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A kernel N of a digraph D is an independent set of vertices of DD such that for every
w = VIDY—N there exists an arc from w o N, If everv induced subdigraph of 12 has a kernel.
D is said 1o be an R-digraph. Minimal non-R-digraphs are called R™-digraphs. In this paper
some structural results concerning R -digraphs and sufficient conditions for a digraph to be an
R-digraph are presented. In particular, it is proved that everv vertex {resp. arc) in an
R -digraph is contained in an odd directed cycle not containing special pseudodiagonals. It is
also proved that any digraph in which every odd directed cvcle has two pseudodiagonals with
consecutive terminai endpoints 1s an R-digraph. Previous results of other authors { Richardson,
Meyniel, Duchet, and others) are generalized.

1. Introduction

For general concepts we refer the reader to [1].

Let D be a digraph; V(D) and F(D) (or FD) will denote the set of vertices and
arcs of D respectively. Often we shall write u,u, instead of (u,, u-). Let S,, S, be
subsets of V(D). The arc u,u, of D will be called an S;S,-arc whenever u; s S,
and u,e8,. A directed S,;S--path is any wu,u,-directed path with u, =S, and
up€S,, D[S,] will denote the subdigraph of D induced by S, and D[S,, S-] the
subdigraph of D whose vertex-set is S, US, and whose arcs are the S| S,-arcs of
D. The length of a path P is denoted by [(P).

Definition. A set 1< V(D) is independent if F(D[I]) = 0.
A kemel N of D is an independent set of vertices such that for each
z¢ V(D)— N there exists a zN-arc in D. iy

The concept of kernel was introduced by Von Neumann and Morgenstern [6] in
the context of Game Theory. They also proved that any finite acyclic digraph has
a (unique) kernel. The problem of the existence of a kernel in a given digraph has
been studied by several authors, in particular by Richardson [7-9], Neumann-
Lara [5] and recently by Duchet and Meyniel [2,3]. A well-known result of
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Richardson states that any digraph which~does not contain directed cycles of odd
length has a kernal. A short proof of this result was obtained in [5] (see also [1, p.
311]) by introducing the concepts of semikernel and R-digraphs.

Definition. A semikernel S of D is an independent set of vertices such that for
very z = V(D) — S for which there exists a Sz-arc, there also exists a z§S-arc: D is
an R-digraph iff every non-empty induced subdigraph of D has a non-empty
semikernel. We need the following results included in [5].

Lemma A. Let S be a semikernel of D, B ={v = V(D)—S |3 vS-arcs in D}, and
S" a semikernel (resp. kemel) of D[BY. Then SUS’ is a semikernel (resp. kernel)
of D.

Theorem 1.1. D is an R-digraph if and only if every induced subdigraph of D has

a kernel.

Thus an R-digraph is just a kernel-perfect graph in the terminology of Duchet
and Meyniel [3]. We say that D is an R"-digraph if D does not have a kernel but
every proper induced subdigraph of D does have at least one (R™-digraphs are
called kernel-perfect-critical graphs by Duchet and Meyniel [3]).

In the present work we study some general sufficient conditions for a digraph to
be an R-digraph and some structural properties of R™-digraphs. To this end we
introduce in Section 2 the concepts of strong semikernel of a digraph D modulo a
subset of V(D), and K-normality.

Finally we give some more notation.

We write F(S,) (resp. F*(S,)) instead of FD[V(D), S,] (resp. FD[S,, V(D))
and F,, F; for F ({u}), F ({u}) resp. If D, is a subdigraph (resp. induced
subdigraph) of D, we write D,< D (resp. Dy<=™D). An arc uv e F(D) 1s called a
pseudodiagonal of Dy< D whenever u ve V(Dy) and wvé F(D,). If C=
(ug, Uy, . .., Wy, uy) is a directed cycle, we put

Co,={w | i=0 (mod 2): i# 0}, Ci,={w li=1(mod?2)}.

Uy

For instance if C = (uy, u,, us, uy), € ={u,}, L o={u, ).
For a path P=(u,, ..., u,) we put

P°={u | i=0(mod2), P'={u;|i=1 (mod 2)}.

