). As
argued by Kallenberg [16], Fourier inversion implies that Xt possesses continuous and bounded
densities which vanish at infinity (by the Riemann-Lebesgue lemma) for all t > 0. Actually, (K)

also implies that the continuous version ft of the density of Xt under P0 satisfies a form of the
Chapman–Kolmogorov equations:

ft (x) =
∫

fs(y)ft−s(x − y)dy for 0 < s < t. (3.1)

From ft one can build a bi-continuous transition density pt by means of pt(x, y) = ft (y − x)

which satisfies (AC), (C) and (CK).
Under hypotheses (K) and (R), Sharpe [22] shows that ft is strictly positive for all t > 0,

which implies that pt > 0.
From Theorem 5, we see that under (K) and (R), we can consider the bridges Pt

x,y from x

to y of length t for any x, y ∈ R and any t > 0, and that these are jointly weakly continuous in x

and y.

4. Lévy processes conditioned to stay positive and meanders

The most general construction for Lévy processes conditioned to stay positive, now recalled, is
from Chaumont and Doney [5] (see Chaumont and Doney [6] for a correction and Doney [12] for
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a lecture note presentation). When the initial state is positive, it is a Doob transformation of Px

by a procedure we now detail. Let

Xt = min
s≤t

Xs

and consider the Markov process R = X − X. Under (R), 0 is regular state of R for itself and so
we can consider the local time at zero L of R. We can then define the downwards ladder height
process H of X by

H = −X ◦ L,

which is a (possibly killed) subordinator (cf. Bertoin [1] or Doney [12]). Let h be the renewal
function of H given by

h(x) = E

(∫ ∞

0
1Hs≤x ds

)
.

For x > 0, let Qx be the law of x + X under P killed when it leaves (0,∞), which is a Markov
process on (0,∞) whose semigroup is denoted Q = (Qt , t ≥ 0). Chaumont and Doney [5] prove
that if X drifts to −∞ (limt→∞ Xt = −∞ almost surely) then h is excessive and otherwise h is
invariant for Qt and proceed to define the semigroup P

↑
t by

P
↑
t (x,dy) = h(y)

h(x)
Qt (x,dy) for x > 0.

The Markovian laws P
↑
x , x > 0, define the Lévy process conditioned to stay positive. Note that X

has finite lifetime under P
↑
x if and only if X drifts to −∞ under Px . Under hypothesis (R),

Chaumont and Doney [5] prove that P
↑
x has a weak limit (in the Skorhod J1 topology) as x → 0,

denoted P
↑
0 , and that (P

↑
x )x≥0 is Markovian and has the Feller property.

We now give an alternate definition of the meander, from which one can justify the weak limit
construction we have alluded to (cf. Chaumont and Doney [7], Lemma 4). A Lévy meander is a
stochastic process whose law Pme,t satisfies the following absolute continuity relationship with
respect to the law P

↑
0 on Ft = σ(Xs : s ≤ t):

Pme,t |Ft
= 1

βth(X
↑
t )

· P
↑
0 |Ft

with βt = E
↑
0

(
1

h(X
↑
t )

)
.

5. Bridges of Lévy processes conditioned to stay positive

We now construct the bridges of a Lévy process conditioned to stay positive under hypothe-
ses (K) and (R). This is done through Theorem 5 by verifying the existence of a continuous
version of their densities (cf. Lemma 3). For positive arguments, the density is constructed from
the density of the killed Lévy process, a continuous version of which is constructed using bridges
of the Lévy process itself in Lemma 2. Then, a delicate point is to study the densities at 0; this
requires the following duality lemma. Let P̂x be the law of x − X and let P̂t be its semigroup.
We can also consider the objects ĥ, P̂

↑
x , etc. . . associated with −X instead of X as well as p̂.
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Lemma 1. The semigroups P
↑
t and P̂

↑
t are in duality with respect to the measure λ↑ given by

λ↑(dx) = h(x)ĥ(x)dx.

Proof. Since Pt and P̂t are in duality with respect to Lebesgue measure λ, it follows that Qt and
Q̂t are also in duality with respect to λ.

Hence, we get
∫

f P
↑
t (g)dλ↑ =

∫
f

Qt(gh)

h
hĥdλ =

∫
Q̂t (f ĥ)ghdλ =

∫
P̂

↑
t (f )ghĥdλ

=
∫

P̂
↑
t (f )g dλ↑. �

We now consider the absolute continuity of the semigroup of X killed when it becomes nega-
tive.

