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SUPERCRITICAL PERCOLATION ON LARGE SCALE-FREE
RANDOM TREES

BY JEAN BERTOIN AND GERÓNIMO URIBE BRAVO

Universität Zürich and Universidad Nacional Autónoma de México

We consider Bernoulli bond percolation on a large scale-free tree in the
supercritical regime, meaning informally that there exists a giant cluster with
high probability. We obtain a weak limit theorem for the sizes of the next
largest clusters, extending a recent result in Bertoin [Random Structures Al-
gorithms 44 (2014) 29–44] for large random recursive trees. The approach
relies on the analysis of the asymptotic behavior of branching processes sub-
ject to rare neutral mutations, which may be of independent interest.

1. Introduction and statement of the main result. The last decade saw
much interest in scale-free random graphs. They were introduced in order to mimic
the power laws associated to networks found in real life, a feature lacking in previ-
ous models of random graphs. Undoubtedly, the most popular model of scale-free
random graphs is the one introduced in Barabási and Albert (1999). This model
gives rise to a very specific power law and a generalization leading to other power
laws was introduced in Dorogovtsev, Mendes and Samukhin (2000). It includes
the special case of scale-free trees, which we will be interested in. This case had
been considered earlier in the mathematical community [e.g., Szymański (1987),
Devroye (1998, Section 5)] under the name of recursive trees. We now recall the
model.

Fix a parameter β ∈ (−1,∞), and start for n = 1 from the unique tree T1 on
{0,1} which has a single edge connecting 0 and 1. Then suppose that Tn has been
constructed for some n ≥ 1, and for every i ∈ {0, . . . , n}, denote by dn(i) the degree
of the vertex i in Tn. Conditionally given Tn, the tree Tn+1 is derived from Tn by
incorporating the new vertex n+1 and creating an edge between n+1 and a vertex
vn ∈ {0, . . . , n} chosen at random according to the law

P(vn = i | Tn) = dn(i) + β

2n + β(n + 1)
, i ∈ {0, . . . , n}.

The preceding expression defines a probability since the sum of the degrees of a
tree with n + 1 vertices equals 2n.

Bernoulli bond percolation on scale-free graphs has also received much atten-
tion since it is used as a way of studying the vulnerability of such a network un-
der random and non-coordinated attacks. See, in particular, Bollobás and Riordan
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(2003) and Riordan (2005). In the simpler case of trees, Bernoulli bond percola-
tion means that having constructed Tn for some n � 1, and for a given parameter
p(n) ∈ (0,1), we keep each edge with probability p(n) and remove it with proba-
bility 1−p(n), independently of the other edges. This disconnects Tn into a family
of clusters, and the purpose of this work is to study the asymptotic behavior in dis-
tribution of the sizes of the largest clusters as n → ∞, for a particular regime of
the sequence p(n). Specifically, let us write

C
(p)
0,n ≥ C

(p)
1,n ≥ · · ·

for the ordered sequence of the sizes of the clusters.
In the boundary case β → ∞ where vn becomes uniformly distributed on

{0, . . . , n}, the algorithm yields a so-called uniform recursive tree [see, for in-
stance, Drmota (2009), Smythe and Mahmoud (1994)]. It has then been observed
recently by Bertoin (2014) that choosing the percolation parameter so that

1 − p(n) ∼ c

lnn
,(1)

where c > 0 is fixed, corresponds to an interesting supercritical regime in which
both the largest percolation cluster on a random recursive tree of size n � 1 and its
complement, have a size of order n with high probability. Specifically, the largest
cluster has a size close to e−cn whereas the next largest clusters have size of order
n/ lnn only and are approximately distributed according to some Poisson random
measure with intensity ce−cx−2 dx.

The main purpose of this work is to show that a similar result holds more gen-
erally for large scale-free random trees.

THEOREM 1. Set α = (1 + β)/(2 + β), and assume that the percolation pa-
rameter p(n) fulfills (1). Then

lim
n→∞n−1C

(p)
0,n = e−αc in probability,

and for every fixed integer j ,(
lnn

n
C

(p)
1,n , . . . ,

lnn

n
C

(p)
j,n

)

converges in distribution toward

(x1, . . . ,xj ),

where x1 > x2 > · · · denotes the sequence of the atoms of a Poisson random mea-
sure on (0,∞) with intensity

αce−αcx−2 dx.

Equivalently, 1/x1,1/x2 − 1/x1, . . . ,1/xj − 1/xj−1 are i.i.d. exponential vari-
ables with parameter αce−αc.
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FIG. 1. Scale-free trees with 200 vertices and β = 0 (left) and β = 50 (right). Vertex labels have
been removed for convenience.

It is remarkable that the intensity measure in the statement only depends on the
parameter β through the constant factor αce−αc. It should also be noted that the
map β �→ α(β) = (1 + β)/(2 + β) is increasing, and we then see from Theorem 1
that for the same value of the percolation parameter p(n) and n � 1, the size of the
giant component decreases with the parameter β . This can be explained informally
by the fact that when the parameter β is larger, the algorithm with preferential
attachment produces random trees which are more balanced (cf. Figure 1) so that
after percolation the largest component tends to be smaller.

The approach used in Bertoin (2014) for recursive trees relies crucially on spe-
cial properties of the latter, and more specifically on a remarkable coupling due to
Iksanov and Möhle (2007) connecting the Meir and Moon algorithm for the iso-
lation of the root with a certain random walk in the domain of attraction of the
completely asymmetric Cauchy process. This coupling fails for scale-free trees,
and we thus have to use here a fairly different route.