2. Semikernels modulo R and K-normal directed paths

In this section we introduce the concepts of semikernel and strong semikernel
of a digraph modulo a set of vertices and state Theorem 2.1 which is the main tool
used in this paper. Theorems 2.2 and 2.3 are useful variations of Theorem 2.1.
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Definition 2.1. Let D be a digraph; “I, R< V(D) and consider the following

i

conditions: .
i) TN R 1s an independent set.
(1) p

(i) D does not contain (IN R)-arcs.

(i If uwe F(D), u=INRS and ve [°*NRE, then there exists we I such that
pw € F{D).

If conditions (i) and (ii) are satisfied, I will be called a semikernel of D modulo
R.

If condition (i'), which is stronger than (i), and (ii) are satisfied, [ will be called a
srrong semikernel of D modulo R.

Definition 2.2. Suppose that K< V(D). A directed path T={w,, w,, ..., w, ) in
D will be called K-normal whenever T satisfies:

() VIMNK={w;[1<sj=n, jodd}. or VITINK ={w, 0<j=<n, | evenl.

(i) If s<j<n, w;e K°, w,eK then wyw,¢ F(D).

Remark 2.1. Notice that any K-normal directed path passes by K and K¢

alternately.

Theorem 2.1. If I,, I, R< V(D) are such that I,< I, [, R =0 and satisfy

(a) I is a strong semikernel of D modulo R,

(b) every I-normal, I,R-directed path passes by U =1 "(I,)N R,
then S ={w =1 | there exists an I-normal, Iw-directed path not passing by U} is a
semikernel of D which satisfies [,=S <IN R".

Proof. By (a), U< I*'N R® and I, is an independent set. Therefore I, < S. By (b),
ScR® and so ScINR® Using (a) again, we conclude that D contains no
Sl-arcs. Therefore, S is an independent set. Suppose that S is not a semikernel of
D. Then there exists s 8 and we V(D) -8 such that sw= F(D) and D contains
no wS-arc. Let (wy, wy, ..., W), W, =s, wyel,, be an I-normal, I,s-directed
path not passing by U. Since w < I, the directed path (wg, wy, ..., w,, w) is also
I-normal. Then wé£ R, since otherwise (b) would be contradicted. Therefore
wel*NR" By (a), there exists wze F(D) with z<l The directed path
(Wo, Wi, ..., Wy, W, 2) is I-normal and does not pass by U. Therefore z& S and
wz 18 a wS-arc in D, which contradicts the assumption that D contains no

+ wS-arc. We conclude that S is a semikernel of D, (see Fig. 1).

Theorems 2.2 and 2.3 are useful variations of Theorem 2.1.

Th(_%orem 2.2. Suppose that I, I, R < V(D) satisfy the following conditions:
(1) I'is a strong semikermel of D modulo R.
(i) D contains no semikernel S such that [,=S< [N R,

Then, there exists a direct I-normal, I,R-directed path T = (t,,, . ... t,), not passing
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Fia. 1.

by I' (I;) N R* which satisfies the following properties:
(1) T has no {(V(T)—1t,) T -pseudodiagonals.
(2) (T) is even iff t, 1.

Proof. By Theorem 2.1, there exists an I-normal, I,R-directed path T not
passing by I""(I,) N R*. Choose T so that [(T) takes the minimum possible value.
Clearly T satisfies

(1a) t; £ F(D) for all 0<<2i<j<n, j#2i+1,

(2a) 1yt € F(D) for all 0<2i+1<2j<n, j#i+]1,
and by using the I-normality of T we conclude that T satisfies (1) and (2).

A special case of Theorem 2.2 is the following result.

Theorem 2.3. Let I, I, R< V(D) be such that 9 # I,= I, I,NR =@. Suppose that
conditions (i), (i) and (iii) are satisfied:
(i) Iis a strong semikemel of D modulo R.
(i) D has no kemnel.
(i) D—(I,U ' (Iy) is an R-digraph.
Then there exists a direct I-normal, I,R-directed path T not passing by I' (I,) N R*,
which satisfies conditions (1) and (2) of Theorem 2.2.