Lemma 2. Under (K) and (R), let

qt (x, y) = Et
x,y(Xt > 0)pt (x, y) for x, y > 0. (5.1)

Then qt is a transition density for Qt with respect to Lebesgue measure which is continuous,
strictly positive, bounded by p, satisfies the Chapman–Kolmogorov equations, and which satisfies
the following duality formula:

qt (x, y) = q̂t (y, x).

Remark. It is simple to see that the absolute continuity of Pt (x, ·) translates into absolute conti-
nuity of Qt(x, ·) since if A has Lebesgue measure zero then

Qt(x,A) = Px(Xt ∈ A,Xt > 0) ≤ Px(Xt ∈ A) = 0.

What is more difficult, is to see that the q is strictly positive; similar results have been ob-
tained in the literature for killed (multidimensional) Brownian motion and stable Lévy processes
in Hunt [15], Chen and Song [10], Vondraček [24]. Our proof of uses the weakly continuous
Markovian bridges provided by Theorem 5. The almost sure positivity of q can also be obtained
from Theorem 4 of Pitman and Uribe Bravo [20].

Proof of Lemma 2. Conditioning on Xt , we see that

Ex

(
1Xt>0f (Xt )

) = Ex

[
Pt

x,Xt
(Xt > 0)f (Xt )

]

=
∫

Pt
x,y(Xt > 0)f (y)pt (x, y)λ(dy)

for measurable and bounded f . On the other hand, the definition of the law Qt gives

Ex

(
1Xt>0f (Xt )

) = Qx

(
f (Xt )

) =
∫

f (y)Qt (x,dy)
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so that q is a transition density of Q with respect to Lebesgue measure.
We know that p is continuous. To see that q is continuous, it suffices to apply the portemanteau

theorem. Note that the boundary ∂{Xt > 0} of {Xt > 0} has Pt
x,y -measure zero. Indeed, since the

minimum on [0, t] is a continuous functional on Skorohod space (cf. Whitt [25], Section 13.4):

∂{Xt > 0} ⊂ {
Xs ≥ 0 for all s ∈ [0, t] and there exists s ∈ [0, t] such that Xs = 0

}
.

Since x, y > 0 and under Pt
x,y we have X0+ = x and Xt− = y almost surely, we see that the

process cannot touch zero at times 0 or t . However, using the local absolute continuity relation-
ship (2.2) at the first time T such that XT = 0, we see that Pt

x,y(∂{Xt > 0} = 0) as soon as

Px

(
Touching zero on (0, t) and staying nonnegative

) = 0,

which is true since 0 is regular for (−∞,0).
To prove the duality formula for q , we first Proposition II.1 of Bertoin [1], which proves that

pt(x, y) = p̂t (y, x) for almost all x and y and remove the almost all qualifier by continuity. Next,
Corollary II.3 of Bertoin [1] proves that for almost all x and y the image of Pt

x,y under the time

reversal operator is P̂t
y,x , which by weak continuity of bridge laws can be extended to every x

and y. Since the event Xt is invariant under time reversal, we see that

qt (x, y) = Et
x,y(Xt > 0)pt (x, y) = Êt

y,x(Xt > 0)p̂t (y, x) = q̂t (y, x).

By definition, we see that q ≤ p almost everywhere, and so continuity implies that q is
bounded by p everywhere; this will help us prove that q satisfies the (CK) equations. Indeed,
the Markov property implies that

qt+s(x, z) =
∫

qs(x, y)qt (y, z)λ(dy) for λ-almost all z. (5.2)

Since

0 ≤ qs(x, y)qt (y, z) ≤ ps(x, y)pt (y, z)

and ∫
ps(x, y)pt (y, z)λ(dz) = pt+s(x, z),

which is continuous in z, the generalized dominated convergence theorem tells us that

z �→
∫

qs(x, y)qt (y, z)λ(dy)

is continuous (on (0,∞)). Because both sides of (5.2) are continuous, we can change the almost
sure qualifier to for all z.