It is well known that growing random scale-free trees bears close relations to
Yule processes. Indeed, the genera model of Yule (1925) gives one such relation-
ship which is similar to the one we explore here. In this model, species (interpreted
as individuals) suffer light mutations at rate λs (giving rise to other species) and
strong mutations at rate λg (giving rise to a whole new genus). The sizes of the
genera then follow Yule type dynamics. Other general relationships between scale
free trees (or graphs) and branching processes might be found in the survey paper
Devroye (1998) and in Rudas, Tóth and Valkó (2007) and Athreya, Ghosh and
Sethuraman (2008). We shall incorporate an independent Bernoulli percolation to
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the algorithm with preferential attachment and interpret this in terms of neutral
mutations which are superposed to the structure of the branching process. First,
we perform the graph evolution in continuous time by adding an additional ver-
tex at an existing vertex v at a rate proportional to a linear function of the degree
of v. To dynamically generate the percolation clusters, we also decide to cut the
added edges or not with probability p. If a vertex is added with a cut edge we can
think of it as being a mutant, generating a type that has never been encountered
before [a so-called neutral evolution which does not affect fitness to reproduce, as
in Kimura’s model of infinite types; see Kimura (1971)]. The sequence of cluster
sizes can then be thought of as a Yule process with an infinite number of types.
This leads us to investigate in Section 2 the asymptotic behavior of a system of
branching processes with rare neutral mutations up to a large random time, in cer-
tain regimes when the small mutation parameter is related to the size of the total
population. We then specialize in Section 3 those results to Yule processes, make
the link with percolation on scale-free trees and prove Theorem 1.

Our branching process interpretation naturally induces a genealogy between
percolation clusters. Theorem 1 follows by noting that the root cluster is the giant
component while first generation clusters are the second largest, third largest, etc.
We offer the following heuristic to explain it. Note that unbroken edges are added
to the clusters at a rate that depends on a linear function of their size. The clusters
distinct from the root cluster then grow at a much slower rate (since they have
small size compared to the root cluster). The first cut edge appears when the graph
has size approximately lnn, that is, at time around ln lnn in the time-scale of the
Yule process (because Yule processes grow exponentially fast). Since the time at
which the graph reaches the size n is around lnn, this implies that the size of the
first-born cluster at that time will be of order exp(lnn − ln lnn) = n/ lnn.

2. Branching processes with rare neutral mutations. Thus main purpose
of this section is to establish some general results about the long time behavior of
a system of branching processes with rare neutral mutations in a certain specific
regime. The system is presented in the first sub-section, and then asymptotic results
are established in the second.

2.1. Description of the system of branching processes with mutations. We
start by considering a pure birth branching process Z = (Z(t) : t ≥ 0) in contin-
uous space, with unit birth rate per unit population size and reproduction law ν,
where ν denotes a probability measure on (0,∞). This means that Z is a non-
decreasing Markovian jump process such that when Z(0) = z > 0, its first jump
occurs after an exponential time with parameter z, and the jump size has law ν.

We assume that the second moment of ν is finite, which is more than sufficient
to ensure that Z never explodes a.s. Recall that β > −1 is some fixed parameter.
We further suppose that ν((0,1 + β]) = 0 (the role of this assumption shall be
plain latter on), so that when a birth event occurs, the population always increases
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by an amount at least 1 + β . We shall be mainly interested in a class of population
systems which arise by incorporating neutral mutations to the preceding branch-
ing process. It may be useful to think of Kimura’s infinite site model, in which a
genetic type consists of an infinite sequence of letters and each mutation affects
a different locus. In particular, one can reconstruct the genealogy of the types by
comparing the infinite sequences; see, for example, Section 2 in Bertoin (2010) for
a closely related setting.

More precisely, let U = ⋃
n≥0 N

n denote the Ulam tree, with the convention
that N0 = {∅}. That is, each element u ∈ U is a finite sequence u = (u1, . . . , un)

of positive integers, whose length |u| = n corresponds to the height of u in U, and
the empty sequence ∅ serves as the root of U. Each vertex u ∈ U corresponds to
a genetic type; in particular we view ∅ as the ancestral type, and for every u =
(u1, . . . , un) ∈ U and j ∈ N, the j th child of u, uj = (u1, . . . , un, j), represents
the new genetic type which appears at the instant when the j th mutation occurs in
the subpopulation with type u.

The state of the population system at a given time is specified by a collection
of nonnegative real numbers (zu :u ∈ U), where zu is the current size of the sub-
population with type u. The evolution of the system is thus described by a process
Z = (Z(t), t ≥ 0), where for each t ≥ 0, Z(t) = (Zu(t) :u ∈ U) is a collection of
nonnegative variables indexed by Ulam’s tree. At the initial time, all the Zu(0) are
taken to be equal to zero, except Z∅(0) which is the size of the ancestral popula-
tion.

We then describe the random evolution of the system Z, which depends on a pa-
rameter p ∈ [0,1]. Recall that the reproduction law ν assigns no mass to (0,1+β],
so we may consider a positive random variable ξ such that ξ +1+β has the law ν.
We imagine that mutations occur at rate 1−p per unit population size, always pro-
duce a single mutant population of fixed size 1 + β , and are neutral, in the sense
that they do not affect the reproduction law. In particular, the different populations
present in the system (i.e., those with strictly positive sizes) evolve independently
one of the other and according to the same random dynamics. Formally, we take Z
to be a pure-jump Markov chain whose transitions are described as follows. When
at state z = (zu :u ∈ U) our process jumps to a state z̃ at rate

pzuν(dx)

if zv = z̃v for v 	= u and z̃u = zu + dx. This corresponds to a reproduction event in
the subpopulation with type u without a mutation. Otherwise, our process jumps
from z to ẑ at rate

(1 − p)zuν(1 + β + dx),

where if k is the first index such that zuk = 0, then ẑv = zv for all v 	= u,uk,
ẑu = zu + dx and ẑuk = 1 + β . This corresponds to a reproduction event of the
subpopulation with type u which features a mutation.
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In order to underline the role of the rate of mutation, we henceforth write

Z(p) = (
Z(p)

u (t) : t ≥ 0, u ∈ U
)

instead of Z. It should be obvious, however, that no matter what p is, the process
of the total size of the population

Z(t) = ∑
u∈U

Z(p)
u (t), t ≥ 0,

is distributed as the branching process described at the beginning of this section.
Clearly, the process of the size of the subpopulation with the ancestral type

(Z
(p)
∅ (t) : t ≥ 0) is a continuous time branching process in continuous space with

reproduction law given by the distribution of εp(1 + β) + ξ where εp stands for a
Bernoulli variable with parameter p, which is independent from ξ . More generally,
if for u ∈ U, we write

b(p)
u = inf

{
t ≥ 0 :Z(p)

u (t) > 0
}

for the birth time of the subpopulation with type u, then each process(
Z(p)

u

(
t + b(p)

u

)
, t ≥ 0

)
is a branching processes with the same reproduction law as Z

(p)
∅ and starting from

1 + β for u 	= ∅. Focusing on types of the first generation N
1, that is, bearing a

single mutation, we point at a useful independence property involving the birth
times.