Proof. If Theorem 2.3 were false, D would contain a semikernel S such that
B #I,=S<INR°" By (iii) and Lemma A, D would contain a kernel contradicting

().

3. Structural results on kernel theory

In this section we apply the results of Section 2.
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Theorem 3.1. Let D be a digraph, ue (D) and N, a kernel of D—u. Suppose
that conditions (i) and (ii) are satisfied:
(i) D—v is an R-digraph.

(i) D has no kernel.
Then there exists an N,-normal. vu-directed path T without (V(T)—wu)T'-

pgeudaciia.lgwmls (where [ is the residue of I(T)+ 1 modulo 2).

of. Take I =N,, R ={u} and define I, as follows: If v N, I, ={v}: otherwise
Pro

[y=I {8 PN Since the conditions of Theorem 2.3 are fulfilled, Theorem 3.1

follows.

Corollary 3.1. Let f = uv be an arc of D. Suppose that D has no kerel and satisfies:
(i) D—u has no kemnel.
(iiy D —v is an R-digraph.
Then there exists a directed cycle C, of odd length passing by f and having no
v(C)CO-pseudodiagonals. (In particular C, is an independent set.)

Theorem 3.2. If §# A< F] and I,={z = V(D) | uz € A} satisfy:

(i) D—A has a kernel but D— A" has no kernel for A’ A,

(i) D—(I,UI (1) is an R-digraph,
then there exist f:A and a directed cycle C of odd length passing bv f, not
intersecting I’ (Iy) —{u} and without V(C)YC}U{u})-pseudodiagonals.

Proof. By (1) D has no kernel. Let I be a kernel of D—A and R ={u}. Clearly I
is a strong semikernel of D modulo R and [,U{u}< . By Theorem 2.3 there
exists a direct [-normal, yu-directed path T with t,= [ not passing by I' (I,) — u.
Adding the arc ut, to T we get a directed cycle C with the required properties.

Corollary 3.2. Let f=wuve F(D). If D does not have a kernel and D—f is an
R-digraph, then there exists a directed cycle C of odd length containing f and
without V(C)(C,\U{u})-pseudodiagonals.

Corollary 3.3. Let uc V(D). If D does not have a kemel and D—u is an
R-digraph, then there exists a directed cycle C of odd length containing u and
without V(C)(CLU{u})-pseudodiagonals.

Proof. Since {u} is a semikernel of D—F, and D—u is an R-diagraph, by
Lemma A, D— F_ has a kernel N, containing u. Choose N, so that |[F(D[N,])N
Fi| takes the minimum possible value, take A =F;NFD[N,] and apply
Theorem 3.2 to conclude the proof.

Theorem 3.3. If 0 # A = F, has the following properties:
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(i) D—A has a kernel, -
(i) D— A" has nb kemel for A'S A,
(iit) D— (T (u)U{u}) is an R-digraph,
then there exist f=wueA and a directed cycle C of odd length passing by f, not
intersecting T' (x)—{u, w} and withour V(C)(C,, U{w})-pseudodiagonals.

Proof. Let [ be a kernel of D— A and take Iy={u} and R={ze V(D) |zuc A}
By (ii), RU{ul=I By Theorem 2.3. there exists a direct [-normal, uw-directed
™

path T not passing by I''(u) N R", and such that we R. Adding wu to T we
obtain a cycle which satisfies the required properties.

Corollary 3.4. Let u he a vertex of D. If D has no kemel and D—u is an
R-digraph, then there exists f=vuc F(D) and a directed cycle C of odd length
passing by f and having no V(CXCU{v})-pseudodiagonals.

Prooi. Let N, be a kernel of D—u such that [[" (@) N N, | takes the minimum
possible value. Take A = F, NF(D[N,]) and apply Theorem 3.3.

4. R™-digraphs structure

The results of this section are corollaries of those of Section 3.

Theorem 4.1. Let D be an R -digraph and u,ve V(D). Then there exists a
vu-directed path T=(wg, Wi, ..., W,), Wo=0, wW,=1U, having no V(T)T'-
pseudodiagonals (where i is the residue of n+1 modulo 2).