It remains to see that qt (x, y) > 0 if x, y, t > 0. We first prove that for any x, y, t > 0, if δ > 0
is such that Bδ(y) ⊂ (0,∞), then

Qt

(
x,Bδ(y)

)
> 0. (5.3)
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This is done by employing a technique of Knight [17]. For any s ∈ (0, t), consider the process
(Xs

r , r ≤ t) given by

Xs
r = X0 + X(r+s) mod t − Xs.

Since X has independent and stationary increments, then, for any fixed s, the laws of Xs and
(Xr, r ≤ t) coincide under Px for any x ∈ R; this is referred to as the cyclic exchangeability
property in Chaumont, Hobson and Yor [8]. Note that Xs

t = Xt ; if s is close to the place where X

reaches its minimum on (0, t), then the minimum Xs
t of Xs on the interval [0, t] is positive.

Hence, the random variable

I =
∫ t

0
1Xs

t >0,Xt∈Bδ(y) ds

is positive on {Xt ∈ Bδ(y)} which has positive probability since pt is strictly positive. On the
other hand, from cyclic exchangeability, we can compute:

0 < Ex(I ) =
∫ t

0
Px

[
Xs

t > 0,Xs
t ∈ Bδ(y)

]
ds = tPx

[
Xt > 0,Xt ∈ Bδ(y)

] = tQt

(
x,Bδ(y)

)
,

which proves (5.3). To prove positivity of qt , first note that since P̂y almost surely X0+ = y, then
for s small enough:

Q̂s

(
y,Bδ(y)

) = P̂y

(
Xs ∈ Bδ(y),Xs > 0

) ≥ P̂y

(
Xr ∈ Bδ(y) for all r ∈ [0, s]) > 0,

so that, by continuity of qs , there exists an open subset Us of Bδ(y) such that qs(·, y) = q̂s(y, ·) >

0 on Us . By Chapman–Kolmogorov and (5.3), we see that

qt (x, y) ≥
∫

Us

Qt−s(x,dz)qs(z, y) > 0. �

We now turn to a similar result for Lévy processes conditioned to stay positive.

Lemma 3. Under (K) and (R), P
↑
t (x, ·) is equivalent to Lebesgue measure for all t > 0 and

x ≥ 0. Furthermore, there exists a version of the transition density p↑ which is continuous,
strictly positive, and satisfies the Chapman–Kolmogorov equations.

Therefore, the density p↑ satisfies the assumptions (AC), (C) and (CK) of Theorem 5.

Proof of Lemma 3. Since the renewal function of a subordinator is positive, continuous and
finite, we deduce by h-transforms and Lemma 2 that the function

p
↑
t (x, y) = qt (x, y)

h(x)ĥ(y)
, x > 0, y > 0, t > 0,

is a transition density for P ↑ starting at positive states:

P
↑
t f (x) =

∫
p

↑
t (x, y)f (y)λ↑(dy) for x > 0.



Bridges of Lévy processes conditioned to stay positive 199

Notice that p↑ so defined is strictly positive, continuous, and satisfies the Chapman–Kolmogorov
equations.

For 0 < s < t , consider the function

p
↑s
t (y) =

∫
P ↑

s (0,dx)p
↑
t−s(x, y) > 0 for y > 0.

On one hand, Chapman–Kolmogorov implies that for any bounded measurable f :∫
p

↑s
t (y)f (y)λ↑(dy) =

∫ ∫
P ↑

s (0,dx)p
↑
t−s(x, y)f (y)λ↑(dy) =

∫
P

↑
t (0,dy)f (y),

so that p
↑s
t is a version of the density of P

↑
t (0, ·) with respect to λ↑ and so if 0 < s < s′ < t then

p
↑s
t (y) = p

↑s′
t (y) for λ-almost all y. On the other hand, we now see that p

↑s
t (y) is a continuous

function of y, so that actually, the almost sure qualifier can be dropped. Indeed, since

Mt−s := sup
x,y

pt−s(x, y) < ∞

and from Chaumont and Doney [5]

βs := P
↑
0

(
1/h(Xs)

)
< ∞,

continuity of p
↑s
t follows from the dominated convergence theorem.

We can now define

p
↑
t (0, y) = p

↑s
t (y), y > 0,

for any s ∈ (0, t). Since p
↑
t (0, y) is continuous for y ∈ (0,∞), and is a version of the density of

P
↑
t (0, ·), the Markov property implies:

p
↑
t+s(0, y) =

∫
p

↑
t (0, x)p↑

s (x, y)λ↑(dx).

