Teoría de las Gráficas II

Octava tarea

Proposition 1. Considera D una digráfica cuasitransitiva. Supón que $P = (x_1, x_2, ..., x_k)$ es una (x_1, x_k) -trayectoria minimal. Entonces la subdigráfica inducida por V(P) es semicompleta $y x_j \to x_1$ para todo $2 \le i + 1 < j \le k$, excepto para k = 4, caso en el que la flecha entre x_1 y x_k puede no existir.

Corolario 1. Si una digráfica cuasitransitiva D posee una (x, y)-trayectoria pero x no domina y, entonces $y \to x$ ó existen vértices u, v en $V(D) \setminus \{x, y\}$ tales que $x \to u \to v \to y$ $y \to u \to y \to x$.

Lema 1. Supón que A y B son componentes fuertemente conexas distintas de una digráfica cuasitransitiva D con al menos una flecha de A hacia B. Entonces $A \mapsto B$.

- 1. Prueba que todo torneo de orden $n \ge 2k + 2$ posee un vértice de exgrado al menos k+1.
- 2. Prueba que todo torneo fuertemente conexo de orden n posee ciclos de longitud $3, 4, \ldots, n-1, n$.
- 3. Prueba que si un torneo tiene al menos un ciclo entonces tiene al menos dos trayectorias hamiltonianas.

4.

Lema 2. Considera D una digráfica cuasitransitiva fuertemente conexa con al menos dos vértices. Entonces se tiene lo siguiente:

- (a) $\overline{UG(D)}$ es disconexa y
- (b) si S y S' son dos subdigráficas de D tales que $\overline{UG(S)}$ y $\overline{UG(S')}$ son componentes conexas distintas de $\overline{UG(D)}$ entonces $S\mapsto S'$, $S'\mapsto S$ o se tienen que tanto $S\to S'$ y $S'\to S$, en cuyo caso |V(S)|=|V(S')|=1.

Prueba primero el inciso (b).

Para el inciso (a), hazlo por inducción. Considera un vértice z en D, hay dos casos posibles: D-z no es fuertemente conexa o D-z sí es fuertemente conexa. Para el primer caso puedes pensar en las componentes fuertemente conexas de D-z, ¿qué flechas hay entre las componentes fuertemente conexa iniciales y finales de D-z y z? Lo anterior y el Lema 1 implican que si X es una componente fuertemente conexa inicial de D-z y Y es final entonces $X\mapsto Y$. ¿Cómo son las componentes fuertemente conexas no iniciales ni terminales de D-z con respecto a las iniciales y a las terminales? Deduce que z es adyacente a todo vértice de $V(D)\setminus z$ y lo

que querías probar. Si D-z es fuertemente conexa entonces argumenta por que existe una flecha $z\to w$ de z a D-z. Usa la hipótesis inductiva sobre D-z. Argumenta porque puedes escoger subdigráficas S y S' de D tales que $w\in S$ y $S\mapsto S'$. Finalmente prueba que z es completamente adyacente a S' y concluye.

5.

Teorema 1. Considera D una digráfica cuasitransitiva.

- (a) Si D no es fuertemente conexa entonces existen una gráfica transitiva T con vértice $\{u_1, u_2, \ldots, u_t\}$ y digráficas cuasitransitivas fuertemente conexas H_1, H_2, \ldots, H_t tales que $D = T[H_1, H_2, \ldots, H_t]$. donde H_i se substituye por u_i para $i = 1, 2, \ldots, t$.
- (b) Si D es fuertemente conexa entonces existen una digráfica semicompleta S con vértices $\{v_1, v_2, \ldots, v_s\}$ y digráficas cuasitransitivas Q_1, Q_2, \ldots, Q_s tales que Q_i es un vértice o no es fuertemente conexa y $D = S[Q_1, Q_2, \ldots, Q_s]$, donde Q_i se substuye por v_i , para $i = 1, 2, \ldots, s$.

Para el primer inciso, basta considerar el Lema 1. Para el segundo, el Lema 2.