Teoría de las Gráficas II

Quinta tarea

Se entrega el viernes 16 de abril. Todos los ejercicios bien justificados.

- 1. Describe todas las gráficas con $\chi'(G) \leq 2$.
- 2. ¿Las siguientes ecuaciones son verdaderas?

$$\chi(G) = \chi'(L(G)), \qquad \chi'(G) = \chi(L(G)).$$

- 3. Muestra que $\chi'(K_{m,n}) = \Delta(K_{m,n})$ exhibiendo una coloración apropiada.
- 4. Considera G una gráfica que no sea un ciclo dirigido de longitud impar. Prueba que $\chi'(G) = \Delta(G)$ si todos los ciclos de G tienen la misma paridad.
- 5. Prueba que $\chi'(G) = \Delta(G) + 1$ para gráficas regulares de orden impar y con al menos una arista.
- 6. Una gráfica se dice *isocromática* si $\chi(G) = \chi'(G)$. Encuentra todas las gráficas isocromáticas entre las gráficas completas y las bipartitas.
- 7. Encuentra una gráfica cúbica G de orden mínimo con $\chi'(G) = 4$.
- 8. Diremos que una gráfica G es de clase 1 si $\chi'(G) = \Delta(G)$ y de clase 2 si $\chi'(G) = \Delta(G) + 1$. Una gráfica es χ' -crítica si es conexa, es de clase 2 y al borrar cualquier arista disminuye su índice cromático.
 - (a) Construye una gráfica χ' -crítica G de orden cinco con $\Delta(G)=3$.
 - (b) ¿Para qué valores de n se tiene que K_n es χ' -crítica?
 - (c) Prueba que no existe gráficas χ' -críticas de orden cuatro o seis con $\Delta(G)=3$.
- 9. Considera una gráfica G con 2n+1 vértices y más de $n\Delta(G)$ aristas. Entonces $\chi'(G)=\Delta+1$.
- 10. Muestra que toda gráfica cúbica hamiltoniana tiene índice cromático tres.
- 11. Considera $G := C[\overline{K_2}]$.
 - (a) Si M y M' son dos apareamientos perfectos distintos de G, muestra que existe un automorfismo que se lleva a uno en el otro.
 - (b) Deduce que $\chi'(G) = 4$.
 - (c) Más aún, deduce que G no contiene a Petersen.
- 12. Considera G una gráfica de tamaño m y α' el número de independencia en aristas. Si $m>\Delta(G)\alpha'(G)$ entonces G es de clase 2.