Furthermore, we have the bound

p
↑
t (0, y) ≤ βsMt−s/ĥ(y) for y > 0.

We now provide an uniform bound for the transition density in the initial state. Recall that
pt(x, y) → 0 as x → ∞. Since qt ≤ pt , then p

↑
t (x, y) → 0 as x → ∞ for any t > 0 and y > 0.

Choose now any s ∈ (0, t). By Chapman–Kolmogorov:

p
↑
t (x, z) =

∫
p↑

s (x, y)p
↑
t−s(y, z)λ↑(dy)

≤
∫

p↑
s (x, y)

Mt−s

h(y)ĥ(z)
λ↑(dy)

≤ E↑
x

(
1

h(Xs)

)
Mt−s

ĥ(z)
.
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Note that x �→ E
↑
x ( 1

h(Xs)
) is continuous on (0,∞), hence bounded on compact subsets of (0,∞).

Continuity at zero is proved in Corollary 1 of Chaumont and Doney [6]. Hence, we obtain

sup
x≥0

p
↑
t (x, y) < ∞ for all y > 0 and t > 0.

We now prove that

lim
x→0

p
↑
t (x, y) = p

↑
t (0, y) for y > 0. (5.4)

Indeed, from the Chapman–Kolmogorov equations

p
↑
t (x, z) =

∫
p

↑
t−s(y, z)P ↑

s (x,dy).

Note that P
↑
s (x, ·) converges weakly to P

↑
s (0, ·) as x → 0 and that p

↑
t−s(·, z) is continuous and

bounded on (0,∞), which is the support of P
↑
s (0, ·).

By applying the above arguments to the dual process, we can define p
↑
t (x,0) as p̂

↑
t (0, x) and

note that

lim
y→0

p
↑
t (x, y) = p

↑
t (x,0) for x > 0.

We can now define

p
↑,s
t (0,0) =

∫
p↑

s (0, y)p
↑
t−s(y,0)λ↑(dy).

To show that the above definition does not depend on s, we now show that limz→0 p
↑
t (0, z) =

p
↑,s
t (0,0). By Chapman–Kolmogorov, we get

p
↑
t (0, z) =

∫
p↑

s (0, y)p
↑
t−s(y, z)λ↑(dy).

We know that p
↑
t−s(y, z) converges to p

↑
t−s(y,0) as z → 0. Dominated convergence, which ap-

plies because of the bound

p
↑
t−s(y, z) ≤ C/h(y),

then implies

lim
z→0

p
↑
t (0, z) =

∫
p↑

s (0, y)p
↑
t−s(y,0)λ↑(dy),

which shows that we can define p
↑
t (0,0) = p

↑,s
t (0,0), and we have

lim
z→0

p
↑
t (0, z) = p

↑
t (0,0) and by duality lim

x→0
p

↑
t (x,0) = p

↑
t (0,0).
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Finally, we will prove that

lim
x,z→0

p
↑
t (x, z) = pt(0,0).

Take xn, zn → 0 and write

lim sup
n

∣∣p↑
t (xn, zn) − p

↑
t (0,0)

∣∣
≤ lim sup

n

∣∣p↑
t (xn, zn) − p

↑
t (xn,0)

∣∣ + lim sup
n

∣∣p↑
t (xn,0) − p

↑
t (0,0)

∣∣

≤ lim sup
n

∫
P ↑

s (xn,dy)
∣∣p↑

t−s(y, zn) − p
↑
t−s(y,0)

∣∣.

Since P
↑
s (xn, ·) weakly to P

↑
s (0, ·) and

∣∣p↑
t−s(y, zn) − p

↑
t−s(y,0)

∣∣ ≤ C/h(y),

where C is a finite constant, we obtain the desired result. �

The main result of this section is the construction of weakly continuous bridges for the Lévy
process conditioned to stay positive. Indeed, by applying Theorem 5 and Lemma 3, we obtain
Theorem 1.