LEMMA 1. The processes (Z
(p)
i (b

(p)
i + t) : t ≥ 0) for i ≥ 1 form a se-

quence of i.i.d. branching processes with reproduction distributed according to
ξ + εp(1 + β), and starting point 1 + β . Further, this sequence is independent of
that of the birth-times (b

(p)
i )i≥1 and of the process Z

(p)
∅ of the subpopulation with

the ancestral type.

PROOF. Let (X,M) be a continuous-time Markov chain with values in R+ ×
Z+ with two types of transition:

(x,m) �→ (x + dx,m) at rate xpν(dx),

(x,m) �→ (x + dx,m + 1) at rate x(1 − p)ν(1 + β + dx).

In particular, X is a branching process distributed as Z
(p)
∅ and we can inter-

pret M as the process of the number of mutation events which occur within the
subpopulation with the ancestral type.

Let γ1 < γ2 < · · · denote the sequence of jump times of M and set γ0 = 0. In-
dependently on (X,M), let (Xi, i ∈ N) be a sequence of i.i.d. branching processes
with the same law as Z

(p)
∅ but with starting value 1 + β . We then form the process

X(t) = (
X(t),1t≥γ1X1(t − γ1),1t≥γ2X2(t − γ2), . . .

)
, t ≥ 0.
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The analysis of jump times and positions then readily shows that X is Markovian
and has the same law as (Z

(p)
∅ ,Z

(p)
1 ,Z

(p)
2 , . . .). �

REMARK 1. It is crucial in this statement to focus on subpopulations bear-
ing the same number of mutations; for instance, the independence property
of the birth-times would fail if we considered the whole family of processes
Z

(p)
u (b

(p)
u + ·) for u ∈ U \ {∅}.

REMARK 2. Alternatively, Lemma 1 can also be proved using the general
branching property of branching processes [see Chauvin (1991) and Jagers (1989)]
viewing the first mutations as a stopping line.

2.2. Asymptotics for rare mutations. Recall the assumption that the reproduc-
tion law ν of the branching process Z has a finite second moment and write

m1 =
∫

xν(dx) and m2 =
∫

x2ν(dx).

It is well known that

W(t) := e−m1tZ(t), t ≥ 0,

is then a nonnegative square-integrable martingale, and we write W(∞) for its
terminal value. Furthermore, W(∞) > 0 a.s. since Z cannot become extinct [cf.
Theorem 2, page 112 in Chapter III of Athreya and Ney (1972) for the general
assertion and Example 5.4.3, page 253 of Durrett (2010) just for the finite variance
case].

It is easily checked that the speed of convergence of the martingale W is expo-
nential. Specifically, if we write Pz for the distribution of the branching process Z

started from z > 0, then the following general bound holds.1

LEMMA 2. For every t ≥ 0, there is the upper-bound

Ez

(
sup
s≥t

∣∣W(s) − W(∞)
∣∣2)

≤ 10z
m2

m1
e−m1t .

As a consequence, we have

Ez

(
sup
s≥0

em12s/3∣∣W(s) − W(∞)
∣∣2)

≤ 10zm2e2m1/3

m1(1 − e−m1/6)2 .

1The assumption that ν assigns no mass to (0,1 +β] plays no role here, and Lemma 2 holds when
this assumption is dropped.
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PROOF. By Doob’s inequality and basic properties of square integrable mar-
tingales, we have

Ez

(
sup
s≥t

∣∣W(s) − W(∞)
∣∣2)

≤ 10Ez

([W ]∞ − [W ]t ),
where

[W ]t = ∑
0≤s≤t

∣∣	W(s)
∣∣2 = ∑

0≤s≤t

e−2m1s
∣∣Z(s) − Z(s−)

∣∣2.
A straightforward calculation shows that the compensator of the jump process [W ]
is

〈W 〉t = m2

∫ t

0
e−2m1sZ(s)ds,

that is, [W ]t − 〈W 〉t is a local martingale. Finally, observe that

Ez

(
e−2m1sZ(s)

) = e−m1sEz

(
W(s)

) = ze−m1s,

so

Ez

(〈W 〉∞ − 〈W 〉t ) = z
m2

m1
e−m1t .

This enables us to assert that

Ez

([W ]∞ − [W ]t ) = Ez

(〈W 〉∞ − 〈W 〉t ),
and our first statement follows.

Turning our attention to the second inequality, we write for every integer n ≥ 0

sup
n≤s<n+1

em1s/3∣∣W(s) − W(∞)
∣∣ ≤ em1(n+1)/3 sup

n≤s<n+1

∣∣W(s) − W(∞)
∣∣.

It follows from the first part that the L2-norm of the right-hand side can be bounded
from above by

em1(n+1)/3
∥∥∥sup

s≥n

∣∣W(s) − W(∞)
∣∣∥∥∥

2
≤

√
10z

m2

m1
e−m1(n−2)/6,

so taking the sum over n and applying Minkowski’s inequality yields the stated
bound. �

The main purpose of this section is to specify the joint asymptotic behaviors
of the branching processes Z

(p)
∅ and Z

(p)
i for i ∈ N in appropriate regimes when

p → 1 and time tends to ∞. In this direction, we denote the mean reproduction of
Z

(p)
∅ by

m1(p) = E(ξ) + p(1 + β),
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and recall that the process

W
(p)
∅ (t) = e−m1(p)tZ

(p)
∅ (t), t ≥ 0,

is a martingale with terminal value denoted by W
(p)
∅ (∞). For each fixed t ≥ 0,

we have limp→1 W
(p)
∅ (t) = W(t), and on the other hand, we know that

limt→∞ W(t) = W(∞) in L2. As a matter of fact, we have a stronger uniform
convergence.

LEMMA 3. It holds that

lim
p→1,t→∞Ez

(
sup
s≥t

∣∣W(p)
∅ (s) − W(∞)

∣∣2)
= 0.

