
The Annals of Probability
2012, Vol. 40, No. 2, 813–857
DOI: 10.1214/10-AOP629
© Institute of Mathematical Statistics, 2012

STOCHASTIC EQUATIONS, FLOWS AND MEASURE-VALUED
PROCESSES

BY DONALD A. DAWSON1 AND ZENGHU LI2

Carleton University and Beijing Normal University

We first prove some general results on pathwise uniqueness, comparison
property and existence of nonnegative strong solutions of stochastic equa-
tions driven by white noises and Poisson random measures. The results are
then used to prove the strong existence of two classes of stochastic flows asso-
ciated with coalescents with multiple collisions, that is, generalized Fleming–
Viot flows and flows of continuous-state branching processes with immigra-
tion. One of them unifies the different treatments of three kinds of flows in
Bertoin and Le Gall [Ann. Inst. H. Poincaré Probab. Statist. 41 (2005) 307–
333]. Two scaling limit theorems for the generalized Fleming–Viot flows
are proved, which lead to sub-critical branching immigration superprocesses.
From those theorems we derive easily a generalization of the limit theorem
for finite point motions of the flows in Bertoin and Le Gall [Illinois J. Math.
50 (2006) 147–181].

1. Introduction. A class of stochastic flows of bridges were introduced by
Bertoin and Le Gall (2003) to study the coalescent processes with multiple col-
lisions of Pitman (1999) [see also Sagitov (1999)]. The law of such a coalescent
process is determined by a finite measure �(dz) on [0,1]. The Kingman coales-
cent corresponds to � = δ0 and the Bolthausen–Sznitman coalescent corresponds
to � = Lebesgue measure on [0,1] [see Bolthausen and Sznitman (1998) and
Kingman (1982)]. In fact, Bertoin and Le Gall (2003) established a remarkable
connection between the coalescents with multiple collisions and the stochastic
flows of bridges. Based on this connection, they have developed a theory of the
coalescents and the flows in the series of papers [see Bertoin and Le Gall (2003,
2005, 2006)]. We refer the reader to Le Jan and Raimond (2004), Ma and Xiang
(2001) and Xiang (2009) for the study of stochastic flows of mappings and mea-
sures in abstract settings.

Let {Bs,t :−∞ < s ≤ t < ∞} be the stochastic flow of bridges associated to
a �-coalescent in the sense of Bertoin and Le Gall (2003). A number of precise
characterizations of the flow {B−t,0(v) : t ≥ 0, v ∈ [0,1]} were given in Bertoin
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and Le Gall (2003). For any t ≥ 0, the function v �→ B−t,0(v) induces a random
probability measure ρt(dv) on [0,1]. The process {ρt : t ≥ 0} was characterized
in Bertoin and Le Gall (2003) as the unique solution of a martingale problem. In
fact, this process is a measure-valued dual to the �-coalescent process. It was also
pointed out in Bertoin and Le Gall (2003) that {ρt : t ≥ 0} can be regarded as a
generalized Fleming–Viot process [see also Donnelly and Kurtz (1999a, 1999b)].

Let �(dz) be a finite measure on [0,1] such that �({0}) = 0, and let
{M(ds, dz, du)} be a Poisson random measure on (0,∞) × (0,1]2 with inten-
sity z−2 ds �(dz) du. It was proved in Bertoin and Le Gall (2005) that there is
weak solution flow {Xt(v) : t ≥ 0, v ∈ [0,1]} to the stochastic equation

Xt(v) = v +
∫ t

0

∫ 1

0

∫ 1

0
z
[
1{u≤Xs−(v)} − Xs−(v)

]
M(ds, dz, du).(1.1)

Moreover, Bertoin and Le Gall (2005) showed that for any 0 ≤ r1 < · · · <

rp ≤ 1 the p-point motion {(B−t,0(r1), . . . ,B−t,0(rp)) : t ≥ 0} is equivalent to
{(Xt(r1), . . . ,Xt (rp)) : t ≥ 0}. Therefore, the solutions of (1.1) give a realization of
the flow of bridges associated with the �-coalescent process. A separate treatment
for the Kingman coalescent flow was also given in Bertoin and Le Gall (2005). In
that case they showed the p-point motion {(B−t,0(r1), . . . ,B−t,0(rp)) : t ≥ 0} is a
diffusion process in

Dp := {x = (x1, . . . , xp) ∈ R
p : 0 ≤ x1 ≤ · · · ≤ xp ≤ 1}

with generator A0 defined by

A0f (x) = 1

2

p∑
i,j=1

xi∧j (1 − xi∨j )
∂2f

∂xi ∂xj

(x).(1.2)

Given a �-coalescent flow {Bs,t :−∞ < s ≤ t < ∞}, we define the flow of inverses
by

B−1
s,t (v) = inf{u ∈ [0,1] :Bs,t (u) > v}, v ∈ [0,1),

and B−1
s,t (1) = B−1

s,t (1−). In the Kingman coalescent case, it was proved in Bertoin
and Le Gall (2005) that the p-point motion {(B−1

0,t (r1), . . . ,B
−1
0,t (rp)) : t ≥ 0} is a

diffusion process in Dp with generator A1 given by

A1f (x) = A0f (x) +
p∑

i=1

(
1

2
− xi

)
∂f

∂xi

(x),(1.3)

where A0 is given by (1.2). The analogous characterization for the �-coalescent
flow with �({0}) = 0 was also provided in Bertoin and Le Gall (2005). Those
results give deep insights into the structures of the stochastic flows associated with
the �-coalescents.

The asymptotic properties of �-coalescent flows were studied in Bertoin and
Le Gall (2006). For each integer k ≥ 1 let �k(dx) be a finite measure on [0,1]
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with �k({0}) = 0 and let {Xk(t, v) : t ≥ 0, v ∈ [0,1]} be defined by (1.1) from
a Poisson random measure {Mk(ds, dz, du)} on (0,∞) × (0,1]2 with inten-
sity z−2 ds �k(dz) du. Suppose that z−2(z ∧ z2)�k(k

−1 dz) converges weakly
as k → ∞ to a finite measure on (0,∞) denoted by z−2(z ∧ z2)�(dz). By
a limit theorem of Bertoin and Le Gall (2006) the rescaled p-point motion
{(kXk(kt, r1/k), . . . , kXk(kt, rp/k)) : t ≥ 0} converges in distribution to that of the
weak solution flow of the stochastic equation

Yt (v) = v +
∫ t

0

∫ ∞
0

∫ ∞
0

x1{u≤Ys−(v)}Ñ(ds, dx, du),(1.4)

where Ñ(ds, dx, du) is a compensated Poisson random measure on [0,∞) ×
(0,∞)2 with intensity z−2 ds �(dz) du. It was pointed out in Bertoin and Le Gall
(2006) that the solution of (1.4) is a special critical continuous-state branching
process (CB-process).

In this paper we study two classes of stochastic flows defined by stochastic
equations that generalize (1.1) and (1.4). We shall first treat the generalization of
(1.4) since it involves simpler structures. Suppose that σ ≥ 0 and b are constants,
v �→ γ (v) is a nonnegative and nondecreasing continuous function on [0,∞) and
(z ∧ z2)m(dz) is a finite measures on (0,∞). Let {W(ds, du)} be a white noise on
(0,∞)2 based on the Lebesgue measure ds du. Let {N(ds, dz, du)} be a Poisson
random measure on (0,∞)3 with intensity ds m(dz) du. Let {Ñ(ds, dz, du)} be
the compensated measure of {N(ds, dz, du)}. We shall see that for any v ≥ 0 there
is a pathwise unique nonnegative solution of the stochastic equation

Yt (v) = v + σ

∫ t

0

∫ Ys−(v)

0
W(ds, du) +

∫ t

0
[γ (v) − bYs−(v)]ds

(1.5)

+
∫ t

0

∫ ∞
0

∫ Ys−(v)

0
zÑ(ds, dz, du).

It is not hard to show each solution Y(v) = {Yt (v) : t ≥ 0} is a continuous-state
branching process with immigration (CBI-process). Then it is natural to call the
two-parameter process {Yt (v) : t ≥ 0, v ≥ 0} a flow of CBI-processes. We prove
that the flow has a version with the following properties:

(i) for each v ≥ 0, t �→ Yt (v) is a càdlàg process on [0,∞) and solves (1.5);
(ii) for each t ≥ 0, v �→ Yt (v) is a nonnegative and nondecreasing càdlàg

process on [0,∞).

The proof of those properties is based on the observation that {Y(v) :v ≥ 0} is
a path-valued process with independent increments. For any t ≥ 0, the random
function v �→ Yt (v) induces a random Radon measure Yt (dv) on [0,∞). We shall
see that {Yt : t ≥ 0} is actually an immigration superprocess in the sense of Li
(2011) with trivial underlying spatial motion. One could replace the diffusion term
in (1.5) by the stochastic integral σ

∫ t
0
√

Ys−(v) dW(s) using a one-dimensional
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Brownian motion {W(t) : t ≥ 0} as in Dawson and Li (2006). The resulted equation
defines an equivalent CBI-process for any fixed v ≥ 0, but it does not give an
equivalent flow.

To describe our generalization of (1.1), let us assume that σ ≥ 0 and b ≥ 0
are constants, v �→ γ (v) is a nondecreasing continuous function on [0,1] such
that 0 ≤ γ (v) ≤ 1 for all 0 ≤ v ≤ 1 and z2ν(dz) is a finite measure on (0,1].
Let {B(ds, du)} be a white noise on (0,∞) × (0,1] based on ds du, and let
{M(ds, dz, du)} be a Poisson random measure on (0,∞) × (0,1]2 with intensity
ds ν(dz) du. We show that for any v ∈ [0,1] there is a pathwise unique solution
X(v) = {Xt(v) : t ≥ 0} to the equation

Xt(v) = v + σ

∫ t

0

∫ 1

0

[
1{u≤Xs−(v)} − Xs−(v)

]
B(ds, du)

+ b

∫ t

0
[γ (v) − Xs−(v)]ds(1.6)

+
∫ t

0

∫ 1

0

∫ 1

0
z
[
1{u≤Xs−(v)} − Xs−(v)

]
M(ds, dz, du).

Clearly, the above equation unifies and generalizes the flows described by (1.1),
(1.2) and (1.3). Here it is essential to use the white noise as the diffusion driving
force. We show there is a version of the random field {Xt(v) : t ≥ 0,0 ≤ v ≤ 1}
with the following properties:

(i) for each v ∈ [0,1], t �→ Xt(v) is càdlàg on [0,∞) and solves (1.6);
(ii) for each t ≥ 0, v �→ Xt(v) is nondecreasing and càdlàg on [0,1] with

Xt(0) ≥ 0 and Xt(1) ≤ 1.

We refer to {Xt(v) : t ≥ 0,0 ≤ v ≤ 1} as a generalized Fleming–Viot flow follow-
ing Bertoin and Le Gall (2003, 2005, 2006). In particular, our result gives the
strong existence of the flows associated with the coalescents with multiple colli-
sions. The study of this flow is more involved than the one defined by (1.5) as
the path-valued process {X(v) : 0 ≤ v ≤ 1} does not have independent increments.
However, we shall see it is still an inhomogeneous Markov process. From the ran-
dom field {Xt(v) : t ≥ 0,0 ≤ v ≤ 1} we can define a càdlàg sub-probability-valued
process {Xt : t ≥ 0} on [0,1], which is a counterpart of the generalized Fleming–
Viot process of Bertoin and Le Gall (2003). We prove two scaling limit theorems
for the generalized Fleming–Viot processes, which lead to a special form of the
immigration superprocess defined from (1.5). From the theorems we derive easily
a generalization of the limit theorem for the finite point motions in Bertoin and
Le Gall (2006).

The techniques of this paper are mainly based on the strong solutions of (1.5)
and (1.6), which are different from those of Bertoin and Le Gall (2005, 2006).
In Section 2 we give some general results for the pathwise uniqueness, compari-
son property and existence of nonnegative strong solutions of stochastic equations
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driven by white noises and Poisson random measures. Those extend the results in
Fu and Li (2010) and provide the basis for the investigation of the strong solu-
tion flows of (1.5) and (1.6). They should also be of interest on their own right. In
Section 3 we study the flows of CBI-processes and their associated immigration
superprocesses. The generalized Fleming–Viot flows are discussed in Section 4.
Finally, we prove the scaling limit theorems in Section 5.

Notation. For a measure μ and a function f on a measurable space (E,E )

write 〈μ,f 〉 = ∫
E f dμ if the integral exists. For any a ≥ 0 let M[0, a] be the

set of finite measures on [0, a] endowed with the topology of weak convergence.
Let M1[0, a] be the subspace of M[0, a] consisting of sub-probability measures.
Let B[0, a] be the Banach space of bounded Borel functions on [0, a] endowed
with the supremum norm ‖ · ‖, and let C[0, a] denote its subspace of continuous
functions. We use B[0, a]+ and C[0, a]+ to denote the subclasses of nonnegative
elements. Throughout this paper, we make the conventions∫ b

a
=
∫
(a,b]

and
∫ ∞
a

=
∫
(a,∞)

for any b ≥ a ≥ 0. Given a function f defined on a subset of R, we write

	zf (x) = f (x + z) − f (x) and Dzf (x) = 	zf (x) − f ′(x)z

for x, z ∈ R if the right-hand side is meaningful. Let λ denote the Lebesgue mea-
sure on [0,∞).

2. Strong solutions of stochastic equations. In this section, we prove some
results on stochastic equations of one-dimensional processes driven by white
noises and Poisson random measures. The results extend those of Fu and Li (2010).
Since our aim is to apply the results to the generalized Fleming–Viot flows and
the flows of CBI-processes, we only discuss equations of nonnegative processes.
However, the arguments can be modified to deal with general one-dimensional
equations.