The proof of Corollary 1 is simple from Theorem 1 and the following remarks. First, we note
that the finite-dimensional distributions of the bridges P

↑,t
x,y and Qt

x,y are identical if x, y, t > 0

(because we have an h-transform relationship between Qx and P
↑
x for x > 0). Next, note that the

law of X − ε under Qt
ε,ε = P

↑,t
ε,ε is precisely that of Pt

0,0 conditioned on Xt > −ε. Finally, since

the laws P
↑,t
x,y are weakly continuous, Corollary 1 is established.

6. An extension of the Denisov decomposition of the Brownian
trajectory

We now turn to the extension of the Denisov decomposition of the Brownian trajectory of Theo-
rem 2.

Proof of Theorem 2. We will use Lemma 4 in Chaumont and Doney [7], which states that if
xn → 0 and tn → t > 0 then the law of (Xs, s ≤ tn) conditionally on Xtn

> 0 under Pxn converges
as n → ∞ in the sense of finite-dimensional distributions to Pme,t when 0 is regular for (0,∞).
(This was only stated in Chaumont and Doney [7] for fixed t and follows from Corollary 2 in
Chaumont and Doney [5]. However, the arguments, which are actually found in Chaumont and
Doney [6], also apply in our setting.)

Fix t > 0. Since 0 is regular for both half-lines, X reaches its minimum Xt on the interval
[0, t] continuously at an unique place ρt , as proved in Propositions 2.2 and 2.4 of Millar [19].
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Let

ρn
t = ⌊

ρt2
n
⌋
/2n

and note that

Xt = min
s∈[ρn

t ,ρn
t +1/2n]

Xs.

For continuous and bounded f : R → R and functions F of G of the form h(Xt1 , . . . ,Xtm) for
some t1, . . . , tm ≥ 0 and continuous and bounded h, we will compute the quantity

E0
(
F(X·∧ρn)f (ρn)G(X(ρn+1/2n+·)∧t − Xρn)

)
.

This is done by noting the decomposition

{
ρn

t = k/2n
} = Ak,n ∩ Bk,n,

where

Ak,n = {
mk,n ≤ Xs for s ≤ k/2n

}
,

Bk,n = {
mk,n ≤ Xs for s ∈ [

(k + 1)/2n, t
]}

and

mk,n = inf
r∈[k/2n,(k+1)/2n]Xr.

Applying the Markov property at time (k + 1)/2n we obtain

E0
(
F(X·∧ρn)f (ρn)G(X(ρn+1/2n+·)∧t − mk,n)1ρn=k/2n

)
= E0

(
F(X·∧ρn)f (ρn)H

(
t − (k + 1)/2n,X(k+1)/2n ,X(k+1)/2n

)
1Ak,n

)
,

where

H(s, x, y) = Ex

(
G

(
Xs − y

)
1Xs>y

) = Ex−y

(
G

(
Xs

)
1Xs>0

)
.

By reversing our steps, we obtain

E0
(
F(X·∧ρn)f (ρn)H

(
t − (k + 1)/2n,X(k+1)/2n ,X(k+1)/2n

)
1Ak,n

)
= E0

(
F(X·∧ρn)f (ρn)H̃

(
t − (k + 1)/2n,X(k+1)/2n ,X(k+1)/2n

)
1ρn

t =k/2n

)
,

where

H̃ (s, x, y) = Ex−y

(
G

(
Xs

) |Xs > 0
)
.

By the continuity assumptions of f,F and G we can pass to the limit using the Chaumont–Doney
lemma to get

E0
(
F(X·∧ρt )f (ρt )G

(
X→)) = E0

[
F(X·∧ρt )f (ρt )E

me,t−ρt (G)
]
.
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By time reversal at t , we see that

E0
(
F

(
X←)

f (ρt )G
(
X→)) = E0

[
Ême,ρt (F )f (ρt )E

me,t−ρt (G)
]
. �

We now establish a Denisov-type decomposition for bridges of Lévy processes.

Proof of Theorem 3. Since 0 is regular for (−∞,0) under P0, using local absolute continuity
between Pt

0,0 and P0 we see that Xt < 0 and ρt > 0 almost surely under Pt
0,0. Time reversal and

regularity of 0 for (0,∞) proves that ρt < t almost surely under Pt
0,0.