PROOF. Note that for 1/2 ≤ p < 1, we have m1(p) ≥ 1
2m1 and the second

moment of ξ + εp(1 + β) is at most m2. We deduce from Lemma 2 applied to the

branching process Z
(p)
∅ that for every fixed ε > 0, we can find tε < ∞ such that

Ez

(
sup
s≥tε

∣∣W(p)
∅ (s) − W

(p)
∅ (∞)

∣∣2)
≤ ε for all p ∈ [1/2,1].(2)

We next claim that

lim
p→1

Ez

(∣∣W(p)
∅ (tε) − W(tε)

∣∣2) = 0.(3)

Indeed, recall that b
(p)
1 denotes the first birth time of a mutant population. Plainly,

limp→1 b
(p)
1 = ∞ in probability, and the probability of the event {tε ≥ b

(p)
1 } can be

made as small as we wish by choosing p sufficiently close to 1. On the one hand,
as Z

(p)
∅ (tε) ≤ Z(tε), we have

Ez

(∣∣W(p)
∅ (tε) − W(tε)

∣∣2, tε ≥ b
(p)
1

) ≤ (
e2(m1−m1(p))tε + 1

)
Ez

(∣∣W(tε)
∣∣2, tε ≥ b

(p)
1

)
,

and the right-hand side goes to 0 as p → 1. On the other hand, on the event {tε <

b
(p)
1 }, we have Z

(p)
∅ (tε) = Z(tε), and hence W

(p)
∅ (tε) = e(m1−m1(p))tεW(tε). This

yields

Ez

(∣∣W(p)
∅ (tε) − W(tε)

∣∣2, tε < b
(p)
1

) ≤ (
e(m1−m1(p))tε − 1

)2
Ez

(∣∣W(tε)
∣∣2)

,

and again the right-hand side goes to 0 as p → 1. This establishes (3).
Combining (2) and (3), we get

lim sup
p→1

Ez

(∣∣W(∞) − W
(p)
∅ (∞)

∣∣2) ≤ 4ε,

and since ε > 0 can be chosen arbitrarily small, we have in fact

lim
p→1

Ez

(∣∣W(∞) − W
(p)
∅ (∞)

∣∣2) = 0.(4)
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Plugging this in (2), we conclude that

lim sup
p→1

Ez

(
sup
s≥tε

∣∣W(p)
∅ (s) − W(∞)

∣∣2)
≤ ε,

which is equivalent to our statement. �

We next turn our attention to the asymptotic behavior of the birth times b
(p)
i for

i = 1,2, . . . of the different types with a single mutation.

LEMMA 4. As p → 1, the sequence

1 − p

m1
W(∞) exp

(
m1(p)b

(p)
i

)
, i ≥ 1,

converges in the sense of finite-dimensional distributions toward

Si := e1 + · · · + ei , i ≥ 1,

where (ei )i∈N denotes a sequence of i.i.d. standard exponential variables.

We stress that, thanks to Lemma 1, the sequence above is independent of the
processes (Z

(p)
i (b

(p)
i + t) : t ≥ 0) for i ≥ 1. This observation will be important

later on.

PROOF OF LEMMA 4. Define

I (p)(t) := (1 − p)

∫ t

0
Z

(p)
∅ (s)ds, t ≥ 0.

The random map I (p) : [0,∞) → [0,∞) is a.s. bijective, and we denote its inverse
by J (p). It follows immediately from the description of the population system that
if we time-change the process t �→ M(p)(t) which counts the number of types
with a single mutation, by J (p), then we get another counting process t �→ M(p) ◦
J (p)(t) with unit jump rate. In other words, M(p) ◦ J (p) is a standard Poisson
process and, therefore, the sequence of its jump-times is given by a random walk
S with exponentially distributed steps with unit mean.2 Since the birth-times b

(p)
i

for i ≥ 1 are the jump-times of M(p), this yields

I (p)(b(p)
i

) = Si, i ≥ 1.

2This realization of the random walk depends on the parameter p. Since only its law is relevant in
this proof, this parameter will be omitted from the notation for simplicity.
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We now only need to estimate I (p)(t) as both p → 1 and t → ∞. In this direc-
tion observe from the triangle inequality that∣∣∣∣I (p)(t) − 1 − p

m1(p)

(
em1(p)t − 1

)
W

(p)
∅ (∞)

∣∣∣∣
≤ (1 − p)

∫ t

0

∣∣Z(p)
∅ (s) − W

(p)
∅ (∞)em1(p)s

∣∣ ds

= (1 − p)

∫ t

0

∣∣W(p)
∅ (s) − W

(p)
∅ (∞)

∣∣em1(p)s ds

≤ (1 − p)A(p)em1(p)2t/3,

where

A(p) := 3

2m1(p)
sup
s≥0

em1(p)s/3∣∣W(p)
∅ (s) − W

(p)
∅ (∞)

∣∣.
Recall from Lemma 2 that the variables A(p) are bounded in L2(P) for 1/2 ≤ p <

1; we deduce that

lim
t→∞E

(
sup
s≥t

∣∣∣∣e−m1(p)s

1 − p
I (p)(s) − W

(p)
∅ (∞)

m1(p)

∣∣∣∣
2)

= 0 uniformly in 1/2 ≤ p < 1.

Recall also from (4) that limp→1 W
(p)
∅ (∞) = W(∞) in L2(P), where W(∞) is

strictly positive a.s., and note that b
(p)
i → ∞ in probability for every i ≥ 1. It

follows that

Si = I (p)(b(p)
i

) ∼ 1 − p

m1(p)
em1(p)b

(p)
i W(∞) in probability,

and clearly we may replace m1(p) by m1 in the fraction above. �

We have all the technical ingredients to establish the main result of this section,
but we still need some additional notation. For each p ∈ (0,1), consider a random
time τ (p) such that

lim
p→1

(
m1(p)τ (p) + ln(1 − p)

) = ∞ in probability.(5)

Let W ′(∞) be a variable distributed as the terminal value of the martingale
W(t) = e−m1tZ(t) where the starting point is now Z(0) = 1 + β . We intro-
duce (W ′

i (∞) : i ≥ 1) a sequence of i.i.d. copies of W ′(∞). We finally recall
that (Sk :k ≥ 0) denotes a random walk with i.i.d. steps distributed according
to the standard exponential law. We implicitly assume that (W ′

i (∞) : i ≥ 1) and
(Sk :k ≥ 0) are independent.
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THEOREM 2. As p → 1, the sequence(
e−m1(p)τ (p)

(1 − p)W(∞)
Z

(p)
i

(
τ (p)) : i ≥ 1

)
converges in the sense of finite-dimensional distributions toward(

W ′
i (∞)

m1Si

: i ≥ 1
)
.