Let E, U0 and U1 be separable topological spaces whose topologies can be
defined by complete metrics. Suppose that π(dz), μ0(du) and μ1(du) are σ -finite
Borel measures on E, U0 and U1, respectively. We say the parameters (σ, b, g0, g1)

are admissible if:

• x �→ b(x) is a continuous function on R+ satisfying b(0) ≥ 0;
• (x, u) �→ σ(x,u) is a Borel function on R+ × E satisfying σ(0, u) = 0 for

u ∈ E;
• (x, u) �→ g0(x, u) is a Borel function on R+ × U0 satisfying g0(0, u) = 0 and

g0(x, u) + x ≥ 0 for x > 0 and u ∈ U0;
• (x, u) �→ g1(x, u) is a Borel function on R+ × U1 satisfying g1(x, u) + x ≥ 0

for x ≥ 0 and u ∈ U1.
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Let {W(ds, du)} be a white noise on (0,∞) × E with intensity ds π(dz). Let
{N0(ds, du)} and {N1(ds, du)} be Poisson random measures on (0,∞) × U0 and
(0,∞) × U1 with intensities ds μ0(du) and ds μ1(du), respectively. Suppose that
{W(ds, du)}, {N0(ds, du)} and {N1(ds, du)} are defined on some complete prob-
ability space (�,F ,P) and are independent of each other. Let {Ñ0(ds, du)} de-
note the compensated measure of {N0(ds, du)}. A nonnegative càdlàg process
{x(t) : t ≥ 0} is called a solution of

x(t) = x(0) +
∫ t

0

∫
E

σ(x(s−), u)W(ds, du)

+
∫ t

0
b(x(s−)) ds +

∫ t

0

∫
U0

g0(x(s−), u)Ñ0(ds, du)(2.1)

+
∫ t

0

∫
U1

g1(x(s−), u)N1(ds, du),

if it satisfies the stochastic equation almost surely for every t ≥ 0. We say
{x(t) : t ≥ 0} is a strong solution if, in addition, it is adapted to the augmented
natural filtration generated by {W(ds, du)}, {N0(ds, du)} and {N1(ds, du)} [see,
e.g., Situ (2005), page 76]. Since x(s−) �= x(s) for at most countably many s ≥ 0,
we can also use x(s) instead of x(s−) in the integrals with respect to W(ds, du)

and ds on the right-hand side of (2.1). For the convenience of the statements of
the results, we write b(x) = b1(x) − b2(x), where x �→ b1(x) is continuous, and
x �→ b2(x) is continuous and nondecreasing. Let us formulate the following con-
ditions:

(2.a) there is a constant K ≥ 0 so that

b(x) +
∫
U1

|g1(x, u)|μ1(du) ≤ K(1 + x)

for every x ≥ 0;
(2.b) there is a nondecreasing function x �→ L(x) on R+ and a Borel function

(x, u) �→ ḡ0(x, u) on R+ × U0 so that sup0≤y≤x |g0(y, u)| ≤ ḡ0(x, u) and∫
E

σ(x,u)2π(du) +
∫
U0

[ḡ0(x, u) ∧ ḡ0(x, u)2]μ0(du) ≤ L(x)

for every x ≥ 0;
(2.c) for each m ≥ 1 there is a nondecreasing concave function z �→ rm(z) on

R+ such that
∫

0+ rm(z)−1 dz = ∞ and

|b1(x) − b1(y)| +
∫
U1

|g1(x, u) − g1(y, u)|μ1(du) ≤ rm(|x − y|)

for every 0 ≤ x, y ≤ m;
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(2.d) for each m ≥ 1 there is a nonnegative nondecreasing function z �→ ρm(z)

on R+ so that
∫

0+ ρm(z)−2 dz = ∞,∫
E

|σ(x,u) − σ(y,u)|2π(du) ≤ ρm(|x − y|)2

and ∫
U0

μ0(du)

∫ 1

0

l0(x, y,u)2(1 − t)1{|l0(x,y,u)|≤n}
ρm(|(x − y) + t l0(x, y,u)|)2 dt ≤ c(m,n)

for every n ≥ 1 and 0 ≤ x, y ≤ m, where l0(x, y,u) = g0(x, u) − g0(y, u) and
c(m,n) ≥ 0 is a constant.

THEOREM 2.1. Suppose that (σ, b, g0, g1) are admissible parameters sat-
isfying conditions (2.a)–(2.d). Then the pathwise uniqueness of solutions holds
for (2.1).

PROOF. We first fix the integer m ≥ 1. Let a0 = 1 and choose ak → 0 de-
creasingly so that

∫ ak−1
ak

ρm(z)−2 dz = k for k ≥ 1. Let x �→ ψk(x) be a non-
negative continuous function on R which has support in (ak, ak−1) and satisfies∫ ak−1
ak

ψk(x) dx = 1 and 0 ≤ ψk(x) ≤ 2k−1ρm(x)−2 for ak < x < ak−1. For each
k ≥ 1 we define the nonnegative and twice continuously differentiable function

φk(z) =
∫ |z|

0
dy

∫ y

0
ψk(x) dx, z ∈ R.(2.2)

It is easy to see that φk(z) → |z| nondecreasingly as k → ∞ and 0 ≤ φ′
k(z) ≤ 1

for z ≥ 0 and −1 ≤ φ′
k(z) ≤ 0 for z ≤ 0. By condition (2.d) and the choice of

x �→ ψk(x),

φ′′
k (x − y)

∫
E

|σ(x,u) − σ(y,u)|2π(du)

(2.3)

≤ ψk(|x − y|)ρm(|x − y|)2 ≤ 2

k

for 0 ≤ x, y ≤ m. Then the left-hand side tends to zero uniformly in 0 ≤ x, y ≤ m

as k → ∞. For h, ζ ∈ R, by Taylor’s expansion we have

Dhφk(ζ ) =
∫ 1

0
h2φ′′

k (ζ + th)(1 − t) dt =
∫ 1

0
h2ψk(|ζ + th|)(1 − t) dt.

It follows that

Dhφk(ζ ) ≤ 2

k

∫ 1

0
h2ρm(|ζ + th|)−2(1 − t) dt.(2.4)

Observe also that

Dhφk(ζ ) = 	hφk(ζ ) − φ′
k(ζ )h ≤ 2|h|.(2.5)
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For 0 ≤ x, y ≤ m and n ≥ 1 we can use (2.4) and (2.5) to get∫
U0

Dl0(x,y,u)φk(x − y)μ0(du)

≤ 2

k

∫
U0

μ0(du)

∫ 1

0

l0(x, y,u)2(1 − t)1{|l0(x,y,u)|≤n}
ρm(|(x − y) + t l0(x, y,u)|)2 dt

(2.6)
+ 2

∫
U0

|l0(x, y,u)|1{|l0(x,y,u)|>n}μ0(du)

≤ 2

k
c(m,n) + 4

∫
U0

ḡ0(m,u)1{ḡ0(m,u)>n/2}μ0(du).

By conditions (2.b), (2.d) one sees the right-hand side tends to zero uniformly in
0 ≤ x, y ≤ m as k → ∞. Then the pathwise uniqueness for (2.1) follows by a
trivial modification of Theorem 3.1 in Fu and Li (2010). �

The key difference between the above theorem and Theorems 3.2 and 3.3 of Fu
and Li (2010) is that here we do not assume x �→ g0(x, u) is nondecreasing. This
is essential for the applications to stochastic equations like (1.6).

THEOREM 2.2. Let (σ, b′, g0, g
′
1) and (σ, b′′, g0, g

′′
1 ) be two sets of admissible

parameters satisfying conditions (2.a)–(2.d). In addition, assume that:

(i) for every u ∈ U1, x �→ x +g′
1(x, u) or x �→ x +g′′

1 (x, u) is nondecreasing;
(ii) b′(x) ≤ b′′(x) and g′

1(x, u) ≤ g′′
1 (x, u) for every x ≥ 0 and u ∈ U1.

Suppose that {x′(t) : t ≥ 0} is a solution of (2.1) with (b, g1) = (b′, g′
1), and

{x′′(t) : t ≥ 0} is a solution of the equation with (b, g1) = (b′′, g′′
1 ). If x′(0) ≤ x′′(0),

then P{x′(t) ≤ x′′(t) for all t ≥ 0} = 1.

PROOF. Let ζ(t) = x′(t) − x′′(t) for t ≥ 0. Let x �→ ψk(x) be defined as in
the proof of Theorem 2.1. Instead of (2.2), for each k ≥ 1 we now define

φk(z) =
∫ z

0
dy

∫ y

0
ψk(x) dx, z ∈ R.(2.7)

Then φk(z) → z+ := 0 ∨ z nondecreasingly as k → ∞. Let

l0(t, u) = g0(x
′(t), u) − g0(x

′′(t), u), t ≥ 0, u ∈ U0,

and

l1(t, u) = g′
1(x

′(t), u) − g′′
1 (x′′(t), u), t ≥ 0, u ∈ U1.

For ζ(s−) ≤ 0 we have φk(ζ(s−)) = φ′
k(ζ(s−)) = 0. Since x �→ x + f (x,u) is

nondecreasing for f = g′
1 or g′′

1 , for ζ(s−) = x′(s−) − x′′(s−) ≤ 0 we also have

ζ(s−) + l1(s−, u) = x′(s−) − x′′(s−) + g′
1(x

′(s−), u) − g′′
1 (x′′(s−), u)

≤ x′(s−) − x′′(s−) + f (x′(s−), u) − f (x′′(s−), u) ≤ 0.
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The latter implies

	l1(s−,u)φk(ζ(s−)) = φk

(
ζ(s−) + l1(s−, u)

)− φk(ζ(s−)) = 0.

By Itô’s formula we have

φk(ζ(t)) = φk(ζ(0)) + 1

2

∫ t

0
ds

∫
E

φ′′
k (ζ(s−))[σ(x′(s−), u)

− σ(x′′(s−), u)]2π(du)

+
∫ t

0
φ′

k(ζ(s−))[b′(x′(s−))

(2.8)
− b′′(x′′(s−))]1{ζ(s−)>0} ds

+
∫ t

0
ds

∫
U1

	l1(s−,u)φk(ζ(s−))1{ζ(s−)>0}μ1(du)

+
∫ t

0
ds

∫
U0

Dl0(s−,u)φk(ζ(s−))μ0(du) + Mm(t),

where

Mm(t) =
∫ t

0

∫
E

φ′
k(ζ(s−))[σ(x′(s−), u)

− σ(x′′(s−), u)]W(ds, du)

+
∫ t

0

∫
U1

	l1(s−,u)φk(ζ(s−))Ñ1(ds, du)

+
∫ t

0

∫
U0

	l0(s−,u)φk(ζ(s−))Ñ0(ds, du).

Let τm = inf{t ≥ 0 :x′(t) ≥ m or x′′(t) ≥ m} for m ≥ 1. Under conditions (2.b),
(2.c) it is easy to show that {Mm(t ∧ τm)} is a martingale. Recall that b′(x) ≤ b′′(x)

and b′(x) = b′
1(x) − b′

2(x) for a nondecreasing function x �→ b′
2(x). Then under

the restriction ζ(s−) > 0 we have

φ′
k(ζ(s−))[b′(x′(s−)) − b′′(x′′(s−))]

≤ φ′
k(ζ(s−))[b′(x′(s−)) − b′(x′′(s−))]

≤ φ′
k(ζ(s−))[b′

1(x
′(s−)) − b′

1(x
′′(s−))]

≤ |b′
1(x

′(s−)) − b′
1(x

′′(s−))|
and

	l1(s−,u)φk(ζ(s−))

= φk

(
ζ(s−) + g′

1(x
′(s−), u) − g′′

1 (x′′(s−), u)
)− φk(ζ(s−))

≤ φk

(
ζ(s−) + g′

1(x
′(s−), u) − g′

1(x
′′(s−), u)

)− φk(ζ(s−))

≤ |g′
1(x

′(s−), u) − g′
1(x

′′(s−), u)|.
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The estimates (2.3) and (2.6) are still valid. If x′(0) ≤ x′′(0), we can take the
expectation in (2.8) and let k → ∞ to get

E[ζ(t ∧ τm)+] ≤ E
[∫ t∧τm

0
rm(|ζ(s−)|)1{ζ(s−)>0} ds

]

≤
∫ t

0
rm
(
E[ζ(s ∧ τm)+])ds,

where the second inequality holds by the concaveness of z �→ rm(z). Then E[ζ(t ∧
τm)+] = 0 for all t ≥ 0. Since τm → ∞ as m → ∞, we get the desired comparison
property. �

We say the comparison property of solutions holds for (2.1) if for any two solu-
tions {x1(t) : t ≥ 0} and {x2(t) : t ≥ 0} satisfying x1(0) ≤ x2(0) we have P{x1(t) ≤
x2(t) for all t ≥ 0} = 1. From Theorem 2.2 we get the following:

THEOREM 2.3. Let (σ, b, g0, g1) be admissible parameters satisfying con-
ditions (2.a)–(2.d). In addition, assume that for every u ∈ U1 the function x �→
x + g1(x, u) is nondecreasing. Then the comparison property holds for the solu-
tions of (2.1).

The monotonicity assumption on the function x �→ x +g1(x, u) in Theorem 2.3
is natural. To see this, suppose that {x1(t)} and {x2(t)} are two solutions of (2.1)
and {(si, ui) : i ≥ 1} is the set of atoms of {N1(ds, du)}. The assumption guarantees
that x1(si−) ≤ x2(si−) implies

x1(si) = x1(si−) + g1(x1(si−), ui)

≤ x2(si−) + g1(x2(si−), ui) = x2(si).

A similar explanation can be given to Theorem 2.2. In some applications the kernel
x �→ g0(x, u) may be nondecreasing. When this is true, we can replace (2.d) by the
following simpler condition:

(2.e) For each u ∈ U0 the function x �→ g0(x, u) is nondecreasing, and for each
m ≥ 1 there is a nonnegative and nondecreasing function z �→ ρm(z) on R+ so that∫

0+ ρm(z)−2 dz = ∞ and∫
E

|σ(x,u) − σ(y,u)|2π(du) +
∫
U0

|l0(x, y,u)| ∧ |l0(x, y,u)|2μ0(du)

≤ ρm(|x − y|)2

for all 0 ≤ x, y ≤ m, where l0(x, y,u) = g0(x, u) − g0(y, u).

PROPOSITION 2.4. Let (σ, b, g0, g1) be admissible parameters. If (2.e) holds,
then (2.d) holds.

PROOF. Since x �→ g0(x, u) is nondecreasing, it is not hard to see |(x − y) +
t l0(x, y,u)| ≥ |x − y|. By condition (2.e) and the monotonicity of z �→ ρ(z) we
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have ∫ 1

0
dt

∫
U0

(1 − t)l0(x, y,u)21{|l0(x,y,u)|≤n}
ρm(|(x − y) + t l0(x, y,u)|)2 μ0(du)

≤ n

∫ 1

0
dt

∫
U0

[|l0(x, y,u)| ∧ l0(x, y,u)2]
ρm(|x − y|)2 μ0(du) ≤ n.

Then condition (2.d) is satisfied. �

THEOREM 2.5. Suppose that (σ, b, g0, g1) are admissible parameters satisfy-
ing conditions (2.a), (2.c), (2.e). Then there is a unique strong solution to (2.1).