From the absolute continuity relationship between the meander and the Lévy process condi-
tioned to stay positive, we see that P

↑,t
0,x is a regular conditional probability of X given Xt = x

under Pme,t . Hence, Theorem 2 allows the conclusion

E0
(
F1

(
X←)

f (ρt )g(Xt ,Xt )F2
(
X→)) = E0

[
Ê

↑,ρt

0,−Xt
(F1)f (ρt )g(Xt ,Xt )Ê

↑,ρt

0,Xt−Xt
(F2)

]
.

Hence, we see that for every continuous and bounded f,g1, g2,F1,F2:
∫

Et
0,x

[
F1

(
X←)

f (ρt )g1(Xt )F2
(
X→)]

g2(x)pt (0, x)dx

=
∫

Et
0,x

[
Ê

↑,ρt

0,Xt
(F1)f (ρt )g1(Xt )E

↑,ρt

0,Xt
(F2)

]
g2(x)pt (0, x)dx.

Since both integrands are continuous because of weak continuity of the bridge laws (of the Lévy
process, its dual, and their conditioning to remain positive), we see that

Et
0,0

(
F1

(
X←)

f (ρt )g1(Xt )F2
(
X→)) = Et

0,0

[
Ê

↑,ρt

0,Xt
(F1)f (ρt )g1(Xt )E

↑,ρt

0,Xt
(F2)

]
. �

Theorems 2 and 3 imply the following corollary.

Corollary 2. The joint law of (ρt ,Xt ,Xt ) under P0 admits the expression

P0(ρt ∈ ds,−Xt ∈ dy,Xt − Xt ∈ dz) = P0(ρt ∈ ds)P̂me,s(Xs ∈ dy)Pme,t−s(Xt−s ∈ dz).

The joint law of (ρt ,Xt ) under Pt
0,0 admits the expression

Pt
0,0(ρt ∈ ds,−Xt ∈ dy) = P0(ρt ∈ ds)

pt (0,0)
P̂me,s(Xs ∈ dy)Pme,t−s(Xt−s ∈ dy).

7. An extension of Vervaat’s theorem

In this section, we prove Theorem 4.

Proof of Theorem 4. Let λt be Lebesgue measure on (0, t); we will work under the law P
↑,t
0,0 ⊗λt

and we keep the notation X for the canonical process (which is now defined on the product space
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� × (0, t)) and U will be the projection in the second coordinate of this space. Then a regular
version of the law of Xr∧U , r ≥ 0, and X(U+r)∧t , r ≥ 0, given U = u and XU = y is P

↑,t
0,y ⊗ P

↑,t
y,0

and the law of (U,XU) admits the following density:

(u, y) �→ p
↑
s (0, y)p

↑
t−s(y,0)

t · p↑
t (0,0)

duλ↑(dx).

On the other hand, the Vervaat transformation of X is the concatenation of X→ followed by
the time-reversal of X← at ρt ; under Pt

0,0, the joint law of (X→,X←) given ρt = t − s and

Xt = y is P
↑,s
0,y ⊗ P

↑,t−s
y,0 .

We finish the proof by identifying the law of (t −ρt ,Xt ) under Pt
0,0 with that of (U,XU) under

P
↑,t
0,0 × λ1. Indeed, by Corollary 2, a version of the density with respect to Lebesgue measure of

(t − ρt ,−Xt) at (s, y) is

P0(ρt ∈ t − ds)p
↑
t−s(0, y)p

↑
s (y,0)h(y)ĥ(y)

pt (0,0)β̂t−sβs

.

However, by the Chapman–Kolmogorov equations we can obtain the marginal density of ρt

under Pt
0,0 at u:

P0(ρt ∈ t − ds)p
↑
t (0,0)

pt (0,0)β̂t−sβs

.

Since ρt has an uniform law under Pt
0,0 as proved in Knight [17], then, actually the above ex-

pression is almost surely equal to 1/t so that a joint density of (ρt ,Xt ) under Pt
0,0 is

(u, y) �→ p
↑
s (0, y)p

↑
t−s(y,0)

t · p↑
t (0,0)

duλ↑(dy).
�

Note added in proof

It has been pointed out to the author that the proof of what we state as Theorem 5 (taken from
reference [9]) has an error. Since we use this theorem to construct our bridges, the reader should
note that Theorem 5 has a simple proof when the Markov process in the statement has a Feller
dual. This is the case both for Lévy processes and for Lévy processes conditioned to stay positive
(thanks to Lemma 1 for the latter), and this ensures the validity of the results in this paper.
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