PROOF. Recall that b
(p)
i denotes the instant of the ith mutation in the subpop-

ulation with the ancestral type, and set for i ≥ 1 and t ≥ 0,

W
(p)
i (t) = e−m1(p)tZ

(p)
i

(
t + b

(p)
i

)
.

Fix z > 0. By Lemma 3, for every continuous f :R → R bounded in absolute
value by 1 and every ε > 0, there exist t (f, ε) and p(f, ε) such that if p(f, ε) <

p ≤ 1 then

Ez

(
sup

t1,t2≥t (f,ε)

∣∣f (
W

(p)
∅ (t1)

) − f
(
W

(p)
∅ (t2)

)∣∣) ≤ ε

and ∣∣Ez

(
f

(
W

(p)
∅

(
t (f, ε)

))) −Ez

(
f

(
W(∞)

))∣∣ ≤ ε.

Without loss of generality, we may also assume that the same inequalities hold with
W

(p)
∅ and W(∞) replaced by W

(p)
i and W ′

i (∞) for any i ∈ N, since this amounts
to taking z = 1 + β .

Consider then for each i ≥ 1, a family of random times (t
(p)
i )0<p<1, such that

limp→1 t
(p)
i = ∞ in probability. Since we can guarantee that Pz(t

(p)
i ≤ t (f, ε)) ≤ ε

for p ≥ p(i, f, ε), we see that∣∣Ez

(
f

(
W

(p)
i

(
t
(p)
i

))) −E
(
f

(
W ′

i (∞)
))∣∣ ≤ 2ε

if p ≥ p(i, f, ε). The independence of the W
(p)
i is seen from Lemma 1, and we

have deduced the weak convergence (in the sense of finite-dimensional distribu-
tions) (

e−m1(p)t
(p)
i Z

(p)
i

(
t
(p)
i + b

(p)
i

)
: i ≥ 1

) �⇒ (
W ′

i (∞) : i ≥ 1
)
.

Recall from Lemma 4 that we have also(
1

(1 − p)W(∞)
exp

(−m1(p)b
(p)
i

)
: i ≥ 1

)
�⇒

(
1

m1Si

: i ≥ 1
)
.

More precisely, we deduce from Lemma 1 that these two weak convergences hold
jointly, provided that we take the sequences (W ′

i (∞) : i ≥ 1) and (Si : i ≥ 1) to be
independent.

To complete the proof, it now suffices to set t
(p)
i = τ (p) −b

(p)
i for i ≥ 1 and take

the product of the preceding weak limits. Note that Lemma 4 and the assumption
(5) ensure that indeed limp→1 t

(p)
i = ∞. �
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3. Combining preferential attachment with percolation. We are now able
to start investigating the question which has motivated this article. It is convenient
for our purpose to work with a continuous version of the preferential attachment
algorithm, in the sense that we shall grow a scale-free tree in continuous time. That
is, we start at time 0 from the tree on {0,1}, and once the random tree with size
n + 1 ≥ 2 has been constructed, we equip each vertex i ∈ {0, . . . , n} with an expo-
nential clock ζi with parameter dn(i) + β , where dn(i) denotes the current degree
of i, independently of the other vertices. Then the next vertex n+1 is attached after
a waiting time equal to mini∈{0,...,n} ζi at the vertex vn = arg mini∈{0,...,n} ζi . Recall
that the sum of the degrees of a tree with n + 1 vertices is 2n, so mini∈{0,...,n} ζi is
exponentially distributed with parameter 2n + β(n + 1).

Denote by T (t) the tree which has been constructed at time t , and by |T (t)| its
size, that is, its number of vertices. It should be plain that if we define

τn = inf
{
t ≥ 0 :

∣∣T (t)
∣∣ = n + 1

}
,

then T (τn) is a version of a scale-free tree of size n+1, Tn. The process of the size
|T (t)| of T (t) is clearly Markovian; however, it will more convenient in practice
to work with a linear transformation of it, namely

Y(t) = 2
(∣∣T (t)

∣∣ − 1
) + β

∣∣T (t)
∣∣, t ≥ 0.

In particular, Y(0) = 2 + 2β .

LEMMA 5. The process Y is a pure birth branching process that has only
jumps of size 2 + β , and with unit birth rate per unit population size. Equivalently,
(2 + β)−1Y is a Yule branching process in continuous space with birth rate 2 + β

per unit population size.

PROOF. The sum of degrees of vertices in T (t) is 2(|T (t)|−1). Because when
this tree has size n, the next vertex n + 1 is incorporated at rate 2(n − 1) + βn,
which yields an increase of Y by 2 + β , we see that Y is a branching process
in continuous space and time with unit rate of birth per unit population size, and
reproduction law given by the Dirac point mass at 2+β . Normalizing Y by a factor
(2 + β)−1, we recognize the dynamics of a Yule process. �

We next superpose Bernoulli bond percolation onto this construction by mark-
ing each edge ej connecting a vertex j ≥ 1 to its parent vj with an independent
uniform random variable Uj . The parameter p ∈ (0,1) being fixed, we may imag-
ine that ej is cut at its midpoint when the mark Uj > p and remains intact other-
wise. We write T (p)(t) for the resulting combinatorial structure at time t . That is,
T (p)(t) has the same set of vertices as T (t); its set of intact edges is the subset of
the edges ej of T (t) such that Uj ≤ p; and further T (p)(t) may have half-edges,
which should be viewed as stubs attached to some vertices and which correspond
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to edges of T (t) that have been cut in two. The point in cutting rather than remov-
ing edges is that the former procedure preserves the degrees of vertices, where the
degree of a vertex is defined as the total number of intact edges and half-edges
attached to it.

The percolation clusters of T (t) are the connected components of T (p)(t), that
is, the subtrees spanned by vertices which can be connected by a path of intact
edges. We write T

(p)
0 (t), T

(p)
1 (t), . . . for the sequence of subtrees at time t , where

the enumeration follows the increasing order of their birth times, and with the
convention that T

(p)
j (t) = ∅ when the number of edges that have been cut at time

t is less than j . Specifically, if j is the label of the ith variable Uj to be greater
than p, then T

(p)
i (t) is the combinatorial structure spanned by the vertices that can

be joined by a path of intact edges to the vertex j . In particular, T
(p)
0 (t) denotes

the subtree at time t which contains the vertex 0; it shall play a special role in our
analysis.