PROOF. We first note that (2.b) follows from (2.e). By Proposition 2.4, we
also have (2.d) from (2.e). Let {Vn} be a nondecreasing sequence of Borel subsets
of U0 so that

⋃∞
n=1 Vn = U0 and μ0(Vn) < ∞ for every n ≥ 1. For m,n ≥ 1 one

can use (2.e) to see

x �→ βm(x) :=
∫
U0

[g0(x, u) − g0(x, u) ∧ m]μ0(du)

and

x �→ γm,n(x) :=
∫
Vn

[g0(x, u) ∧ m]μ0(du)

are continuous nondecreasing functions. By the results for continuous-type sto-
chastic equations as in Ikeda and Watanabe [(1989), page 169] one can show there
is a nonnegative weak solution to

x(t) = x(0) +
∫ t

0

∫
E

σ
(
x(s) ∧ m,u

)
W(ds, du)

+
∫ t

0
bm

(
x(s) ∧ m

)
ds −

∫ t

0
γm,n

(
x(s) ∧ m

)
ds,

where bm(x) = b(x) − βm(x). The pathwise uniqueness holds for the above equa-
tion by Theorem 2.1. Then it has a unique strong solution. Let {Wn} be a nonde-
creasing sequence of Borel subsets of U1 so that

⋃∞
n=1 Wn = U1 and μ1(Wn) < ∞

for every n ≥ 1. Following the proof of Proposition 2.2 of Fu and Li (2010) one
can show there is a unique strong solution {xm,n(t) : t ≥ 0} to

x(t) = x(0) +
∫ t

0

∫
E

σ
(
x(s−) ∧ m,u

)
W(ds, du)

+
∫ t

0
bm

(
x(s−) ∧ m

)
ds −

∫ t

0
γm,n

(
x(s) ∧ m

)
ds

+
∫ t

0

∫
Vn

[
g0
(
x(s−) ∧ m,u

)∧ m
]
N0(ds, du)

+
∫ t

0

∫
Wn

[
g1
(
x(s−) ∧ m,u

)∧ m
]
N1(ds, du).
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We can rewrite the above equation into

x(t) = x(0) +
∫ t

0

∫
E

σ
(
x(s−) ∧ m,u

)
W(ds, du)

+
∫ t

0
bm

(
x(s−) ∧ m

)
ds

+
∫ t

0

∫
Vn

[
g0
(
x(s−) ∧ m,u

)∧ m
]
Ñ0(ds, du)

+
∫ t

0

∫
Wn

[
g1
(
x(s−) ∧ m,u

)∧ m
]
N1(ds, du).

As in the proof of Lemma 4.3 of Fu and Li (2010) one can see the sequence
{xm,n(t) : t ≥ 0}, n = 1,2, . . . , is tight in D([0,∞),R+). Following the proof of
Theorem 4.4 of Fu and Li (2010) it is easy to show that any weak limit point
{xm(t) : t ≥ 0} of the sequence is a nonnegative weak solution to

x(t) = x(0) +
∫ t

0

∫
E

σ
(
x(s−) ∧ m,u

)
W(ds, du)

+
∫ t

0
bm

(
x(s−) ∧ m

)
ds

(2.9)

+
∫ t

0

∫
U0

[
g0
(
x(s−) ∧ m,u

)∧ m
]
Ñ0(ds, du)

+
∫ t

0

∫
U1

[
g1
(
x(s−) ∧ m,u

)∧ m
]
N1(ds, du).

By Theorem 2.1 the pathwise uniqueness holds for (2.9), so the equation has a
unique strong solution [see, e.g., Situ (2005), page 104]. Then the result follows
by a simple modification of the proof of Proposition 2.4 of Fu and Li (2010). See
El Karoui and Méléard (1990) and Kurtz (2007, 2010) for the general theory of
stochastic equations driven by white noises and Poisson random measures. �

3. Stochastic flows of CBI-processes. In this section, we give the construc-
tions and characterizations of the flow of CBI-processes and the associated immi-
gration superprocess. Suppose that σ ≥ 0 and b are constants, and (u ∧ u2)m(du)

is a finite measure on (0,∞). Let φ be a function given by

φ(z) = bz + 1

2
σ 2z2 +

∫ ∞
0

(e−zu − 1 + zu)m(du), z ≥ 0.(3.1)

A Markov process with state space R+ := [0,∞) is called a CB-process with
branching mechanism φ if it has transition semigroup (pt )t≥0 given by∫

R+
e−λypt (x, dy) = e−xvt (λ), λ ≥ 0,(3.2)
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where (t, λ) �→ vt (λ) is the unique locally bounded nonnegative solution of
d

dt
vt (λ) = −φ(vt (λ)), v0(λ) = λ, t ≥ 0.

Given any β ≥ 0 we can also define a transition semigroup (qt )t≥0 on R+ by∫
R+

e−λyqt (x, dy) = exp
{
−xvt (λ) −

∫ t

0
βvs(λ) ds

}
.(3.3)

A nonnegative real-valued Markov process with transition semigroup (qt )t≥0 is
called a CBI-process with branching mechanism φ and immigration rate β . It is
easy to see that both (pt )t≥0 and (qt )t≥0 are Feller semigroups. See, for example,
Kawazu and Watanabe (1971) and Li (2011), Chapter 3.

Let {W(ds, du)} be a white noise on (0,∞)2 based on the Lebesgue mea-
sure ds du, and let {N(ds, dz, du)} be Poisson random measure on (0,∞)3

with intensity ds m(dz) du. Let {Ñ(ds, dz, du)} be the compensated measure of
{N(ds, dz, du)}.

THEOREM 3.1. There is a unique nonnegative strong solution of the stochas-
tic equation

Yt = Y0 + σ

∫ t

0

∫ Ys−

0
W(ds, du) +

∫ t

0
(β − bYs−) ds

+
∫ t

0

∫ ∞
0

∫ Ys−

0
zÑ(ds, dz, du).

Moreover, the solution {Yt : t ≥ 0} is a CBI-process with branching mechanism φ

and immigration rate β .

PROOF. The existence and uniqueness of the strong solution follows by an
application of Theorem 2.5 [see also Dawson and Li (2006)]. Using Itô’s formula
one can see that {Yt (v) : t ≥ 0} solves the martingale problem associated with the
generator L defined by

Lf (x) = 1

2
σ 2xf ′′(x) + (β − bx)f ′(x) + x

∫ ∞
0

Dzf (x)m(dz).(3.4)

Then it is a CBI-process with branching mechanism φ and immigration rate β [see
Kawazu and Watanabe (1971) and Li (2011), Section 9.5]. �

Let v �→ γ (v) be a nonnegative and nondecreasing continuous function on
[0,∞). We denote by γ (dv) the Radon measure on [0,∞) so that γ ([0, v]) = γ (v)

for v ≥ 0. By Theorem 3.1 for each v ≥ 0 there is a pathwise unique nonnegative
solution Y(v) = {Yt (v) : t ≥ 0} to the stochastic equation

Yt (v) = v + σ

∫ t

0

∫ Ys−(v)

0
W(ds, du) +

∫ t

0
[γ (v) − bYs−(v)]ds

(3.5)

+
∫ t

0

∫ ∞
0

∫ Ys−(v)

0
zÑ(ds, dz, du).
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THEOREM 3.2. For any v2 ≥ v1 ≥ 0 we have P{Yt (v2) ≥ Yt (v1) for all t ≥
0} = 1 and {Yt (v2)−Yt (v1) : t ≥ 0} is a CBI-process with branching mechanism φ

and immigration rate β := γ (v2) − γ (v1) ≥ 0.

PROOF. The comparison property follows by applying Theorem 2.2 and
Proposition 2.4 to (3.5). Let Zt = Yt (v2) − Yt (v1) for t ≥ 0. From (3.5) we have

Zt = v2 − v1 + σ

∫ t

0

∫ Ys−(v2)

Ys−(v1)
W(ds, du) +

∫ t

0
(β − bZs−) ds

+
∫ t

0

∫ ∞
0

∫ Ys−(v2)

Ys−(v1)
zÑ(ds, dz, du)

(3.6)

= v2 − v1 + σ

∫ t

0

∫ Zs−

0
W1(ds, du) +

∫ t

0
(β − bZs−) ds

+
∫ t

0

∫ ∞
0

∫ Zs−

0
zÑ1(ds, dz, du),

where

W1(ds, du) = W
(
ds,Ys−(v1) + du

)
is a white noise with intensity ds du, and

N1(ds, dz, du) = N
(
ds, dz,Ys−(v1) + du

)
is a Poisson random measure with intensity ds m(dz) du. That shows {Zt : t ≥ 0}
is a weak solution of (3.5). Then it a CBI-process with branching mechanism φ

and immigration rate β . �

THEOREM 3.3. Let v2 ≥ v1 ≥ u2 ≥ u1 ≥ 0. Then {Yt (u2)−Yt (u1) : t ≥ 0} and
{Yt (v2) − Yt (v1) : t ≥ 0} are independent CBI-processes with immigration rates
α := γ (u2) − γ (u1) and β := γ (v2) − γ (v1), respectively.

PROOF. Let Lα and Lβ denote the generators of the CBI-processes with
immigration rates α and β , respectively. Let Xt = Yt (u2) − Yt (u1) and Zt =
Yt (v2) − Yt (v1). For any G ∈ C2(R2+) one can use Itô’s formula to show

G(Xt,Zt) = G(X0,Z0) +
∫ t

0
LαG(Xs,Zs) ds

(3.7)

+
∫ t

0
LβG(Xs,Zs) ds + local mart.,

where Lα and Lβ act on the first and second coordinates of G, respectively. Then
{Xt : t ≥ 0} and {Zt : t ≥ 0} are independent CBI-processes with immigration rates
α and β , respectively. �
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PROPOSITION 3.4. There is a locally bounded nonnegative function t �→ C(t)

on [0,∞) so that

E
{

sup
0≤s≤t

[Ys(v2) − Ys(v1)]
}

≤ C(t)
{
(v2 − v1) + [γ (v2) − γ (v1)]

(3.8)
+ √

v2 − v1 +
√

γ (v2) − γ (v1)
}

for t ≥ 0 and v2 ≥ v1 ≥ 0.

PROOF. Let Zt = Yt (v2) − Yt (v1) for t ≥ 0. Taking the expectation in (3.6)
we have

E(Zt ) = (v2 − v1) + t[γ (v2) − γ (v1)] − b

∫ t

0
E(Zs) ds.

Solving the above integral equation gives

E(Zt ) = (v2 − v1)e
−bt + [γ (v2) − γ (v1)]b−1(1 − e−bt )(3.9)

with b−1(1 − e−bt ) = t for b = 0 by convention. By (3.6) and Doob’s martingale
inequality,

E
{

sup
0≤s≤t

Zs

}
≤ (v2 − v1) + 2σE1/2

{(∫ t

0

∫ Ys−(v2)

Ys−(v1)
W(ds, du)

)2}

+
∫ t

0
{[γ (v2) − γ (v1)] + |b|E(Zs)}ds

+ 2E1/2
{(∫ t

0

∫ 1

0

∫ Ys−(v2)

Ys−(v1)
zÑ(ds, dz, du)

)2}

+ E
[∫ t

0

∫ ∞
1

∫ Ys−(v2)

Ys−(v1)
zN(ds, dz, du)

]

≤ (v2 − v1) + t[γ (v2) − γ (v1)] + 2σ

[∫ t

0
E(Zs) ds

]1/2

+ 2
[∫ 1

0
z2ν(dz)

]1/2[∫ t

0
E(Zs) ds

]1/2

+
[
|b| +

∫ ∞
1

zν(dz)

]∫ t

0
E(Zs) ds.

Then (3.8) follows by (3.9). �

Suppose that (E,ρ) is a complete metric space. Let F be a subset of [0,∞)

such that 0 ∈ F and let t �→ x(t) be a path from F to E. For any ε > 0 the number
of ε-oscillations of this path on F is defined as

μ(ε) := sup{n ≥ 0 : there are 0 = t0 < t1 < · · · < tn ∈ F

so that ρ(x(ti−1), x(ti)) ≥ ε for all 1 ≤ i ≤ n}.
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If F is dense in [0,∞), it is simple to show the limits y(t) := limF�s→t+ x(s)

exist for all t ≥ 0 and constitute a càdlàg path t �→ y(t) on [0,∞) if and only if
t �→ x(t) has at most a finite number of ε-oscillations on F ∩[0, T ] for every ε > 0
and T ≥ 0.

LEMMA 3.5. Suppose that (�,G ,Gt ,P) is a filtered probability space and
{Xt : t ≥ 0} is a (Gt )-Markov process with state space (E,E ) and transition semi-
group (Ps,t )t≥s . Suppose that ρ is a complete metric on E so that:

(i) for ε > 0 and 0 ≤ s, t ≤ u we have {ω ∈ � :ρ(Xs(ω),Xt(ω)) < ε} ∈ Gu;
(ii) for ε > 0 and x ∈ E we have Uε(x) := {y ∈ E :ρ(x, y) < ε} ∈ E and

αε(h) := sup
0≤t−s≤h

sup
x∈E

Ps,t (x,Uε(x)c) → 0 (h → 0).(3.10)

Then {Xt : t ≥ 0} has a ρ-càdlàg modification.

PROOF. Let F = {0, r1, r2, . . .} be a countable dense subset of [0,∞) and
let Fn = {0, r1, . . . , rn}. For ε > 0 and a > 0 let νa(ε) and νa

n(ε) denote, respec-
tively, the numbers of ε-oscillations of t �→ Xt on F ∩ [0, a] and Fn ∩ [0, a]. Then
νa
n(ε) → νa(ε) increasingly as n → ∞. Let τ ε

n (0) = 0 and for k ≥ 0 define

τ ε
n (k + 1) = min

{
t ∈ Fn ∩ (τ ε

n (k),∞) :ρ
(
Xτε

n (k),Xt

)≥ ε
}
,

if τ ε
n (k) < ∞ and τ ε

n (k + 1) = ∞ if τ ε
n (k) = ∞. Since Fn is discrete, for any a ≥ 0

we have

{τ ε
n (k + 1) ≤ a} = ⋃

s<t∈Fn∩[0,a]

({τ ε
n (k) = s} ∩ {ρ(Xs,Xt) ≥ ε}).

Using property (i) and the above relation it is easy to see successively that each
τ ε
n (k) is a stopping time. As in the proof of Lemma 9.1 of Wentzell [(1981),

page 168] one can prove P{τ ε
n (1) ≤ h} ≤ 2αε/2(h) for ε > 0 and h > 0. Since the

strong Markov property of {Xt : t ≥ 0} holds at the discrete stopping times τ ε
n (k),

k = 1,2, . . . , one can inductively show

P{νh
n(2ε) ≥ k} ≤ P{τ ε

n (k) ≤ h} ≤ [2αε/2(h)]k.
It follows that

P{νh(2ε) ≥ k} = lim
n→∞ P{νh

n(2ε) ≥ k} ≤ [2αε/2(h)]k.
Choosing sufficiently small h = h(ε) ∈ F ∩ (0,∞) so that αε/2(h) < 1/2 and let-
ting k → ∞ we get P{νh(2ε) < ∞} = 1. By repeating the above procedure suc-
cessively on the intervals [h,2h], [2h,3h], . . . we get P{νa(2ε) < ∞} = 1 for
every a > 0. Let �1 = ⋂∞

m=1{νm(1/m) < ∞}. Then �1 ∈ G and P(�1) = 1.
Moreover, for ω ∈ �1 we can define a ρ-càdlàg path t �→ Yt (ω) on [0,∞) by
Yt (ω) := limF�s→t+ Xs(ω). Take x0 ∈ E and define Yt (ω) = x0 for t ≥ 0 and
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ω ∈ � \ �1. By (3.10) one can see t �→ Xt is right continuous in probability,
so Yt = Xt a.s. for every t ≥ 0. Then {Yt : t ≥ 0} is a ρ-càdlàg modification of
{Xt : t ≥ 0}. �

Let D[0,∞) be the space of nonnegative càdlàg functions on [0,∞), and
let B(D[0,∞)) be its Borel σ -algebra generated by the Skorokhod topology.
Theorems 3.2 and 3.3 imply that {Y(v) :v ≥ 0} is a nondecreasing process in
(D[0,∞),B(D[0,∞))) with independent increments. Let ρ be the metric on
D[0,∞) defined by

ρ(ξ, ζ ) =
∫ ∞

0
e−t sup

0≤s≤t

(|ξ(s) − ζ(s)| ∧ 1
)
dt.(3.11)

This metric corresponds to the topology of local uniform convergence, which is
strictly stronger than the Skorokhod topology.