Proof. Tt follows directly from Theorem 3.1.
Corollary 4.1 (Duchet [2]). R -digraphs are strongly connected.

Theorem 4.2. Let D be an R -digraph, and f=uv s F(D). Then there exists a
directed cycle C of odd length containing f and having no V(C)CY-
pseudodiagonals. (In particular C,, is an independent set.)

Proof. It follows directly from Corollary 3.1.

Corollary 4.2. Let D be an R™-digraph and u e V(D). Then there exists a directed
cycle C of odd length passing by u which contains neither V(C)C;-pseudodiagonals
nor uC-pseudodiagonals.

Theorem 4.3. Ler D be an R -digraph, u< V(D). Then there exists a directed
cvcle C of odd length passing by u and having no V(C)(CU{u})-pseudodiagonals.
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proof. It follows directly from Corollary-3.3

Theorem 4.4. Let D. be an R -digraph and u< V(D). Then for some f=vue
F(D) there exists a directed cycle of odd length passing by f and having no
o g ViONCLU{t})-pseudodiagonals.

N proof. [t follows directly from Corollary 3.4,

Theorem 4.5. Let D be gn R -digraph which is not a directed cycle of odd length.
ye V(D). Then there exist f € F,, and "€ F such that each of them belongs to at

least two directed cycles of odd length.

Prooi. By Theorem .4 there exists a directed cycle C of odd length passing by
some f'=vu e F, and containing no V(C)(C} U{v}H-pseudodiagonals. Let C’ be a
cvele of odd length passing by f and without V(C")C. -pseudodiagonals
("Thcorem 4.2), C'# C, for otherwise C would be an induced subdigraph of D. In
a similar way and applying Theorems 4.2 and 4.3 we prove the existence of f".

Corollary 4.3. Suppose that D is an R -digraph which is not a directed cycle of
odd length and ue V(D). Then u belongs to at least Ap(u)+ 1 directed cycles of
odd length (Ap{w) =max{{"(w)], | (w)]}).

Proof. It follows directly from Theorems 4.2 and 4.3,

5. R-digraphs

In this section we study some sufficient conditions for a digraph to be an
R-digraph. Lemma 5.1 gives a general scheme for results and proofs included in

this section.

5.1. General results

Lemma 5.1. If P,=P(D)={Dy=*D|3H: H is an R -digraph and
Dy,=*H<=*D}, then D is an R-digraph iff every induced subdigraph D, of D not
containing induced subdigraphs in P, is an R-digraph.

Proof. If D were not an R-digraph, it would contain an induced R™-subdigraph
H. Since H contains no induced subdigraph belonging to P,, H is an R-digraph.
This yields a contradiction. The converse is obvious.

Theorem 5.1. Let D be a digraph and T < V(D) such that D — T is an R-digraph.
Furthermore suppose that for every ue T either (a) or (b) is satisfied.
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(a) Ewuvery directed cycle C passing by u hds at least one V(C)C°-pseudodiagonal.
(b) Every directed cycle C of odd length passing by u has at least one
V(CHC,U{u})-pseudodiagonal. Then D is an R-digraph. '

Proef. If D is not an R-digraph. D contains an induced R™-subdigraph H. Since
D —T is an R-digraph, V(H)N T#®. Take any u< V(H)NT. By Theorems 4.2
and 4.3 neither (a) nor (b) are satisfied in H and consequently in D. The

hypothesis is thus contradicted.

Theorem 3.2. [et D be a digraph and A = F(D). Suppose that every f=ur = A
satisfies: (1) Each directed cycle C of odd length passing by f has some V(C)C,.-
“pseudodiagonal

Then D is an R-digraph if and only if every induced subdigraph H of D such that
F(HYN A =0 is an R-digraph.

Proof. If D is not an R-digraph, D contains an induced R -subdigraph . It
follows by hypothesis that F(H)N A #@. Take fe F(H)N A and apply Theorem
4.2. Condition (i) is thus contradicted. The converse 1s obvious.