We write H
(p)
i (t) for the number of half-edges pertaining to the ith subtree at

time t , so that 2(|T (p)
i (t)| − 1) + H

(p)
i (t) is the sum of the degrees of vertices of

the ith subtree. We stress that ∑
i≥0

∣∣T (p)
i (t)

∣∣ = ∣∣T (t)
∣∣ and

∑
i≥0

(
2
(∣∣T (p)

i (t)
∣∣ − 1

) + H
(p)
i (t)

) = 2
(∣∣T (t)

∣∣ − 1
)
.

If we set

Y
(p)
i (t) = 2

(∣∣T (p)
i (t)

∣∣ − 1
) + H

(p)
i (t) + β

∣∣T (p)
i (t)

∣∣, t ≥ 0,

then we see from above that ∑
i≥0

Y
(p)
i (t) = Y(t).(6)

The connexion with the system of branching processes with neutral mutations
of the preceding section should be clear. Specifically, imagine that at some given
time t , the state of the process Y(p) = (Y

(p)
j : j ≥ 0) is given by (y0, y1, . . .),

and write y = y0 + y1 + · · ·. In particular, the current size of the growing tree
is |T (t)| = (y + 2)/(2 + β), and we know from Lemma 5 that the next vertex will
be incorporated after an exponential time with parameter y. The probability that
the edge corresponding to this new vertex has its other extremity in the ith subtree
T

(p)
i (t) is

2(|T (p)
i (t)| − 1) + H

(p)
i (t) + β|T (p)

i (t)|
y

= yi

y
,

independently of the waiting time. Finally, the probability that this edge is intact is
p, independently of the preceding variables. We thus see from basic properties of



PERCOLATION ON SCALE-FREE RANDOM TREES 95

independent exponential variables that Y(p) has the same random evolution as the
system Z(p) of branching processes with neutral mutations of Section 2 when the
reproduction law ν is simply given by the Dirac mass at 2 +β . In this setting, Y

(p)
0

corresponds to Z
(p)
∅ , the subpopulation with the ancestral type of Section 2. There

is, however, an important difference between the way clusters and subpopulations
are labeled that should be stressed to avoid a possible confusion. Although the
families Z(p) = (Z

(p)
u :u ∈ U) and Y(p) = (Y

(p)
j : j ≥ 0) do represent the same

process, the subcollection (Z
(p)
i : i ∈ N) is only a subsequence of (Y

(p)
j : j ∈ N)

corresponding to subtrees at distance 1 from the root-subtree T
(p)
0 . Recall that

focussing on subpopulations with a single mutation is crucial to ensure the validity
of Lemma 1.

Define the generation of a vertex as the number of edges e on the branch from
this vertex to the root 0 which have a mark Ue > p (in other words, this is the
number of cuts on that branch). In particular, vertices of T

(p)
0 have generation 0,

and those of T
(p)
1 have generation 1. We then set ρ(i) = j for i ≥ 1 when the j th

subtree of T (p)(t) is the ith subtree of the first generation, where as usual, subtrees
in a family are enumerated according to the increasing order of their birth times.
In particular, we always have ρ(1) = 1 and the sequence (ρ(i) : i ≥ 1) is strictly
increasing. The following claim should be plain from the discussion above.

COROLLARY 1. In the notation of Section 2, take ξ ≡ 1 and z = 2 + 2β . Then
the families(

Y,Y
(p)
0 , Y

(p)
ρ(1), Y

(p)
ρ(2), . . .

)
and

(
Z,Z

(p)
∅ ,Z

(p)
1 ,Z

(p)
2 , . . .

)
have the same distribution.

In the sequel, it will be convenient to agree that the two families in the statement
above are actually the same (not merely are identical in law). Recall also that the
algorithm with preferential attachment is run until time

τn = inf
{
t ≥ 0 :

∣∣T (t)
∣∣ = n + 1

} = inf
{
t ≥ 0 :Y(t) = 2n + β(n + 1)

}
when the structure has size n + 1.

We henceforth assume that the percolation parameter p = p(n) fulfills (1). The
motivation for this choice stems from the next statement, which shows that both
the root-cluster and its complement are then macroscopic (i.e., of size of order n).
For the sake of simplicity, we shall frequently write p rather than p(n), omitting
the integer n from the notation. Recall that α = (1 + β)/(2 + β).

COROLLARY 2. We have

lim
n→∞

Y
(p)
0 (τn)

n
= (2 + β)e−αc

in probability.
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PROOF. We know from Corollary 1 and Lemmas 2 and 3 that

lim
n→∞ e−m1τnY (τn) = lim

n→∞ e−m1(p)τnY
(p)
0 (τn) = W(∞) in probability,

with m1 = 2 + β and m1(p) = 1 + p(1 + β). By the definition of τn, we have
Y(τn) = 2n + β(n + 1), hence

e−(2+β)τn ∼ W(∞)

(2 + β)n

and, a fortiori, τn ∼ (2 + β)−1 lnn. Our claim follows since

m1 − m1(p) = (
1 − p(n)

)
(1 + β) ∼ (1 + β)c

lnn
,

thanks to (1). �

Next, let

N(p)(t) = max
{
j :T (p)

j (t) 	= ∅
}

denote the number of subtrees at time t other than the root subtree containing 0.
Recall also that M(p)(t) denotes the number of subpopulations with a single muta-
tion at time t , that is of subtrees at time t which are at unit distance from T

(p)
0 (t).

We shall now observe that when p is close to 1, these two quantities coincide with
high probability as long as t is not too large. In this direction, recall that p = p(n)

fulfills (1), and observe from Lemma 4 that for each fixed i ≥ 1, the time b
(p)
i of

the ith mutation within the sub-population with the ancestral type (i.e., the first
instant when M(p) reaches i) fulfills

b
(p)
i = 1

m1(p)
ln

1

1 − p(n)
+ O(1) = ln lnn

2 + β
+ O(1) as n → ∞.

LEMMA 6. Set 	(p)(t) = N(p)(t) − M(p)(t) for the number of subtrees at
distance strictly greater than 1 from the root-cluster at time t . For every r > 0, we
have

lim
n→∞E

(
	(p)((2 + β)−1 ln lnn + r

)) = 0.