THEOREM 3.6. The path-valued process {Y(v) :v ≥ 0} has a ρ-càdlàg modi-
fication. Consequently, there is a version of the solution flow {Yt (v) : t ≥ 0, v ≥ 0}
of (3.5) with the following properties:

(i) for each v ≥ 0, t �→ Yt (v) is a càdlàg process on [0,∞) and solves (3.5);
(ii) for each t ≥ 0, v �→ Yt (v) is a nonnegative and nondecreasing càdlàg

process on [0,∞).

PROOF. Step 1. For any T ≥ 0 let D[0, T ] be the space of nonnegative càdlàg
functions on [0, T ], and let B(D[0, T ]) be its σ -algebra generated by the Sko-
rokhod topology. For v ≥ 0 let YT (v) = {Yt (v) : 0 ≤ t ≤ T }. Theorem 3.3 implies
that {YT (v) :v ≥ 0} is a process in (D[0, T ],B(D[0, T ])) with independent in-
crements.

Step 2. Let FT = {T , r1, r2, . . .} be a countable dense subset of [0, T ]. We con-
sider the metric ρT on D[0, T ] defined by

ρT (ξ, ζ ) = sup
0≤s≤T

|ξ(s) − ζ(s)| = sup
r∈FT

|ξ(s) − ζ(s)|.

For any ε > 0 and ξ ∈ D[0, T ] we have

Ūε(ξ) := {ζ ∈ D[0, T ] :ρT (ξ, ζ ) ≤ ε}
= ⋂

r∈FT

{ζ ∈ D[0, T ] : |ξr − ζr | ≤ ε}.

Then the above set belongs to B(D[0, T ]) [see, e.g., Ethier and Kurtz (1986),
page 127]. It follows that

Uε(ξ) := {ζ ∈ D[0, T ] :ρT (ξ, ζ ) < ε} =
∞⋃

n=1

Ūε−1/n(ξ)



830 D. A. DAWSON AND Z. LI

also belongs to B(D[0, T ]).
Step 3. Let (F T

v )v≥0 be the natural filtration of {YT (v) :v ≥ 0}. For any ε > 0
and 0 ≤ s, t ≤ v we have

ρT (Y T (s), Y T (t)) = sup
r∈FT

|Yr(s) − Yr(t)|.

Then one can show {ω ∈ � :ρT (Y T (ω, s), Y T (ω, t)) < ε} ∈ F T
v .

Step 4. Let (P T
u,v)v≥u denote the transition semigroup of {YT (v) :v ≥ 0}. By

Proposition 3.4 for ε > 0 and ξ ∈ D[0,∞) we have

Pu,v(ξ,Uε(ξ)c) = P
{

sup
0≤s≤T

[Ys(v) − Ys(u)] ≥ ε
}

≤ ε−1E
{

sup
0≤s≤T

[Ys(v) − Ys(u)]
}

≤ ε−1C(t)
{
(v − u) + [γ (v) − γ (u)]
+ √

v − u +
√

γ (v) − γ (u)
}
.

Since v �→ γ (v) is uniformly continuous on each bounded interval, Lemma 3.5 im-
plies that {YT (v) :v ≥ 0} has a ρT -càdlàg modification. That implies the existence
of a ρ-càdlàg modification of {Y(v) :v ≥ 0}. �

In the situation of Theorem 3.6 we call the solution {Yt (v) : t ≥ 0, v ≥ 0} of (3.5)
a flow of CBI-processes. Let F [0,∞) be the set of nonnegative and nondecreasing
càdlàg functions on [0,∞). Given a finite stopping time τ and a function μ ∈
F [0,∞) let {Yμ

τ,t (v) : t ≥ 0} be the solution of

Y
μ
τ,t (v) = μ(v) + σ

∫ τ+t

τ

∫ Y
μ
τ,s−(v)

0
W(ds, du)

+
∫ τ+t

τ
[γ (v) − bY

μ
τ,s−(v)]ds(3.12)

+
∫ τ+t

τ

∫ ∞
0

∫ Y
μ
τ,s−(v)

0
zÑ(ds, dz, du)

and write simply {Yμ
t (v) : t ≥ 0} instead of {Yμ

0,t (v) : t ≥ 0}. The pathwise unique-
ness for the above equation follows from that of (3.5) since {W(τ + ds, du)} is a
white noise based on ds dz, and {N(τ + ds, dz, du)} is a Poisson random measure
with intensity ds m(dz) du. Let Gτ,t be the random operator on F [0,∞) that maps
μ to Y

μ
τ,t .

THEOREM 3.7. For any finite stopping time τ we have P{Yμ
τ+t = Gτ,tY

μ
τ for

all t ≥ 0} = 1.
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PROOF. By the sample path regularity of (t, v) �→ Yt (v) we only need to show
P{Yμ

τ+t (v) = Gτ,tY
μ
τ (v)} = 1 for every t ≥ 0 and v ≥ 0. By (3.5) we have

Y
μ
τ+t (v) = Yμ

τ (v) + σ

∫ τ+t

τ

∫ Y
μ
s−(v)

0
W(ds, du)

+
∫ τ+t

τ
[γ (v) − bY

μ
s−(v)]ds

+
∫ τ+t

τ

∫ ∞
0

∫ Y
μ
s−(v)

0
zÑ(ds, dz, du).

By the pathwise uniqueness for (3.12) we get the desired result. �

For any Radon measure μ(dv) on [0,∞) with distribution function v �→ μ(v),
the random function v �→ Y

μ
t (v) induces a random Radon measure Y

μ
t (dv) on

[0,∞) so that Y
μ
t ([0, v]) = Y

μ
t (v) for v ≥ 0. We shall give some characterizations

of the measure-valued process {Yμ
t : t ≥ 0}.

For simplicity, we fix a constant a ≥ 0 and consider the restrictions of μ(dv),
γ (dv) and {Yμ

t : t ≥ 0} to [0, a] without changing the notation. Let us consider the
step function

f (x) = c01{0}(x) +
n∑

i=1

ci1(ai−1,ai ](x), x ∈ [0, a],(3.13)

where {c0, c1, . . . , cn} ⊂ R and {0 = a0 < a1 < · · · < an = a} is a partition of
[0, a]. For this function we have

〈Yμ
t , f 〉 = c0Y

μ
t (0) +

n∑
i=1

ci[Yμ
t (ai) − Y

μ
t (ai−1)].(3.14)

From (3.12) and (3.14) it is simple to see

〈Yμ
t , f 〉 = 〈μ,f 〉 + σ

∫ t

0

∫ ∞
0

g
μ
s−(u)W(ds, du)

+
∫ t

0
[〈γ,f 〉 − b〈Yμ

s−, f 〉]ds(3.15)

+
∫ t

0

∫ ∞
0

∫ ∞
0

zg
μ
s−(u)Ñ(ds, dz, du),

where

gμ
s (u) = c01{u≤Y

μ
s (0)} +

n∑
i=1

ci1{Yμ
s (ai−1)<u≤Y

μ
s (ai)}.(3.16)

PROPOSITION 3.8. For any t ≥ 0 and f ∈ B[0, a] we have

E[〈Yμ
t , f 〉] = 〈μ,f 〉e−bt + 〈γ,f 〉b−1(1 − e−bt )(3.17)

with b−1(1 − e−bt ) = t for b = 0 by convention.
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PROOF. We first consider the step function (3.13). By taking the expectation
in (3.15) we obtain

E[〈Yμ
t , f 〉] = 〈μ,f 〉 + t〈γ,f 〉 − b

∫ t

0
E[〈Yμ

s , f 〉]ds.

The above integral equation has the unique solution given by (3.17). For a general
function f ∈ B[0, a] we get (3.17) by a monotone class argument. �

THEOREM 3.9. The measure-valued process {Yμ
t : t ≥ 0} is a càdlàg strong

Markov process in M[0, a] with Y
μ
0 = μ.

PROOF. In view of (3.14), the process t �→ 〈Yμ
t , f 〉 is càdlàg for the step func-

tion (3.13). Since any function in C[0, a] can be approximated by a sequence
of step functions in the supremum norm, it is easy to conclude t �→ 〈Yμ

t , f 〉 is
càdlàg for all f ∈ C[0, a]. By Theorem 3.7, for any finite stopping time τ we have
Y

μ
τ+t = Gτ,tY

μ
τ almost surely. That clearly implies the strong Markov property of

{Yμ
t : t ≥ 0}. �

THEOREM 3.10. For any f ∈ B[0, a] the process {〈Yμ
t , f 〉 : t ≥ 0} has a

càdlàg modification. Moreover, there is a locally bounded function t �→ C(t) so
that

E
[

sup
0≤s≤t

〈Yμ
s , f 〉

]
≤ C(t)[〈μ,f 〉 + 〈γ,f 〉 + 〈μ,f 2〉1/2 + 〈γ,f 2〉1/2](3.18)

for every t ≥ 0 and f ∈ B[0, a]+.

PROOF. We first consider a nonnegative step function given by (3.13) with
constants {c0, c1, . . . , cn} ⊂ R+. By (3.15) and Doob’s martingale inequality,

E
[

sup
0≤s≤t

〈Yμ
s , f 〉

]

≤ 〈μ,f 〉 + 2σE1/2
{[∫ t

0

∫ ∞
0

g
μ
s−(u)W(ds, du)

]2}

+ t〈γ,f 〉 + |b|
∫ t

0
E[〈Yμ

s , f 〉]ds

+ 2E1/2
{[∫ t

0

∫ 1

0

∫ ∞
0

zg
μ
s−(u)Ñ(ds, dz, du)

]2}

+ E
[∫ t

0

∫ ∞
1

∫ ∞
0

zg
μ
s−(u)N(ds, dz, du)

]

= 〈μ,f 〉 + 2σE1/2
[∫ t

0
ds

∫ ∞
0

gμ
s (u)2 du

]
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+ t〈γ,f 〉 + |b|
∫ t

0
E[〈Yμ

s , f 〉]ds

+ 2E1/2
[∫ t

0
ds

∫ 1

0
z2m(dz)

∫ ∞
0

gμ
s (u)2 du

]

+ E
[∫ t

0
ds

∫ ∞
1

zm(dz)

∫ ∞
0

gμ
s (u) du

]

≤ 〈μ,f 〉 + 2
(∫ t

0
E[〈Yμ

s , f 2〉]ds

)1/2[
σ +

(∫ 1

0
z2m(dz)

)1/2]

+ t〈γ,f 〉 +
∫ t

0
E[〈Yμ

s , f 〉]ds

[
|b| +

∫ ∞
1

zm(dz)

]
.

In view of (3.17) we get (3.18) for the step function. Now let η(dv) = μ(dv) +
γ (dv) and choose a bounded sequence of step functions {fn} so that fn → f in
L2(η) as n → ∞. By applying (3.18) to the nonnegative step function |fn − fm|
we get

E
[

sup
0≤s≤t

〈Yμ
s , |fn − fm|〉

]
≤ C(t)[〈η, |fn − fm|〉 + 2〈η, |fn − fm|2〉1/2].

The right-hand side tends to zero as m,n → ∞. Then there is a càdlàg process
{Yμ

t (f ) : t ≥ 0} so that

E
[

sup
0≤s≤t

|〈Yμ
s , fn〉 − Yμ

s (f )|
]
→ 0, n → ∞.(3.19)

On the other hand, from (3.17) we have

E[〈Yμ
t , |fn − f |〉] = 〈μ, |fn − f |〉e−bt + b−1(1 − e−bt )〈γ, |fn − f |〉,

which tends to zero as n → ∞. Then {Yμ
t (f ) : t ≥ 0} is a modification of

{〈Yμ
t , f 〉 : t ≥ 0}. Finally, we get (3.18) for f ∈ B[0, a]+ by using (3.19) and the

result for step functions. �

THEOREM 3.11. The process {Yμ
t : t ≥ 0} is the unique solution of the follow-

ing martingale problem: for every G ∈ C2(R) and f ∈ B[0, a],
G(〈Yμ

t , f 〉)
= G(〈μ,f 〉) + 1

2
σ 2
∫ t

0
G′′(〈Yμ

s , f 〉)〈Yμ
s , f 2〉ds

+
∫ t

0
G′(〈Yμ

s , f 〉)[〈γ,f 〉 − b〈Yμ
s , f 〉]ds

(3.20)

+
∫ t

0
ds

∫
[0,a]

Yμ
s (dx)

∫ ∞
0

[
G
(〈Yμ

s , f 〉 + zf (x)
)

− G(〈Yμ
s , f 〉) − zf (x)G′(〈Yμ

s , f 〉)]m(dz)

+ local mart.
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PROOF. Again we start with the step function (3.13). Using (3.15) and Itô’s
formula,

G(〈Yμ
t , f 〉)
= G(〈μ,f 〉) + 1

2
σ 2
∫ t

0
ds

∫ ∞
0

G′′(〈Yμ
s−, f 〉)gμ

s−(u)2 du

+
∫ t

0
G′(〈Yμ

s−, f 〉)[〈γ,f 〉 − b〈Yμ
s−, f 〉]ds

+
∫ t

0
ds

∫ ∞
0

m(dz)

∫ ∞
0

[
G
(〈Yμ

s , f 〉 + zgμ
s (u)

)
− G(〈Yμ

s , f 〉) − G′(〈Yμ
s , f 〉)zgμ

s (u)
]
du

+ local mart.

= G(〈μ,f 〉) + 1

2
σ 2
∫ t

0
G′′(〈Yμ

s , f 〉)〈Yμ
s , f 2〉ds

+
∫ t

0
G′(〈Yμ

s , f 〉)[〈γ,f 〉 − b〈Yμ
s , f 〉]ds

+
∫ t

0
ds

∫ ∞
0

Yμ
s (dx)

∫ ∞
0

[
G
(〈Yμ

s , f 〉 + zf (x)
)

− G(〈Yμ
s , f 〉) − G′(〈Yμ

s , f 〉)zf (x)
]
m(dz)

+ local mart.