Let C be a directed cycle of odd length and p(C)={we V(C)|IV(C)w-
pseudodiagonal of C}. By definition

C'o = U cl, C‘”:p(C}U U C{:

vepl(C) uspl(C}

Corollary 5.1 (to Theorem 3.1). Ler D be a digraph and T < V(D). Suppose that
D - T is an R-digraph. If every directed cycle C of odd length such that V(C)N
T#9 satisfies C=C'", then D is an R-digraph.

Proof. If C is a directed cycle in D of odd length such that C=C" and
ue V(C), then C has at least one V(C)(C,U{u})-pseudodiagonal.

Corollary 5.2 (to Theorem 5.2). Let D be a digraph and A = F(D). Suppose that
every directed cycle C of odd length such that F(C)N A # @ satisfies C= C'®. Then
D is an R-digraph if and only if every induced subdigraph H of D such that
F(H)NA =0 is an R-digraph.

Proof. If C is a directed cycle in D of odd length such that C=C'"" and
f=uve F(C), C has at least one V(C)Cl-pseudodiagonal.

Remark 5.1. Let C=(uy, u;, ..., Us,, Uy) be a directed cycele in D of odd length,

4

T
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-

:{uh,'. a7 uik}; Ur§~11<12< . '<ik$2n- Then
(i) V(C)=C™ if and only if
(i.1) there exists j, | <j<k such that j.,=i+1, or
(1.2) there exist [, I, 1 sj <1<k, such that both, the 1, u, _-directed path and the
u;,lii,_td”“““i path contained in C, have odd length (_addm[ion is taken mod k.
i) V(O = C" if and onlyv if (1.2},

2. Applications

vh

1

proposition L. Let D be a digraph and T< V(D). Suppose that DT is an
R-digraph and that for every directed cycle C =(ug. ty, . ... Us,, Uy,) in D of odd
# Jength such that VICYNT# 0 there exists i such that w, u; ., = p(C). Then D is an

R-digraph.
Proof. Notice that C=C"" and apply Corollary 5.1.
This proposition implies the following result obtained by Duchet [2].

(Duchet) If every directed cycle C = (uy, u,, .. .. Us,s Ug) in D of odd length has two
diagonals of the form (uy, uy ), (4, Uy .3), then D has a kernel.

The following conjecture due to Meyniel [2], was disproved by Galeana-
Sanchez [4].

Conjecture (Meyniel [2]). If every directed cycle of odd length in D has at least
two pseudodiagonals, D 1s an R-digraph.

Proposition 2. D is an R-digraph if and only if D—V,_, (D) is an R-digraph,
where V, . (D) denotes the set of vertices of D which do not belong to a directed

cycle of odd length.
Proof. Apply Theorem 5.1 and Lemma S5.1.

Proposition 3. If every directed cycle C in D, of odd length, such that for some
wve F(C), vug F(D), has a pseudodiagonal f. mch that for each directed cycle v of
odd length containing f., v =+v'"", then D is an R digraph.

Proof. Let H be an R™-subdigraph of D and C any directed cycle of odd length
in H. If C were not symmetric, H would contain an f. = uv which contradicts
Theorem 4.2. Then every directed cycle of odd length is symmetric and C'"' = C.
By Corollary 5.1; H is an R-digraph which also vields a contradiction.

This generalizes the following result obtained by Romanowicz, Zbigniew [10].
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Fig. 2.

(Romanowicz, Zbigniew) If every directed cycle C in D of odd length containing an
asymnetric arc, contains an arc uv such that vu e F(D) and vu is contained in no
directed cycle of odd length, then D has a kernel.

Proposition 4. Denote by F,, (D) the set of arcs of D contained in no directed
cvcle of odd length. Then D is an R-digraph if and only if every induced
subdigraph H of D such that F(H)NF,,(D) =0 is an R-digraph. In particular, D
is an R-digraph whenever D—F,,(D) is an R-digraph. (The converse of this
proposition is false: Consider the digraph of Fig. il

Proposition 5. Let D be a digraph without induced directed cycles of odd length
and T = V(D). Suppose that every uc T belongs to ar most Ap(u) directed cycles of
odd length. Then D is an R-digraph if and only if D—T is an R-digraph.

Proof. Apply Lemma 5.1 and Corollary 4.3.
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