PROOF. Roughly speaking, the dynamics of Y(p) show that the counting pro-
cess N(p) grows at rate (1 − p)Y , which means rigorously that the predictable
compensator of N(p) is absolutely continuous with density (1 − p)Y . In other
words, N(p)(t) − (1 − p)

∫ t
0 Y(s)ds is a martingale, and thus

E
(
N(p)((2 + β)−1 ln lnn + r

)) = (1 − p)

∫ (2+β)−1 ln lnn+r

0
E

(
Y(s)

)
ds.
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Similarly, the counting process M(p) grows at rate (1 − p)Y
(p)
0 , and

E
(
M(p)((2 + β)−1 ln lnn + r

)) = (1 − p)

∫ (2+β)−1 ln lnn+r

0
E

(
Y

(p)
0 (s)

)
ds.

We deduce from Lemma 5 that

E
(
Y(s)

) = 2(1 + β)e(2+β)s and

E
(
Y

(p)
0 (s)

) = 2(1 + β)e(2+β−(1−p)(1+β))s,

and our claim then follows from (1). �

Lemma 6 entails in particular that for each fixed k ≥ 1, the probability that the
k-tuple of processes (Y

(p)
i )1≤i≤k and (Z

(p)
i )1≤i≤k coincide tends to 1 as n → ∞.

This enables us to deduce the asymptotic behavior of the former from Theorem 2.
We shall use the same notation as there, specialized to the setting of this present
section. That is, W ′(∞) denotes the terminal value of the martingale e−(2+β)tY (t)

given Y(0) = 1 + β , (W ′
i (∞))i≥1 is a sequence of i.i.d. copies of W ′(∞), and

(Si)i≥1 is an independent random walk whose steps have the standard exponential
distribution.

COROLLARY 3. The sequence(
lnn

n
Y

(p)
i (τn) : i ≥ 1

)

converges in the sense of finite-dimensional distributions as n → ∞ toward(
ce−αc W ′

i (∞)

Si

: i ≥ 1
)
.

PROOF. Recall that (m1 − m1(p))τn → αc, as proved in Corollary 2. Hence,

exp
(−m1(p)τn

) = exp
((

m1 − m1(p)
)
τn

)
exp(−m1τn) ∼ eαc W(∞)

(2 + β)n
,

and our claim follows from Theorem 2 specified in the present setting with τ (p) =
τ (p(n)) = τn. �

Next, we easily translate the above limit theorem for the branching processes
Y

(p)
i in terms of the sizes of the subtrees listed in the increasing order of their

ages.

COROLLARY 4. We have

lim
n→∞n−1∣∣T (p)

0 (τn)
∣∣ = e−αc
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and the sequence (
lnn

n

∣∣T (p)
i (τn)

∣∣ : i ≥ 1
)

converges as n → ∞, in the sense of finite-dimensional distributions, toward(
ce−αc W ′

i (∞)

(2 + β)Si

: i ≥ 1
)
.

PROOF. We focus on the second claim, the proof of the first being similar (and
easier) using Corollary 2 in place of Corollary 3.

From Corollary 3, it suffices to show that

Y
(p)
i (τn) ∼ (2 + β)

∣∣T (p)
i (τn)

∣∣,
and for this, that the number of half-edges pertaining to the ith subtree fulfills

H
(p)
i (τn) = o

(
Y

(p)
i (τn)

)
.(7)

In this direction, recall that the ith jump time γ
(p)
i := inf{t ≥ 0 :N(p)(t) = i} of

the process N(p) that counts the number of subtrees as time passes, is a stopping
time which corresponds to the birth-time of the ith subtree T

(p)
i . We observe from

the dynamics described at the beginning of this section and the strong Markov
property that the process

H
(p)
i

(
γ

(p)
i + t

) − (1 − p)

∫ t

0
Y

(p)
i

(
γ

(p)
i + s

)
ds, t ≥ 0,

is a martingale. Similarly,

Y
(p)
i

(
γ

(p)
i + t

) − (
1 − p + p(2 + β)

) ∫ t

0
Y

(p)
i

(
γ

(p)
i + s

)
ds, t ≥ 0,

is also a martingale. It follows that

L(p)(t) := H
(p)
i

(
γ

(p)
i + t

) − 1 − p

1 + p + pβ
Y

(p)
i

(
γ

(p)
i + t

)
is a martingale; note also that its jumps |L(p)(t) − L(p)(t−)| have size at most
2 + β , independently of p. Since there are at most n jumps up to time τn − γ

(p)
i ,

the bracket of L(p) can be bounded by[
L(p)]

τn−γ
(p)
i

≤ (2 + β)2n.

Hence,

E
(∣∣L(p)(τn − γ

(p)
i

) − L(p)(0)
∣∣2) ≤ (2 + β)2n,
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and in particular

lim
n→∞E

(∣∣∣∣ lnn

n
L(p)(τn − γ

(p)
i

)∣∣∣∣
2)

= 0.

The estimate (7) now follows readily from Corollary 3 and the fact that 1−p(n) =
o(1). �

Our final task is to deduce from Corollary 3 a limit theorem for the sizes of
the percolation clusters listed in the decreasing order of their sizes, rather than
their ages. Roughly speaking, we shall check that the largest clusters are given by
the older subtrees, in the sense that for every fixed k, with high probability when
n → ∞ and � → ∞, the k largest percolation clusters of T (p)(τn) are to be found
among the � oldest subtrees (T

(p)
i (τn))0≤i≤�.

Recall from Lemma 4 that for each fixed i ≥ 1, the ith oldest subtree T
(p)
i (τn)

was born at time (2 + β)−1 ln lnn + O(1), and from Corollary 3 that its size is
of order n/ lnn. We thus have to check that it is unlikely to have at time τn a
subtree of size ≈ n/ lnn or greater, and which was born at a much later time than
(2 + β)−1 ln lnn. Here is a formal statement, which is expressed for convenience
in terms of the processes Y

(p)
k .

LEMMA 7. For every ε > 0, we have

lim
r→∞ lim sup

n→∞
P

(∃k ≥ 1 :Y (p)
k

(
(2 + β)−1 ln lnn + r

) = 0 and

Y
(p)
k (τn) > εn/ lnn

) = 0.