That proves (3.20) for step functions. For f ∈ B[0, a] we get the martingale prob-
lem using (3.19). The uniqueness of the solution follows from a result in Li (2011),
Section 9.3. �

The solution of the martingale problem (3.20) is the special case of the immi-
gration superprocess studied in Li (2011) with trivial spatial motion. More pre-
cisely, the infinitesimal particles propagate in [0, a] without migration. Then for
any disjoint bounded Borel subsets B1 and B2 of [0, a], the nonnegative real-
valued processes {Yμ

t (B1) : t ≥ 0} and {Yμ
t (B2) : t ≥ 0} are independent. That ex-

plains why the restriction of {Yμ
t : t ≥ 0} to the interval [0, a] is still a Markov

process. To consider the process of measures on the half line [0,∞) we need to
introduce a weight function as follows.

Let h be a strictly positive continuous function on [0,∞) vanishing at infinity.
Let Mh[0,∞) be the space of Radon measures μ on [0,∞) so that 〈μ,h〉 < ∞.
Let Bh[0,∞) be the set of Borel functions on [0,∞) bounded by const · h, and let
Ch[0,∞) denote its subset of continuous functions. A topology on Mh[0,∞) can
be defined by the convention μn → μ in Mh[0,∞) if and only if 〈μn,f 〉 → 〈μ,f 〉
for every f ∈ Ch[0,∞). Suppose that μ ∈ Mh[0,∞) and γ ∈ Mh[0,∞). It is easy
to show that {Yμ

t : t ≥ 0} is a càdlàg strong Markov process in Mh[0,∞), and the
results of Theorem 3.10 and Theorem 3.11 are also true for Bh[0,∞).
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4. Generalized Fleming–Viot flows. In this section we give a construction
of the generalized Fleming–Viot flow as the strong solution of a stochastic in-
tegral equation. Let σ ≥ 0, b ≥ 0 and 0 ≤ β ≤ 1 be constants, and let z2ν(dz)

be a finite measure on (0,1]. Suppose that {B(ds, du)} is a white noise on
(0,∞)2 with intensity ds du, and {M(ds, dz, du)} is a Poisson random measure
on (0,∞) × (0,1] × (0,∞) with intensity ds ν(dz) du. Let

q(x,u) = 1{u≤1∧x} − (1 ∧ x), x ≥ 0, u ∈ (0,1].
We first consider the stochastic integral equation

Xt = X0 +
∫ t

0

∫ 1

0
σq(Xs−, u)B(ds, du) +

∫ t

0
b(β − Xs−) ds

(4.1)

+
∫ t

0

∫ 1

0

∫ 1

0
zq(Xs−, u)M̃(ds, dz, du),

where M̃(ds, dz, du) denotes the compensated measure of M(ds, dz, du). In fact,
the compensation in (4.1) can be disregarded as∫ 1

0
q(Xs−, u) du =

∫ 1

0

[
1{u≤Xs−∧1} − (Xs− ∧ 1)

]
du = 0.

THEOREM 4.1. There is a unique nonnegative strong solution to (4.1).

PROOF. We first show the pathwise uniqueness for (4.1). Set l(x, y,u) =
q(x,u) − q(y,u). For x, y ≥ 0 and 0 ≤ z, t ≤ 1 we have

(x − y) + ztl(x, y,u)

= [(x − 1 ∧ x) − (y − 1 ∧ y)] + (1 − zt)(1 ∧ x − 1 ∧ y)

+ zt
(
1{u≤x∧1} − 1{u≤y∧1}

)
.

It is then easy to see

|(x − y) + ztl(x, y,u)| ≥ (1 − zt)|1 ∧ x − 1 ∧ y|.
Moreover, we have∫ 1

0
l(x, y,u)2 du = (1 ∧ x − 1 ∧ y) − (1 ∧ x − 1 ∧ y)2

≤ |1 ∧ x − 1 ∧ y|.
Using the above two inequalities,∫ 1

0
(1 − t) dt

∫ 1

0
ν(dz)

∫ 1

0

z2l(x, y,u)2

|(x − y) + ztl(x, y,u)| du

≤
∫ 1

0
z2ν(dz)

∫ 1

0

1 − t

1 − zt
dt

∫ 1

0

l(x, y,u)2

|1 ∧ x − 1 ∧ y| du

≤
∫ 1

0
z2ν(dz)

∫ 1

0

1 − t

1 − zt
dt ≤

∫ 1

0
z2ν(dz).
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Then condition (2.d) is satisfied with ρ(z) = √
z. Other conditions of Theorem 2.1

can be checked easily. Then we have the pathwise uniqueness for (4.1). To show
the existence of the solution, we may assume X0 = v ≥ 0 is a deterministic con-
stant. By Theorem 2.5 there a unique nonnegative strong solution of (4.1) if the
Poisson integral term is removed. Then for each k ≥ 1 there is a unique nonnega-
tive strong solution to

Zt = Z0 +
∫ t

0

∫ 1

0
σq(Zs−, u)B(ds, du)

+
∫ t

0
b(β − Zs−) ds(4.2)

+
∫ t

0

∫ 1

1/k

∫ 1

0
zq(Zs−, u)M(ds, dz, du),

because the last term on the right-hand side gives at most a finite number of jumps
on each bounded time interval. Let {Zk(t) : t ≥ 0} be the solution of (4.2) with
Zk(0) = v. Let T1 = inf{t ≥ 0 :Zk(t) ≤ 1}. On the time interval [0, T1], the sto-
chastic integral terms in (4.2) vanish. Then t �→ Zk(t) is nonincreasing on [0, T1].
By modifying the proof of Proposition 2.1 in Fu and Li (2010) one can see
Zk(t) ≤ 1 for t ≥ T1. Thus Zk(t) ≤ (Zk(0)∨1) = (v∨1) for all t ≥ 0. Let {τk} be a
bounded sequence of stopping times. Note that the last term on the right-hand side
of (4.2) can be considered as a stochastic integral with respect to the compensated
Poisson random measure. Then for any t ≥ 0 we have

E{[Zk(τk + t) − Zk(τk)]2}
≤ 3σ 2E

[∫ t

0
ds

∫ 1

0
q
(
Zk(τk + s), u

)2
du

]
+ 3b2t2(v ∨ 1)2

+ 3E
[∫ t

0
ds

∫ 1

0
z2ν(dz)

∫ 1

0
q
(
Zk(τk + s), u

)2
du

]

≤ 3t

[
σ 2 + tb2(v ∨ 1)2 +

∫ 1

0
z2ν(dz)

]
.

The right-hand side tends to zero as t → 0. By a criterion of Aldous (1978), the se-
quence {Zk(t) : t ≥ 0} is tight in D([0,∞),R+) [see also Ethier and Kurtz (1986),
pages 137 and 138]. By a modification of the proof of Theorem 4.4 in Fu and Li
(2010) one sees that any limit point of this sequence is a weak solution of (4.1).

�

Now let v �→ γ (v) be a nondecreasing continuous function on [0,1] so that
0 ≤ γ (v) ≤ 1 for all 0 ≤ v ≤ 1. We denote by γ (dv) the sub-probability measure
on [0,1] so that γ ([0, v]) = γ (v) for 0 ≤ v ≤ 1. By Theorem 4.1 for each v ≥ 0
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there is a pathwise unique nonnegative solution {Xt(v) : t ≥ 0} to the equation

Xt(v) = v +
∫ t

0

∫ 1

0
σ
[
1{u≤Xs−(v)} − Xs−(v)

]
B(ds, du)

+
∫ t

0
b[γ (v) − Xs−(v)]ds(4.3)

+
∫ t

0

∫ 1

0

∫ 1

0
z
[
1{u≤Xs−(v)} − Xs−(v)

]
M̃(ds, dz, du).

It is not hard to see that 0 ≤ v ≤ 1 implies P{0 ≤ Xt(v) ≤ 1 for all t ≥ 0} = 1. The
compensation for the Poisson random measure can be disregarded, so this equation
just coincides with (1.6). By Theorem 2.2 for any 0 ≤ v1 ≤ v2 ≤ 1 we have

P{Xt(v1) ≤ Xt(v2) for all t ≥ 0} = 1.

Therefore {X(v) : 0 ≤ v ≤ 1} is a nondecreasing path-valued process in D[0,∞).

PROPOSITION 4.2. There is a locally bounded nonnegative function t �→ C(t)

on [0,∞) so that

E
{

sup
0≤s≤t

[Xs(v2) − Xs(v1)]
}

≤ C(t)
{
(v2 − v1) + [γ (v2) − γ (v1)](4.4)

+ √
v2 − v1 +

√
γ (v2) − γ (v1)

}
for t ≥ 0 and 0 ≤ v1 ≤ v2 ≤ 1.

PROOF. Let Zt = Xt(v2) − Xt(v1) for t ≥ 0. From (4.3) we have

Zt = (v2 − v1) +
∫ t

0

∫ 1

0
σ [Ys−(u) − Zs−]B(ds, du)

+
∫ t

0
b{[γ (v2) − γ (v1)] − Zs−}ds(4.5)

+
∫ t

0

∫ 1

0

∫ 1

0
z[Ys−(u) − Zs−]M̃(ds, dz, du),

where Ys(u) = 1{Xs(v1)<u≤Xs(v2)}. Taking the expectation in (4.5) and solving a
deterministic integral equation one can show

E[Zt ] = (v2 − v1)e
−bt + [γ (v2) − γ (v1)](1 − e−bt ).(4.6)
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By (4.5) and Doob’s martingale inequality,

E
{

sup
0≤s≤t

Zs

}
≤ (v2 − v1) + 2σE1/2

{(∫ t

0

∫ 1

0
[Ys−(u) − Zs−]B(ds, du)

)2}

+
∫ t

0
b{[γ (v2) − γ (v1)] + E[Zs]}ds

+ 2E1/2
{(∫ t

0

∫ 1

0

∫ 1

0
z[Ys−(u) − Zs−]M̃(ds, dz, du)

)2}

= (v2 − v1) + 2σE1/2
{∫ t

0
ds

∫ 1

0
[Ys(u) − Zs]2 du

}

+
∫ t

0
b{[γ (v2) − γ (v1)] + E[Zs]}ds

+ 2E1/2
{∫ t

0
ds

∫ 1

0
z2ν(dz)

∫ 1

0
[Ys(u) − Zs]2 du

}
,

where ∫ 1

0
[Ys(u) − Zs]2 du = Zs(1 − Zs) ≤ Zs.

Then we have (4.4) by (4.6). �

Recall that D[0,∞) is the space of nonnegative càdlàg functions on [0,∞)

endowed with the Borel σ -algebra generated by the Skorokhod topology. Let ρ be
the metric on D[0,∞) defined by (3.11).

THEOREM 4.3. The path-valued process {X(v) : 0 ≤ v ≤ 1} is a Markov
process in D[0,∞).

PROOF. Let 0 < v < 1, and let τn = inf{t ≥ 0 :Xt(v) ≤ 1/n} for n ≥ 1. In
view of (4.3), we have Xt(v) = 0 if Xt−(v) = 0. Then τn → τ∞ := inf{t ≥ 0 :
Xt(v) = 0} as n → ∞. For any p ∈ [0, v) the comparison property and path-
wise uniqueness for (4.3) imply Xt(p) = Xt(v) for t ≥ τ∞. Let Zn(t) =
Xt∧τn(v)−1Xt∧τn(p) for t ≥ 0. By (4.3) and Itô’s formula,

Zn(t) = p

v
+
∫ t∧τn

0

∫ 1

0

σ

Xs−(v)

[
1{u≤Xs−(p)} − Xs−(p)

]
B(ds, du)

−
∫ t∧τn

0

∫ 1

0

σXs−(p)

Xs−(v)2

[
1{u≤Xs−(v)} − Xs−(v)

]
B(ds, du)

+
∫ t∧τn

0
bXs−(v)−1[γ (p) − γ (v)Xs−(v)−1Xs−(p)]ds
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+
∫ t∧τn

0
ds

∫ 1

0

σ 2Xs−(p)

Xs−(v)3

[
1{u≤Xs−(v)} − Xs−(v)

]2
du

−
∫ t∧τn

0
ds

∫ 1

0

σ 2

Xs−(v)2

[
1{u≤Xs−(p)} − Xs−(p)

]
× [

1{u≤Xs−(v)} − Xs−(v)
]
du

+
∫ t∧τn

0

∫ 1

0

∫ 1

0

{
Xs−(p)(1 − z) + z1{u≤Xs−(p)}
Xs−(v)(1 − z) + z1{u≤Xs−(v)}

− Xs−(p)

Xs−(v)

}

× M(ds, dz, du)

= p

v
+
∫ t∧τn

0

∫ Xs−(v)

0
σXs−(v)−1[1{u≤Xs−(p)} − Xs−(v)−1Xs−(p)

]
× B(ds, du)

+
∫ t∧τn

0
bXs−(v)−1[γ (p) − γ (v)Xs−(v)−1Xs−(p)]ds

+
∫ t∧τn

0

∫ 1

0

∫ Xs−(v)

0

[
Xs−(p)(1 − z) + z1{u≤Xs−(p)}

Xs−(v)(1 − z) + z
− Xs−(p)

Xs−(v)

]

× M(ds, dz, du),

where the two terms involving σ 2 counteract each other. Observe also that the last
integral does not change if we replace M(ds, dz, du) by the compensated measure
M̃(ds, dz, du). Then we get the equation

Zn(t) = p

v
+
∫ t∧τn

0

∫ Xs−(v)

0
σXs−(v)−1[1{u≤Xs−(v)Zn(s−)} − Zn(s−)

]
× B(ds, du)

+
∫ t∧τn

0

∫ 1

0

∫ Xs−(v)

0
z

[
1{u≤Xs−(v)Zn(s−)}

z + (1 − z)Xs−(v)
− Zn(s−)

z + (1 − z)Xs−(v)

]
(4.7)

× M̃(ds, dz, du)

+
∫ t∧τn

0
bXs−(v)−1[γ (p) − γ (v)Zn(s−)]ds.

Since Xs−(v) ≥ 1/n for 0 < s ≤ τn, by a simple generalization of Theorem 2.1
one can show the pathwise uniqueness holds for (4.7). Then, setting Zt =
limn→∞ Zn(t) we have

Xt(p) = ZtXt(v)1{t<τ∞} + Xt(v)1{t≥τ∞}, t ≥ 0.(4.8)

Now from (4.7) and (4.8) we infer that {Xt(p) : t ≥ 0} is measurable with respect
to the σ -algebra Fv generated by the process {Xt(v) : t ≥ 0} and the restricted
martingale measures

1{u≤Xs−(v)}B(ds, du), 1{u≤Xs−(v)}M̃(ds, dz, du).
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By similar arguments, for any q ∈ (v,1] one can see {1 − Xt(q) : t ≥ 0} is measur-
able with respect to the σ -algebra Gv generated by the process {1 − Xt(v) : t ≥ 0}
and the restricted martingale measures

1{Xs−(v)<u≤1}B(ds, du), 1{Xs−(v)<u≤1}M̃(ds, dz, du).

