CMC constant angle hypersurfaces in semi-riemannian space forms

Preliminaries

Given a vector field Z in a semi-riemannian manifold N, a hypersurface M have **constant angle** relative to Z if the $\langle Z/|Z|, \xi \rangle$ is a constant function on M. When N is a Riemannian manifold the above function is called the angle function and has a geometric interpretation. In a general semi-riemannian ambient, we are not defining an angle, just the concept of hypersurface of constant angle.

conformal vector field.

A vector field $Z \in \mathfrak{X}(N)$ is *closed conformal* if and only if there exist a differentiable function φ defined on N

$$\bar{\nabla}_Y Z = \varphi Y \tag{1}$$

for every $Y \in \mathfrak{X}(N)$. Examples:

- A parallel vector field
- A radial vector field in a semi-euclidean space
- Semi-riemannian space forms are plenty of closed conformal vector fields

Notation

Semi-riemannian space forms: \mathbb{R}^{n+1}_s , $\mathbb{S}^{n+1}_s(r)$ and $\mathbb{H}^{n+1}_{s}(r)$ by $\overline{\mathbb{M}}^{n+1}_{s}(c)$ where $c = 0, c = 1/r^2$ or $c = -1/r^2$ respectively. $\mathbb{S}_{s}^{n+1}(r) := \{ x \in \mathbb{R}_{s}^{n+2} \mid -x_{1}^{2} - \ldots - x_{s}^{2} + x_{s+1}^{2} + \ldots + x_{n+2}^{2} = r^{2} \}$ $\mathbb{H}_{s}^{n+1}(r) := \{ x \in \mathbb{R}_{s+1}^{n+2} | -x_{1}^{2} - \ldots - x_{s+1}^{2} + x_{s+2}^{2} + \ldots + x_{n+2}^{2} = -r^{2} \}$ ∇ is the Levi-Civita de $\overline{\mathbb{M}}_{s}^{n+1}(c)$. Z closed and conformal in $\overline{\mathbb{M}}_{s}^{n+1}(c)$. ξ is a unit vector field everywhere normal to M. $\epsilon_Z := \langle Z/|Z|, Z/|Z| \rangle$ We have the Gauss and Weingarten equations: $\overline{\nabla}_Y X = \nabla_Y X + \alpha(Y, X), \quad \overline{\nabla}_Y \xi = -A_{\xi} Y,$ $X, Y \in \mathfrak{X}(M)$ α is the second fundamental form of M A_{ξ} is the shape operator associated to ξ α and A_{ξ} $\langle \alpha(Y,X),\xi\rangle = \langle A_{\xi}Y,X\rangle.$ Let us define $Z^T, T \in \mathfrak{X}(M)$ by $Z^T = Z - \langle \xi, \xi \rangle \langle Z, \xi \rangle \xi$ and $T = \frac{Z^T}{|Z^T|}$.

Gabriel Ruiz-Hernández

Institute of Mathematics, National University of Mexico (UNAM)

Let M be a semi-Riemannian hypersurface isometrically immersed in $\overline{\mathbb{M}}_{s}^{n+1}(c)$ with CMC and let ξ a local unitary vector field orthogonal to M. If Z is a closed and conformal vector field on $\overline{\mathbb{M}}_{s}^{n+1}(c)$ with associated function φ , then

where α is the second fundamental form of the immersion and H is the mean curvature vector of M.

We will consider the case when Z is a closed and conformal vector field Z is a closed and $Let \ M \subset \overline{\mathbb{M}}_s^{n+1}(c)$ be a constant angle hypersurface with respect to a closed and conformal vector field Z with associated function φ . Then $A_{\xi}(Z^{\top}) = kZ^{\top}, \quad where \quad k = -\frac{\epsilon_Z \varphi \langle Z, \xi \rangle}{|Z|^2}.$ • Z^{\top} is a principal direction of M with principal curvature k. • The integral curves of $T = Z^{\top}/|Z^{\top}|$ are geodesics of M.

the direction Z^{\top} (i.e. $Z^{\top} \cdot H = 0$) if and only if $\langle \alpha, \alpha \rangle = 0$.

CMC + Constant Angle in a Semi-euclidean Space

Let M be a semi-Riemannian hypersurface immersed in a semi-Euclidean space with constant angle with respect to a parallel vector field Z. Let us assume that Z is not tangent to M. If M has constant mean curvature in the direction Z^{\top} then any of the two following conditions imply that M is an open part of a hyperplane:

• Either M is spacelike or A_{ξ} is diagonalizable. 2 The semi-Euclidean ambient is the Minkowski space, M is timelike and Z^T is timelike.

The case when Z is tangent

Let M be a CMC hypersurface isometrically immersed in $\overline{\mathbb{M}}_{s}^{n+1}(c)$. If Z is tangent to M then it has constant zero Gauss-Kronecker curvature and either M has zero mean curvature or

c = 0, i.e. $\overline{\mathbb{M}}_{s}^{n+1}(c)$ is a semi-Euclidean space \mathbb{R}_{s}^{n+1} . Moreover, the Ricci curvature of M in the direction Z^{\top} is given by $Ric(Z^{\top}, Z^{\top}) = (n-1)\langle Z^{\top}, Z^{\top}\rangle c.$ In particular, if dim M = 2 then either M is totally geodesic or c = 0.

SURFACES: Let M be a CMC semi-Riemannian surface in a three dimensional space form of nonvanishing curvature and with constant angle with respect to a closed and conformal Z. Then M is totally umbilical or totally geodesic when - $M \subset$ $\mathbb{S}_1^3(r)$ is spacelike, - $M \subset \mathbb{H}_1^3(r)$ is timelike, - Z and ξ have the same causality.

A Simons type formula

 $\triangle \langle Z, \xi \rangle + \langle \alpha, \alpha \rangle \langle Z, \xi \rangle + \varphi \langle H, \xi \rangle = 0,$

The shape operator of a constant angle hypersurface

Corollary

Let M be a semi-Riemannian hypersurface immersed in a semi-Euclidean space making a constant angle with respect to a parallel vector field Z. Then $Ric(Z^{\top}, Z^{\top}) = 0$ and the integral curves of Z^{\top} are straight line segments in the ambient, i.e. M is ruled. Moreover, if Z is not tangent to M then M has constant mean curvature in

Surfaces continued:

If the mean curvature of the surface is not $\pm 2/\sqrt{3}$ they are either totally umbilic or totally geodesic. In particular when the surface has zero mean curvature it is totally geodesic.

Surfaces are isoparametric

Let M be a CMC semi-Riemannian surface isometrically immersed in \mathbb{R}^3_s with constant angle with respect to a closed and conformal vector field Z. Then either

- $\bullet M$ is an open portion of a plane.
- $\circ M$ is an open portion of a quadric.

 $\mathbf{3}M$ is an open portion of a cylinder in direction Z over a curve with constant curvature in a plane orthogonal to Z.

This means that M is **isoparametric**.

[1]	D. CM
[2]	spa Sub D. A a me
[3]	Ark D. <i>Co</i> Bul

These results are in [1] and were in collaboration with Dr. Didier Solis and Dr Matias Navarro from University of Yucatan México.

(2)

References

Solis, M. Navarro G. Ruiz, AC constant angle hypersurfaces in semi-riemannian ace forms. bmitted. Fetcu, classification result for helix surfaces with parallel ean curvature in product spaces k. Mat. **53** (2), 249-258 (2015) Chen, G. Chen, H. Chen and F. Dillen, point angle surfaces in $\mathbb{S}^3 \times \mathbb{R}$, II. Belg. Math. Soc. Simon Stevin 19, 289-304 (2012).