PROOF. Let (Ft )t≥0 denote the natural filtration generated by the (continuous
time version of) the algorithm with preferential attachment, including the uniform
marks on the edges. The counting process N(p) is (Ft )-adapted, and its jump times
γ

(p)
k := inf{t ≥ 0 :N(p)(t) = k} are stopping times that correspond to the birth-

times of subtrees.
An application of the strong Markov property to the algorithm (recall also

Lemma 5) shows that for each k ≥ 1, the process (2 + β)−1Y
(p)
k (· + γ

(p)
k )

is a Yule process with birth rate 2 + β per unit population size, started from
(1 + β)/(2 + β) = α ≤ 1, and independent of F

γ
(p)
k

. Plainly, the latter can be

bounded from above by a Yule process with the same birth rate and started at 1, in
particular (2+β)−1Y

(p)
k (u+γ

(p)
k ) is stochastically bounded from above by a geo-

metric variable with parameter exp(−(2+β)u) [see, e.g., Athreya and Ney (1972)
on page 109]. That is, the tail distribution of (2 + β)−1Y

(p)
k (u + γ

(p)
k ) admits the

bounds � �→ (1 − exp(−(2 + β)u))�+1.
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It is convenient to write rn = (2 + β)−1 ln lnn + r and sn = (2 + β)−1 lnn + s.
Fix s ≥ 0 arbitrary large, and consider the number of processes Y

(p)· which are
born after time rn and reach a size greater than εn/ lnn at time sn, namely

Xn =
∞∑

k=1

1{rn≤γ
(p)
k ≤sn}1{Y (p)

k (sn)>εn/ lnn} =
∫ sn

rn

1{Y (p)

N(p)(t)
(sn)>εn/ lnn} dN(p)(t).

The preceding observations entail that

E(Xn) ≤ E

(∫ sn

rn

(
1 − exp

(−(2 + β)(sn − t)
))(2+β)−1εn/ lnn dN(p)(t)

)

≤ E

(∫ sn

rn

exp
[
− εn

(2 + β) lnn
exp

(−(2 + β)(sn − t)
)]

dN(p)(t)

)
,

where in the second line, we used the inequality (1 − x)a ≤ exp(−ax).
Next, recall that the counting process N(p) has a predictable compensator which

is absolutely continuous with density (1 − p)Y . This enables us to express the last
quantity above as

(1 − p)E

(∫ sn

rn

Y (t) exp
[
− εn

(2 + β) lnn
exp

(−(2 + β)(sn − t)
)]

dt

)
.

Recall also that E(Y (t)) = 2(1 + β)e(2+β)t ; we arrive at

E(Xn) ≤ 2(1 + β)(1 − p)

×
∫ sn

rn

e(2+β)t exp
[
− εn

(2 + β) lnn
exp

(−(2 + β)(sn − t)
)]

dt

≤ 2(1 + β)

2 + β
(1 − p)

∫ ∞
e(2+β)rn

exp
[
−x

εn

(2 + β) lnn
exp

(−(2 + β)sn
)]

dx

= 2(1 + β)(1 − p)
lnn

εn

× exp
(
(2 + β)sn

)
exp

[
−e(2+β)rn

εn

(2 + β) lnn
exp

(−(2 + β)sn
)]

.

Plugging into the last expression the values of rn and sn and using (1), we con-
clude that

lim sup
n→∞

E(Xn) ≤ c′ε−1e(2+β)s exp
(−ε(r − s)/(2 + β)

)
,

where c′ is some constant depending only on α,β and c. This quantity goes to 0
as r → ∞, for every fixed ε and s, and this entails in particular that

lim
r→∞ lim sup

n→∞
P

(∃k :Y (p)
k (rn) = 0 and Y

(p)
k (sn) > εn/ lnn

) = 0.
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Since (from Lemma 5)

lim
s→∞P

(
τn > sn = (2 + β)−1 lnn + s

) = 0,

this completes the proof. �

We are now able to complete this paper and establish Theorem 1. Recall that
the scale-free tree Tn with n + 1 vertices can be obtained as T (τn), and that the
first claim of Theorem 1 is also the first claim of Corollary 4. The key issue for the
second claim is the following. Corollary 3 provides a limit theorem in the sense
of finite-dimensional distributions for the normalized sequence of the sizes of the
subtrees ordered by age, whereas Theorem 1 concerns ordering by size.

Lemma 7 and the fact that |T (p)
k (t)| − 1 ≤ (2 + β)−1Y

(p)
k (t) enable us to assert

that if we use the notation (xi)
↓ for the decreasing rearrangement of a sequence of

nonnegative real numbers (xi) which converges to 0, then(
lnn

n

∣∣T (p)
i (τn)

∣∣ : i ≥ 1
)↓

converges as n → ∞, in the sense of finite-dimensional distributions, toward(
ce−αc(2 + β)−1 W ′

i (∞)

Si

: i ≥ 1
)↓

.

So all what is needed now is to identify explicitly the distribution of the limit
above. In this direction, we start specifying the law of the i.i.d. variables W ′

i (∞).
From Lemma 5 and standard properties of Yule processes [recall also the notation
α = (1 + β)/(2 + β)], we get that if Y ′ denotes a version of the branching process
Y started from Y ′(0) = 1 + β , then

lim
t→∞ e−(2+β)tY ′(t) = W ′(∞) a.s. and in L2(P),

where W ′(∞) is a gamma variable with (shape and rate) parameter (α,1/(2+β)),
that is,

P
(
W ′(∞) ∈ dw

) = �(α)−1(2 + β)−αwα−1e−w/(2+β) dw, w > 0.

Recall that (Si)i≥0 is a random walk with standard exponentially distributed
steps, which is independent of the (W ′

i (∞))i≥1. It follows that (Si,W
′
i )i≥1 can be

viewed as the sequence of the atoms of a Poisson point process on R+ ×R+ with
intensity

ds ⊗ (2 + β)−α wα−1

�(α)
e−w/(2+β) dw.

The image of this measure by the map

(s,w) �→ x = ce−αc(2 + β)−1 w

s
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is again a Poisson random measure, now with intensity αce−αcx−2 dx, which es-
tablishes the second part of Theorem 1. Finally, the alternative description in terms
of the inverses of the atoms belongs to the folklore of Poisson random measures
(simply note that the image of ce−αcx−2 dx by the map x �→ 1/x is ce−αc dx).
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