Observe that {B(ds,Xs−(v) + du)} is a white noise with intensity ds du and
{M(ds, dz,Xs−(v)+du)} is a Poisson random measure with intensity ds ν(dz)du.
Then, given {Xt(v) : t ≥ 0} the σ -algebras Fv and Gv are conditionally indepen-
dent. That implies the Markov property of {(X(v),Fv) : 0 ≤ v ≤ 1}. �

THEOREM 4.4. The path-valued Markov process {X(v) : 0 ≤ v ≤ 1} has
a ρ-càdlàg modification. Consequently, there is a version of the solution flow
{Xt(v) : t ≥ 0,0 ≤ v ≤ 1} of (4.3) with the following properties:

(i) for each v ∈ [0,1], t �→ Xt(v) is càdlàg on [0,∞) and solves (4.3);
(ii) for each t ≥ 0, v �→ Xt(v) is nondecreasing and càdlàg on [0,1] with

Xt(0) ≥ 0 and Xt(1) ≤ 1.

PROOF. This follows from Lemma 3.5 and Proposition 4.2 by arguments as in
the proof of Theorem 3.6. �

We call the solution flow {Xt(v) : t ≥ 0, v ∈ [0,1]} of (4.3) specified in The-
orem 4.4 a generalized Fleming–Viot flow following Bertoin and Le Gall (2003,
2005, 2006). The law of the flow is determined by the parameters (σ, b, γ, ν).

Let F [0,1] be the set of nondecreasing càdlàg functions f on [0,1] such that
0 ≤ f (0) ≤ f (1) ≤ 1. Given a finite stopping time τ and a function μ ∈ F [0,1],
let {Xμ

τ,t (v) : t ≥ 0} be the solution of

X
μ
τ,t (v) = μ(v) +

∫ τ+t

τ

∫ 1

0
σ
[
1{u≤X

μ
τ,s−(v)} − X

μ
τ,s−(v)

]
B(ds, du)

+
∫ τ+t

τ
b[γ (v) − X

μ
τ,s−(v)]ds(4.9)

+
∫ τ+t

τ

∫ 1

0

∫ 1

0
z
[
1{u≤X

μ
τ,s−(v)} − X

μ
τ,s−(v)

]
M̃(ds, dz, du)

and write simply {Xμ
t (v) : t ≥ 0} instead of {Xμ

0,t (v) : t ≥ 0}. The pathwise unique-
ness for the above equation follows from that of (4.3). Let Fτ,t be the random
operator on F [0,1] that maps μ to X

μ
τ,t . As for the flow of CBI-processes we have

THEOREM 4.5. For any finite stopping time τ we have P{Xμ
τ+t = Fτ,tX

μ
t for

all t ≥ 0} = 1.
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For any sub-probability measure μ(dv) on [0,1] with distribution function
v �→ μ(v), we write X

μ
t (dv) for the random sub-probability measure on [0,1]

determined by the random function v �→ X
μ
t (v). We call {Xμ

t : t ≥ 0} the general-
ized Fleming–Viot process associated with the flow {Xμ

t (v) : t ≥ 0, v ∈ [0,1]}. The
reader may refer to Dawson (1993) and Ethier and Kurtz (1993) for the theory of
classical Fleming–Viot processes. To give some characterizations of the general-
ized Fleming–Viot process, let us consider the step function

f (u) = c01{0}(u) +
n∑

i=1

ci1(ai−1,ai ](u), u ∈ [0,1],(4.10)

where {c0, c1, . . . , cn} ⊂ R and {0 = a0 < a1 < · · · < an = 1} is a partition of
[0,1]. For this function we have

〈Xμ
t , f 〉 = c0X

μ
t (0) +

n∑
i=1

ci[Xμ
t (ai) − X

μ
t (ai−1)].(4.11)

By (4.9) and (4.11) we have

〈Xμ
t , f 〉 = 〈μ,f 〉 +

∫ t

0

∫ 1

0
σ [gμ

s−(u) − 〈Xμ
s−, f 〉]B(ds, du)

+
∫ t

0
b[〈γ,f 〉 − 〈Xμ

s−, f 〉]ds(4.12)

+
∫ t

0

∫ 1

0

∫ 1

0
z[gμ

s−(u) − 〈Xμ
s−, f 〉]M̃(ds, dz, du),

where

gμ
s (u) = c01{u≤X

μ
s (0)} +

n∑
i=1

ci1{Xμ
s (ai−1)<u≤X

μ
s (ai)}.(4.13)

The proofs of the following three results are similar to those for CBI-processes.

THEOREM 4.6. The generalized Fleming–Viot process {Xμ
t : t ≥ 0} defined

above is an almost surely càdlàg strong Markov process with X
μ
0 = μ.

PROPOSITION 4.7. For any t ≥ 0 and f ∈ B[0,1] we have

E[〈Xμ
t , f 〉] = 〈μ,f 〉e−bt + 〈γ,f 〉(1 − e−bt ).(4.14)

THEOREM 4.8. For any f ∈ B[0,1] the process {〈Xμ
t , f 〉 : t ≥ 0} has a

càdlàg modification. Moreover, there is a locally bounded function t �→ C(t) so
that

E
[

sup
0≤s≤t

〈Xμ
s , f 〉

]
≤ C(t)[〈μ,f 〉 + 〈γ,f 〉 + 〈μ,f 2〉1/2 + 〈γ,f 2〉1/2](4.15)

for any t ≥ 0 and f ∈ B[0,1]+.
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The generalized Fleming–Viot process can be characterized in terms of a mar-
tingale problem. Given any finite family {f1, . . . , fp} ⊂ B[0,1], write

Gp,{fi}(η) =
p∏

i=1

〈η,fi〉, η ∈ M1[0,1].(4.16)

Let D1(L) be the linear span of the functions on M1[0,1] of the form (4.16), and
let L be the linear operator on D1(L) defined by

LGp,{fi}(η) = σ 2
∑
i<j

[
〈η,fifj 〉

∏
k �=i,j

〈η,fk〉 −
p∏

k=1

〈η,fk〉
]

+ ∑
I⊂{1,...,p},|I |≥2

βp,|I |
[〈

η,
∏
i∈I

fi

〉∏
j /∈I

〈η,fj 〉 −
p∏

k=1

〈η,fk〉
]

(4.17)

+ b

p∑
i=1

[
〈γ,fi〉

∏
k �=i

〈η,fk〉 −
p∏

k=1

〈η,fk〉
]
,

where |I | denotes the cardinality of I ⊂ {1, . . . , p} and

βp,|I | =
∫ 1

0
z|I |(1 − z)p−|I |ν(dz).

THEOREM 4.9. The generalized Fleming–Viot process {Xμ
t : t ≥ 0} is the

unique solution of the following martingale problem: for any p ≥ 1 and {f1, . . . ,

fp} ⊂ B[0,1],

Gp,{fi}(X
μ
t ) = Gp,{fi}(μ) +

∫ t

0
LGp,{fi}(Xμ

s ) ds + mart.(4.18)

PROOF. We first consider a collection of step functions {f1, . . . , fp}. Let
g

μ
i (s, u) be defined by (4.13) with f = fi . Since the compensation of the Pois-

son random measure in (4.12) can be disregarded, by Itô’s formula we get

Gp,{fi}(X
μ
t )

= Gp,{fi}(μ) + σ 2
∫ t

0
ds

∫ 1

0

[∑
i<j

h
μ
i (s, u)h

μ
j (s, u)

∏
k �=i,j

〈Xμ
s , fk〉

]
du

+
∫ t

0
ds

∫ 1

0
ν(dz)

∫ 1

0

{ p∏
k=1

[〈Xμ
s , fk〉 + zh

μ
k (s, u)] −

p∏
k=1

〈Xμ
s , fk〉

}
du

+ b

∫ t

0

p∑
i=1

[〈γ,fi〉 − 〈Xμ
s , fi〉]

∏
k �=i

〈Xμ
s , fk〉ds + mart.
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= Gp,{fi}(μ) + σ 2
∫ t

0
ds

∫ 1

0

[∑
i<j

l
μ
i (u)l

μ
j (u)

∏
k �=i,j

〈Xμ
s , fk〉

]
Xμ

s (du)

+
∫ t

0
ds

∫ 1

0
ν(dz)

∫ 1

0

{ p∏
k=1

[〈Xμ
s , fk〉 + zl

μ
k (u)] −

p∏
k=1

〈Xμ
s , fk〉

}
Xμ

s (du)

+ b

∫ t

0

p∑
i=1

[
〈γ,fi〉

∏
k �=i

〈Xμ
s , fk〉 −

p∏
k=1

〈Xμ
s , fk〉

]
ds + mart.,

where h
μ
i (s, u) = g

μ
i (s, u) − 〈Xμ

s , fi〉 and l
μ
i (u) = fi(u) − 〈Xμ

s , fi〉. It is simple
to show

∫ 1

0
l
μ
i (u)l

μ
j (u)Xμ

s (du) = 〈Xμ
s , fifj 〉 − 〈Xμ

s , fi〉〈Xμ
s , fj 〉.

Then we continue with

Gp,{fi}(X
μ
t )

= Gp,{fi}(μ) + σ 2
∫ t

0

∑
i<j

[
〈Xμ

s , fifj 〉
∏

k �=i,j

〈Xμ
s , fk〉 −

p∏
k=1

〈Xμ
s , fk〉

]
ds

+
∫ t

0
ds

∫ 1

0
ν(dz)

∫ 1

0

{ p∏
k=1

[(1 − z)〈Xμ
s , fk〉 + zfk(u)]

−
p∏

k=1

〈Xμ
s , fk〉

}
Xμ

s (du)

+ b

∫ t

0

p∑
i=1

[
〈γ,fi〉

∏
k �=i

〈Xμ
s , fk〉 −

p∏
k=1

〈Xμ
s , fk〉

]
ds + mart.

= Gp,{fi}(μ) + σ 2
∫ t

0

∑
i<j

[
〈Xμ

s , fifj 〉
∏

k �=i,j

〈Xμ
s , fk〉 −

p∏
k=1

〈Xμ
s , fk〉

]
ds

+
∫ t

0
ds

∫ 1

0
ν(dz)

∫ 1

0

{ ∑
I⊂{1,...,p}

z|I |(1 − z)p−|I |∏
i∈I

fi(u)
∏
j /∈I

〈Xμ
s , fj 〉

−
p∏

k=1

〈Xμ
s , fk〉

}
Xμ

s (du)

+ b

∫ t

0

p∑
i=1

[
〈γ,fi〉

∏
k �=i

〈Xμ
s , fk〉 −

p∏
k=1

〈Xμ
s , fk〉

]
ds + mart.
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= Gp,{fi}(μ) + σ 2
∫ t

0

∑
i<j

[
〈Xμ

s , fifj 〉
∏

k �=i,j

〈Xμ
s , fk〉 −

p∏
k=1

〈Xμ
s , fk〉

]
ds

+
∫ t

0
ds

∫ 1

0
ν(dz)

∫ 1

0

{ ∑
I⊂{1,...,p}

z|I |(1 − z)p−|I |
[∏

i∈I

fi(u)
∏
j /∈I

〈Xμ
s , fj 〉

−
p∏

k=1

〈Xμ
s , fk〉

]}
Xμ

s (du)

+ b

∫ t

0

p∑
i=1

[
〈γ,fi〉

∏
k �=i

〈Xμ
s , fk〉 −

p∏
k=1

〈Xμ
s , fk〉

]
ds + mart.

That gives (4.18) for step functions {f1, . . . , fp}. For {f1, . . . , fp} ⊂ B[0,1] one
can show (4.18) by approximating the functions in the space L2(μ + γ ) using
bounded sequences of step functions. Since {Xμ

t : t ≥ 0} is a Markov process, and
D1(L) separates probability measures on M[0,1], the uniqueness for the martin-
gale problem holds [see Ethier and Kurtz (1986), page 182]. �

In particular, if μ(1) = γ (1) = 1, we have X
μ
t (1) = 1 for all t ≥ 0, and the cor-

responding generalized Fleming–Viot process {Xμ
t : t ≥ 0} is a probability-valued

Markov process with generator L defined by

LGp,{fi}(η) = σ 2
∑
i<j

[
〈η,fifj 〉

∏
k �=i,j

〈η,fk〉 −
p∏

k=1

〈η,fk〉
]

+ ∑
I⊂{1,...,p},|I |≥2

βp,|I |
[〈

η,
∏
i∈I

fi

〉∏
j /∈I

〈η,fj 〉 −
p∏

k=1

〈η,fk〉
]

(4.19)

+
p∑

i=1

〈η,Afi〉
∏
k �=i

〈η,fk〉,

where

Af (x) = b

∫
[0,1]

[f (y) − f (x)]γ (dy), x ∈ [0,1].

This is a generalization of a classical Fleming–Viot process [see, e.g., Ethier
and Kurtz (1993), page 351]. On the other hand, for b = 0 the solution flow
{Xμ

t (v) : t ≥ 0,0 ≤ v ≤ 1} of (4.3) corresponds to the �-coalescent process with
�(dz) = σ 2δ0 + z2ν(dz), which is clear from (4.18) and the martingale problem
given by Theorem 1 in Bertoin and Le Gall (2005). For b > 0 it seems the flow de-
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termines a coalescent process with a spatial structure. A serious exploration in the
subject would be of interest to the understanding of the related dynamic systems.

5. Scaling limit theorems. In this section, we prove some limit theorems
for the generalized Fleming–Viot flows. We shall present the results in the set-
ting of measure-valued processes and through the use of Markov process argu-
ments. These are different from the approach of Bertoin and Le Gall (2006), who
used the analysis of characteristics of semimartingales. For each k ≥ 1 let σk ≥ 0
and bk ≥ 0 be two constants, let z2νk(dz) be a finite measure on (0,1] and let
v �→ γk(v) be a nondecreasing continuous function on [0,1] so that 0 ≤ γk(v) ≤ 1
for all 0 ≤ v ≤ 1. We denote by γk(dv) the sub-probability measure on [0,1] so
that γk([0, v]) = γk(v) for 0 ≤ v ≤ 1. Let {Xk

t (v) : t ≥ 0, v ∈ [0,1]} be a gener-
alized Fleming–Viot flow with parameters (σk, bk, γk, νk) and with Xk

0(v) = v

for v ∈ [0,1]. Let Yk(t, v) = kXk
kt (k

−1v) for t ≥ 0 and v ∈ [0, k]. Let ηk(z) =
kγk(k

−1z) and mk(dz) = νk(k
−1dz) for z ∈ (0, k]. In view of (4.3), we can also

define {Yk(t, v) : t ≥ 0, v ∈ [0, k]} directly by

Yk(t, v) = v + kσk

∫ t

0

∫ k

0

[
1{u≤Yk(s−,v)} − k−1Yk(s−, v)

]
Wk(ds, du)

+ kbk

∫ t

0
[ηk(v) − Yk(s−, v)]ds(5.1)

+
∫ t

0

∫ k

0

∫ k

0
z
[
1{u≤Yk(s−,v)} − k−1Yk(s−, v)

]
Ñk(ds, dz, du),

where {Wk(ds, du)} is a white noise on (0,∞) × (0, k] with intensity ds du, and
{Nk(ds, dz, du)} is a Poisson random measure on (0,∞) × (0, k]2 with intensity
ds mk(dz) du. In the sequel, we assume k ≥ a for fixed a constant a ≥ 0. Then
the rescaled flow {Yk(t, v) : t ≥ 0, v ∈ [0, k]} induces an M[0, a]-valued process
{Y a

k (t) : t ≥ 0}. We are interested in the asymptotic behavior of {Ya
k (t) : t ≥ 0} as

k → ∞. Recall that λ denotes the Lebesgue measure on [0,∞).

LEMMA 5.1. For any G ∈ C2(R) and f ∈ C[0, a] we have

G(〈Ya
k (t), f 〉)
= G(〈λ,f 〉) + kbk

∫ t

0
G′(〈Ya

k (s), f 〉)〈ηk, f 〉ds

− kbk

∫ t

0
G′(〈Ya

k (s), f 〉)〈Ya
k (s), f 〉ds

+ 1

2
k2σ 2

k

∫ t

0
G′′(〈Ya

k (s), f 〉)〈Ya
k (s), f 2〉ds

− 1

2
kσ 2

k

∫ t

0
G′′(〈Ya

k (s), f 〉)〈Ya
k (s), f 〉2 ds
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+
∫ t

0
ds

∫ k

0
mk(dz)

∫
[0,a]

{
G
(〈Ya

k (s), f 〉 + zf (x)
)− G(〈Ya

k (s), f 〉)

− G′(〈Ya
k (s), f 〉)zf (x)

}
Ya

k (s, dx)

+
∫ t

0
ds

∫ k

0
[εk(s, z) + ξk(s, z)]mk(dz) + local mart.,

where

εk(s, z) =
∫ k

0

{
G
(〈Ya

k (s), f 〉 + z[f (x) − k−1〈Ya
k (s), f 〉])

− G
(〈Ya

k (s), f 〉 + zf (x)
)

− k−1G′(〈Ya
k (s), f 〉)z〈Ya

k (s), f 〉}Ya
k (s, dx)

and

ξk(s, z) = [k − Yk(s, a)]
× [

G
(〈Ya

k (s), f 〉 − k−1z〈Ya
k (s), f 〉)

− G(〈Ya
k (s), f 〉) + k−1G′(〈Ya

k (s), f 〉)z〈Ya
k (s), f 〉].

PROOF. For the step function defined by (3.13) we get from (5.1) that

〈Ya
k (t), f 〉 = 〈λ,f 〉 + kσk

∫ t

0

∫ k

0
hk(s−, u)Wk(ds, du)

+ kbk

∫ t

0
[〈ηk, f 〉 − 〈Ya

k (s−), f 〉]ds(5.2)

+
∫ t

0

∫ k

0

∫ k

0
zhk(s−, u)Ñk(ds, dz, du),

where hk(s, u) = gk(s, u) − k−1〈Ya
k (s), f 〉 and

gk(s, u) = c01{u≤Yk(s,0)} +
n∑

i=1

ci1{Yk(s,ai−1)<u≤Yk(s,ai )}.(5.3)

Let lk(s, x) = f (x) − k−1〈Ya
k (s), f 〉. By (5.2) and Itô’s formula,

G(〈Ya
k (t), f 〉)

= G(〈λ,f 〉) + kbk

∫ t

0
G′(〈Ya

k (s), f 〉)[〈ηk, f 〉 − 〈Ya
k (s), f 〉]ds

+ 1

2
k2σ 2

k

∫ t

0
G′′(〈Ya

k (s), f 〉) ds

∫ k

0
hk(s, u)2 du
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+
∫ t

0
ds

∫ k

0
mk(dz)

∫ k

0

{
G
(〈Ya

k (s), f 〉 + zhk(s, u)
)

− G(〈Ya
k (s), f 〉)

− G′(〈Ya
k (s), f 〉)zhk(s, u)

}
du

+ local mart.

= G(〈λ,f 〉) + kbk

∫ t

0
G′(〈Ya

k (s), f 〉)[〈ηk, f 〉 − 〈Ya
k (s), f 〉]ds

+ 1

2
k2σ 2

k

∫ t

0
G′′(〈Ya

k (s), f 〉)[〈Ya
k (s), f 2〉 − k−1〈Ya

k (s), f 〉]ds

+
∫ t

0
ds

∫ k

0
mk(dz)

∫
[0,a]

{
G
(〈Ya

k (s), f 〉 + zlk(s, x)
)

− G(〈Ya
k (s), f 〉)

− G′(〈Ya
k (s), f 〉)zlk(s, x)

}
Ya

k (s, dx)

+
∫ t

0
[k − Yk(s, a)]ds

∫ k

0

{
G
(〈Ya

k (s), f 〉 − k−1z〈Ya
k (s), f 〉)

− G(〈Ya
k (s), f 〉)

+ k−1G′(〈Ya
k (s), f 〉)z〈Ya

k (s), f 〉}mk(dz)

+ local mart.

That gives the desired result for the step function. For f ∈ C[0, a] it follows by
approximating the function by a sequence of step functions. �

LEMMA 5.2. For t ≥ 0 and f ∈ C[0, a]+ we have

E
[

sup
0≤s≤t

〈Ya
k (s), f 〉

]

≤ 〈λ,f 〉 + kbk〈ηk, f 〉t + 4t[〈λ,f 〉 + 〈ηk, f 〉]
∫ k

1
zmk(dz)

+ 2
√

t[〈λ,f 2〉 + 〈ηk, f
2〉]1/2

[
σ +

(∫ 1

0
z2mk(dz)

)1/2]
.

PROOF. We first consider a nonnegative step function given by (3.13) with
{c0, c1, . . . , cn} ⊂ R+. Let gk(s, u) and hk(s, u) be defined as in the proof of
Lemma 5.1. By (5.2) and Doob’s martingale inequality we get

E
[

sup
0≤s≤t

〈Ya
k (s), f 〉

]

≤ 〈λ,f 〉 + 2kσkE1/2
{[∫ t

0

∫ k

0
hk(s−, u)W(ds, du)

]2}
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+ kbk〈ηk, f 〉t + E
[∫ t

0
ds

∫ k

1
zmk(dz)

∫ k

0
|hk(s−, u)|du

]

+ E
[∫ t

0

∫ k

1

∫ k

0
z|hk(s−, u)|Nk(ds, dz, du)

]

+ 2E1/2
{[∫ t

0

∫ 1

0

∫ k

0
zhk(s−, u)Ñk(ds, dz, du)

]2}
.

It then follows that

E
[

sup
0≤s≤t

〈Ya
k (s), f 〉

]

≤ 〈λ,f 〉 + 2kσkE1/2
{∫ t

0
ds

∫ k

0
hk(s, u)2 du

}

+ kbk〈ηk, f 〉t + 2E
{∫ t

0
ds

∫ k

1
zmk(dz)

∫ k

0
|hk(s, u)|du

}

+ 2E1/2
{∫ t

0
ds

∫ 1

0
z2mk(dz)

∫ k

0
hk(s, u)2 du

}

≤ 〈λ,f 〉 + kbk〈ηk, f 〉t + 4E
[∫ t

0
〈Ya

k (s), f 〉ds

∫ k

1
zmk(dz)

]

+ 2E1/2
[∫ t

0
〈Ya

k (s), f 2〉ds

][
kσk +

(∫ 1

0
z2mk(dz)

)1/2]
.

By Proposition 4.7 one can see

E[〈Ya
k (t), f 〉] = 〈λ,f 〉e−kbkt + 〈ηk, f 〉(1 − e−kbkt ) ≤ 〈λ,f 〉 + 〈ηk, f 〉.

Then we have the desired inequality for the step function. The inequality for
f ∈ C[0, a]+ follows by approximating this function with a bounded sequence
of positive step functions. �

LEMMA 5.3. Let τk be a bounded stopping time for {Ya
k (t) : t ≥ 0}. Then for

any t ≥ 0 and f ∈ C[0, a] we have

E{|〈Y a
k (τk + t), f 〉 − 〈Ya

k (τk), f 〉|}

≤ E1/2
[∫ t

0
〈Ya

k (τk + s), f 2〉ds

][
kσk +

(∫ 1

0
z2mk(dz)

)1/2]
(5.4)

+ kbkE
[∫ t

0

(〈ηk, |f |〉 + 〈Ya
k (τk + s), |f |〉)ds

]

+ 4E
[∫ t

0
〈Ya

k (τk + s), |f |〉ds

∫ k

1
zmk(dz)

]
.
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PROOF. We first consider the step function given by (3.13). Let gk(s, u) and
hk(s, u) be defined as in the proof of Lemma 5.1. From (5.2) we have

E{|〈Ya
k (τk + t), f 〉 − 〈Ya

k (τk), f 〉|}

≤ kσkE1/2
{[∫ t

0

∫ k

0
hk(τk + s−, u)W(τk + ds, du)

]2}

+ kbkE
[∫ t

0
|〈ηk, f 〉 − 〈Ya

k (τk + s−), f 〉|ds

]

+ E1/2
{[∫ t

0

∫ 1

0

∫ k

0
zhk(τk + s−, u)Ñk(τk + ds, dz, du)

]2}

+ E
[∫ t

0

∫ k

1

∫ k

0
z|hk(τk + s−, u)|Nk(τk + ds, dz, du)

]

+ E
[∫ t

0
ds

∫ k

1
zmk(dz)

∫ k

0
|hk(τk + s−, u)|du

]
.

By the property of independent increments of the white noise and the Poisson
random measure,

E{|〈Ya
k (τk + t), f 〉 − 〈Ya

k (τk), f 〉|}

≤ kσkE1/2
{∫ t

0
ds

∫ k

0
hk(τk + s, u)2 du

}

+ kbkE
[∫ t

0

(〈ηk, |f |〉 + 〈Ya
k (τk + s), |f |〉)ds

]

+ E1/2
{∫ t

0
ds

∫ 1

0
z2mk(dz)

∫ k

0
hk(τk + s, u)2 du

}

+ 2E
[∫ t

0
ds

∫ k

1
zmk(dz)

∫ k

0
|hk(τk + s, u)|du

]

≤ E1/2
[∫ t

0
〈Ya

k (τk + s), f 2〉ds

][
kσk +

(∫ 1

0
z2mk(dz)

)1/2]

+ kbkE
[∫ t

0

(〈ηk, |f |〉 + 〈Ya
k (τk + s), |f |〉)ds

]

+ 4E
[∫ t

0
〈Ya

k (τk + s), |f |〉ds

∫ k

1
zmk(dz)

]
.

Then (5.4) holds for the step function. For f ∈ C[0, a] the inequality follows by
an approximation argument. �

LEMMA 5.4. Suppose that kbk → b, ηk → η weakly on [0, a] and k2σ 2
k ×

δ0(dz) + (z ∧ z2)mk(dz) converges weakly on [0,∞) to a finite measure σ 2 ×
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δ0(dz) + (z ∧ z2)m(dz) as k → ∞. Let {0 ≤ a1 < · · · < an} be an ordered set of
constants. Then {(Y a1

k (t), . . . , Y
an

k (t)) : t ≥ 0}, k = 1,2, . . . is a tight sequence in
D([0,∞),M[0, a1] × · · · × M[0, an]).

PROOF. Let τk be a bounded stopping time for {Ya
k (t) : t ≥ 0} and assume

the sequence {τk :k = 1,2, . . .} is uniformly bounded. Let fi ∈ C[0, ai] for i =
1, . . . , n. By (5.4) we see

E

{
n∑

i=1

|〈Yai

k (τk + t), fi〉 − 〈Yai

k (τk), fi〉|
}

≤
n∑

i=1

E1/2
[∫ t

0
〈Yai

k (τk + s), f 2
i 〉ds

][
kσk +

(∫ 1

0
z2mk(dz)

)1/2]
(5.5)

+ kbk

n∑
i=1

E
[∫ t

0

(〈ηk, |fi |〉 + 〈Yai

k (τk + s), |fi |〉)ds

]

+ 4
n∑

i=1

E
[∫ t

0
〈Yai

k (τk + s), |fi |〉ds

∫ k

1
zmk(dz)

]
.

Then the inequality in Lemma 5.2 implies

lim
t→0

sup
k≥1

E

{
n∑

i=1

|〈Yai

k (τk + t), fi〉 − 〈Yai

k (τk), fi〉|
}

= 0.

By a criterion of Aldous (1978), the sequence {(〈Ya1
k (t), f1〉, . . . , 〈Yan

k (t), fn〉) :
t ≥ 0} is tight in D([0,∞),R

n) [see also Ethier and Kurtz (1986), pages 137
and 138]. Then a simple extension of the tightness criterion of Roelly-Coppoletta
(1986) implies {(Y a1

k (t), . . . , Y
an

k (t)) : t ≥ 0} is tight in D([0,∞),M[0, a1]× · · ·×
M[0, an]). �

Suppose that σ ≥ 0 and b ≥ 0 are two constants, v �→ η(v) is a nonnegative and
nondecreasing continuous function on [0,∞) and (z∧z2)m(dz) is a finite measure
on (0,∞). Let η(dv) be the Radon measure on [0,∞) so that η([0, v]) = η(v)

for v ≥ 0. Suppose that {W(ds, du)} is a white noise on (0,∞)2 with intensity
ds dz and {N(ds, dz, du)} is a Poisson random measure on (0,∞)3 with inten-
sity ds m(dz) du. Let {Xt(v) : t ≥ 0, v ≥ 0} be the solution flow of the stochastic
equation

Xt(v) = v + σ

∫ t

0

∫ Xs−(v)

0
W(ds, du) + b

∫ t

0
[η(v) − Xs−(v)]ds

(5.6)

+
∫ t

0

∫ ∞
0

∫ Xs−(v)

0
zÑ(ds, dz, du).



STOCHASTIC EQUATIONS, FLOWS AND PROCESSES 851

By Theorem 3.11, for each a ≥ 0 the flow {Xt(v) : t ≥ 0, v ≥ 0} induces an
M[0, a]-valued immigration superprocess {Xa

t : t ≥ 0} which is the unique solu-
tion of the following martingale problem: for every G ∈ C2(R) and f ∈ C[0, a],

G(〈Xt,f 〉)
= G(〈λ,f 〉) + b

∫ t

0
G′(〈Xs,f 〉)[〈η,f 〉 − 〈Xs,f 〉]ds

+ 1

2
σ 2
∫ t

0
G′′(〈Xs,f 〉)〈Xs,f

2〉ds

(5.7)

+
∫ t

0
ds

∫ ∞
0

m(dz)

∫
[0,a]

[
G
(〈Xs,f 〉 + zf (x)

)
− G(〈Xs,f 〉) − G′(〈Xs,f 〉)zf (x)

]
Xs(dx)

+ local mart.

THEOREM 5.5. Suppose that kbk → b, ηk → η weakly on [0, a] and
k2σ 2

k δ0(dz) + (z ∧ z2)mk(dz) converges weakly on [0,∞) to a finite measure
σ 2δ0(dz) + (z ∧ z2)m(dz) as k → ∞. Then {Ya

k (t) : t ≥ 0} converges to the immi-
gration superprocess {Xa

t : t ≥ 0} in distribution on D([0,∞),M[0, a]).

For the proof of the above theorem, let us make some preparations. Since the so-
lution of the martingale problem (5.7) is unique, it suffices to prove any weak limit
point {Za

t : t ≥ 0} of the sequence {Ya
k (t) : t ≥ 0} is the solution of the martingale

problem. To simplify the notation we pass to a subsequence and simply assume
{Y a

k (t) : t ≥ 0} converges to {Za
t : t ≥ 0} in distribution. Using Skorokhod’s repre-

sentation theorem, we can also assume {Ya
k (t) : t ≥ 0} and {Za

t : t ≥ 0} are defined
on the same probability space and {Ya

k (t) : t ≥ 0} converges a.s. to {Za
t : t ≥ 0} in

the topology of D([0,∞),M[0, a]). For n ≥ 1 let

τn = inf
{
t ≥ 0 : sup

k≥1

∫ t

0
[1 + 〈Ya

k (s) + Za
s ,1〉2]ds ≥ n

}
.

It is easy to see that τn → ∞ as n → ∞.

LEMMA 5.6. Suppose that kbk → b, ηk → η weakly on [0, a] and k2σ 2
k ×

δ0(dz) + (z ∧ z2)mk(dz) converges weakly on [0,∞) to a finite measure σ 2 ×
δ0(dz) + (z ∧ z2)m(dz) as k → ∞. Let εk(s, z) be defined as in Lemma 5.1. Then
for each n ≥ 1 we have

E
[∫ t∧τn

0
ds

∫ k

0
|εk(s, z)|mk(dz)

]
→ 0, k → ∞.
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PROOF. By the mean-value theorem, we have

εk(s, z) = 1

k
z〈Ya

k (s), f 〉

×
∫ k

0

[
G′(〈Ya

k (s), f 〉 + zθk(s, x)
)− G′(〈Ya

k (s), f 〉)]Ya
k (s, dx),

where θk(s, x) takes values between f (x) and f (x) − k−1〈Ya
k (s), f 〉. Conse-

quently,

|εk(s, z)| ≤ 2

k
‖G′‖z〈Ya

k (s), |f |〉〈Ya
k (s),1〉 ≤ 2

k
‖G′‖‖f ‖z〈Ya

k (s),1〉2.

Moreover, since 〈Ya
k (s),1〉 ≤ k, we get

|εk(s, z)| ≤ 1

k
‖G′′‖z2〈Ya

k (s), |f |〉
∫ k

0
|θk(s, x)|Ya

k (s, dx)

≤ 1

k
‖G′′‖z2〈Ya

k (s), |f |〉
∫ k

0
[|f (x)| + k−1〈Ya

k (s), |f |〉]Ya
k (s, dx)

≤ 2

k
‖f ‖2‖G′′‖z2〈Ya

k (s),1〉2.

It follows that

E
[∫ t∧τn

0
ds

∫ k

0
|εk(s, z)|mk(dz)

]

≤ C

k

∫ k

0
(z ∧ z2)mk(dz)E

[∫ t∧τn

0
〈Ya

k (s),1〉2 ds

]

≤ nC

k

∫ k

0
(z ∧ z2)mk(dz),

where C = 2‖f ‖(‖G′‖ + ‖G′′‖‖f ‖). The right-hand side goes to zero as k → ∞.
�

LEMMA 5.7. Suppose that kbk → b, ηk → η weakly on [0, a] and k2σ 2
k ×

δ0(dz) + (z ∧ z2)mk(dz) converges weakly on [0,∞) to a finite measure σ 2 ×
δ0(dz) + (z ∧ z2)m(dz) as k → ∞. Let ξk(s, z) be defined as in Lemma 5.1. Then
for each n ≥ 1 we have

E
[∫ t∧τn

0
ds

∫ k

0
|ξk(s, z)|mk(dz)

]
→ 0, k → ∞.
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PROOF. It is elementary to see that

|ξk(s, z)| ≤ k
∣∣G(〈Ya

k (s), f 〉 − k−1z〈Ya
k (s), f 〉)

− G(〈Ya
k (s), f 〉) + k−1G′(〈Ya

k (s), f 〉)z〈Ya
k (s), f 〉∣∣

≤ min
{

2‖G′‖z〈Ya
k (s), |f |〉, 1

2k
‖G′′‖z2〈Ya

k (s), |f |〉2
}

≤ C[1 + 〈Ya
k (s),1〉2](z ∧ k−1z2),

where C = ‖f ‖(2‖G′‖ + ‖f ‖‖G′′‖/2). Then we have

E
[∫ t∧τn

0
ds

∫ k

0
|ξk(s, z)|mk(dz)

]

≤ C

∫ k

0
(z ∧ k−1z2)mk(dz)E

{∫ t∧τn

0
[1 + 〈Ya

k (s),1〉2]ds

}

≤ nC

∫ k

0
(z ∧ k−1z2)mk(dz).

The right-hand side tends to zero as k → ∞. �

PROOF OF THEOREM 5.5. Let f ∈ C[0, a]. Then {〈Y a
k (t), f 〉 : t ≥ 0} con-

verges a.s. to {〈Za
t , f 〉 : t ≥ 0} in the topology of D([0,∞),R). Consequently, we

have a.s. 〈Y a
k (t), f 〉 → 〈Za

t , f 〉 for a.e. t ≥ 0 [see, e.g., Ethier and Kurtz (1986),
page 118]. By Lemma 5.1,

G(〈Ya
k (t), f 〉) = G(〈λ,f 〉) + kbk

∫ t

0
G′(〈Ya

k (s), f 〉)〈ηk, f 〉ds

− kbk

∫ t

0
G′(〈Ya

k (s), f 〉)〈Ya
k (s), f 〉ds

+ 1

2
k2σ 2

k

∫ t

0
G′′(〈Ya

k (s), f 〉)〈Ya
k (s), f 2〉ds

− 1

2
kσ 2

k

∫ t

0
G′′(〈Ya

k (s), f 〉)〈Ya
k (s), f 〉2 ds(5.8)

+
∫ t

0
ds

∫ k

0
mk(dz)

∫
[0,a]

H(x, z, 〈Za
s , f 〉)Y a

k (s, dx)

+
∫ t

0
ds

∫ k

0
[εk(s, z) + ξk(s, z) + ζk(s, z)]mk(dz)

+ local mart.,

where

H(x, z,u) = G
(
u + zf (x)

)− G(u) − G′(u)zf (x)
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and

ζk(s, z) =
∫
[0,a]

[H(x, z, 〈Ya
k (s), f 〉) − H(x, z, 〈Za

s , f 〉)]Ya
k (s, dx).

By the mean-value theorem,

|ζk(s, z)| ≤
∫
[0,k]

|H ′
u(x, z, θk(s))〈Ya

k (s) − Za
s , f 〉|Ya

k (s, dx),

where θk(s) takes values between 〈Ya
k (s), f 〉 and 〈Za

s , f 〉. For G ∈ C3(R) we have

|H ′
u(x, z, θk(s))| = ∣∣G′(θk(s) + zf (x)

)− G′(θk(s)) − G′′(θk(s))zf (x)
∣∣

≤ ‖f ‖(2‖G′′‖ + 1
2‖f ‖‖G′′′‖)(z ∧ z2).

It follows that

|ζk(s)| ≤ ‖f ‖(2‖G′′‖ + 1
2‖f ‖‖G′′′‖)(z ∧ z2)

(5.9)
× 〈Ya

k (s),1〉|〈Ya
k (s) − Za

s , f 〉|.
By (5.9) and Schwarz’s inequality,

E
[∫ t∧τn

0
ds

∫ k

0
|ζk(s)|mk(dz)

]

≤ Ck(t)

{
E
[∫ t∧τn

0
〈Ya

k (s) − Za
s , f 〉2 ds

]}1/2

×
{

E
[∫ t∧τn

0
〈Ya

k (s),1〉2 ds

]}1/2

≤ √
nCk(t)

{
E
[∫ t∧τn

0
〈Ya

k (s) − Za
s , f 〉2 ds

]}1/2

,

where

Ck(t) = ‖f ‖(2‖G′′‖ + 1
2‖G′′′‖‖f ‖) ∫ k

0
(z ∧ z2)mk(dz).

Note that supk≥1 Ck(t) < ∞. It then follows that

E
[∫ t∧τn

0
ds

∫ k

0
|ζk(s)|mk(dz)

]
→ 0, k → ∞.

Now letting k → ∞ in (5.8) and using Lemmas 5.6 and 5.7 we obtain (5.7) for
G ∈ C3(R). A simple approximation shows the martingale problem actually holds
for any G ∈ C2(R). �

THEOREM 5.8. Suppose that kbk → b, ηk → η weakly on [0, a] and
k2σ 2

k δ0(dz) + (z ∧ z2)mk(dz) converges weakly on [0,∞) to a finite mea-
sure σ 2δ0(dz) + (z ∧ z2)m(dz) as k → ∞. Let {0 ≤ a1 < · · · < an = a} be
an ordered set of constants. Then {(Y a1

k (t), . . . , Y
an

k (t)) : t ≥ 0} converges to
{(Xa1

t , . . . ,X
an
t ) : t ≥ 0} in distribution on D([0,∞),M[0, a1] × · · · × M[0, an]).
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PROOF. By Lemma 5.4 the sequence {(Y a1
k (t), . . . , Y

an

k (t)) : t ≥ 0} is tight in
D([0,∞), M[0, a1]× · · ·×M[0, an]). Let {(Za1

t , . . . ,Z
an
t ) : t ≥ 0} be a weak limit

point of {(Y a1
k (t), . . . , Y

an

k (t)) : t ≥ 0}. To get the result, we only need to show
{(Za1

t , . . . ,Z
an
t ) : t ≥ 0} and {(Xa1

t , . . . ,X
an
t ) : t ≥ 0} have identical distributions on

D([0,∞),M[0, a1]×· · ·×M[0, an]). By passing to a subsequence and using Sko-
rokhod’s representation, we can assume {(Y a1

k (t), . . . , Y
an

k (t)) : t ≥ 0} converges to
{(Za1

t , . . . ,Z
an
t ) : t ≥ 0} almost surely in the topology of D([0,∞), M[0, a1] ×

· · · ×M[0, an]). Theorem 5.5 implies {Zan
t : t ≥ 0} is an immigration superprocess

solving the martingale problem (5.7) with a = an. Let Z̄
ai
t denote the restriction of

Z
an
t to [0, ai]. Then Z

an
t = Z̄

an
t in particular. We will show {(Za1

t , . . . ,Z
an
t ) : t ≥ 0}

and {(Z̄a1
t , . . . , Z̄

an
t ) : t ≥ 0} are indistinguishable. That will imply the desired re-

sult since {(Xa1
t , . . . ,X

an
t ) : t ≥ 0} and {(Z̄a1

t , . . . , Z̄
an
t ) : t ≥ 0} clearly have identi-

cal distributions on D([0,∞),M[0, a1] × · · · × M[0, an]). By the general theory
of càdlàg processes, the complement in [0,∞) of

D(Z) := {t ≥ 0 : P(Z
a1
t = Z

a1
t−, . . . ,Z

an
t = Z

an
t−) = 1}

is at most countable [see Ethier and Kurtz (1986), page 131]. For any t ∈ D(Z)

we have almost surely limk→∞ Y
ai

k (t) = Z
ai
t for each i = 1, . . . , n [see Ethier and

Kurtz (1986), page 118]. By an elementary property of weak convergence, for any
t ∈ D(Z) we almost surely have

Z
ai
t ([0, ai]) = lim

k→∞Y
ai

k (t, [0, ai]) = lim
k→∞Y

an

k (t, [0, ai])
≤ Z

an
t ([0, ai]) = Z̄

an
t ([0, ai]) = Z̄

ai
t ([0, ai]).

Since Theorem 5.5 implies {Zai
t : t ≥ 0} is equivalent to {Z̄ai

t : t ≥ 0}, we have

E[Zai
t ([0, ai])] = E[Z̄ai

t ([0, ai])].
It then follows that almost surely

lim
k→∞Y

ai

k (t, [0, ai]) = Z̄
ai
t ([0, ai]).(5.10)

On the other hand, since Y
an

k (t) → Z̄
an
t , for any closed set C ⊂ [0, ai] we have

lim sup
k→∞

Y
ai

k (t,C) = lim
k→∞Y

an

k (t,C) ≤ Z̄
an
t (C) = Z̄

ai
t (C).(5.11)

By (5.10) and (5.11) we have Z
ai
t = limk→∞ Y

ai

k (t) = Z̄
ai
t . Then {Zai

t : t ≥ 0} and
{Z̄ai

t : t ≥ 0} are indistinguishable since both processes are càdlàg. �

Let M be the space of Radon measures on [0,∞) furnished with a metric com-
patible with the vague convergence. The result of Theorem 5.8 clearly implies
the convergence of {Yk(t) : t ≥ 0} in distribution on D([0,∞),M ) with the Sko-
rokhod topology. From Theorem 5.8 we can also derive the following generaliza-
tion of a result of Bertoin and Le Gall (2006) [see also Bertoin and Le Gall (2000)
for an earlier result].



856 D. A. DAWSON AND Z. LI

COROLLARY 5.9. Suppose that kbk → b, ηk → η weakly on [0, a] and
k2σ 2

k δ0(dz) + (z ∧ z2)mk(dz) converges weakly on [0,∞) to a finite mea-
sure σ 2δ0(dz) + (z ∧ z2)m(dz) as k → ∞. Let {0 ≤ a1 < · · · < an} be an
ordered set of constants. Then {(Yk(t, a1), . . . , Yk(t, an)) : t ≥ 0} converges to
{(Xt(a1), . . . ,Xt (an)) : t ≥ 0} in distribution on D([0,∞),R

n+).
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