Discrete Mathematics 87 (1991) 271-280 171
North-Holland

Orientations of graphs in kernel
theory

H. Galeana-Sdanchez and V. Neumann-Lara
{nsdituio de Muwemadcas. UN A M., Circuito Exterior, Cd. Universitaria, Mévico 4310, D.F.,
Mexico

Received 2 December 1987
Revised 19 December 1988

Abstract

Galeana-Sdnchez, H. and V. Neumann-Lara, Onentations of graphs in kernel theory, Discrete
Mathemarics 37 (1991) 271-280.

In this paper we investigate structural properties of a certain class of graphs (Wi-free graphs)
which are reievant in the study of kernel theory, Ii-free graphs satisty the strong perfect graph
conjecture of Berge. We investigate orientations of Wi-free grapbs and other classes of graphs
which produce kernel-perfect digraphs,

0. Introduction

We consider finite (except in Theorem 1.1), loopless graphs, without multiple
edges. Undefined terms are in Berge [1].

If B is a class of graphs, a graph G is said to be a -free graph whenever G has
no induced subgraph isomorphic to a member of 8. If 8 is a singular set, say
B={H}, we will write H-free graphs instead of {H}-free graphs. In what
follows, we will denote by It the set {M,, M,, M;} where M,, M,, M, are the
graphs of Fig. 1.

The chromatic number x of a graph ( is the minimum number of colors
necessary to color the vertices of  such that no two adjacent vertices are colored
alike. The clique number w of a graph G is the maximum aumber of vertices in a
complete subgraph G. A graph G is said to be perfect if y(H) = w(H) for every
induced subgraph H of GG. Berge’s strong perfect-graph conjecture states that G is
perfect iff G does not contain C,,,, and Cs,.,, #n =2 as an induced subgraph.

It G is a graph; an orientation G of G is a digraph obtained from G by
orientation of each edge of (G in at least one of the two possible directions.

A kernel of a digraph G =(X, U) is a subset KX such that: K is
independent (K N I'z(K) =8) and K is absorbing (K U I'Z(K) = X). A semikernel
S of G is an independent set of vertices such that for every z ¢ (V(G) — S) for
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which there exists an Sz-arc, there also exists a zS-arc; G is an R-digraph iff every
non-empty induced subdigraph of G has a non-empty semikernel. It was proved
in [15] that G is an R-digraph if and only if every induced subdigraph of G has a
kernel (i.e., D is a kernel-perfect digraph). We say that G is an R -digraph if G
does not have a kernel but every proper induced subdigraph of G does have at
least one (R -digraphs are also called kernel-perfect critical digraphs (see for
instance [4])). Thus every complete subdigraph % of an R-digraph must have an
absorbing vertex (i.e., a successor of all other vertices of 4).

A digraph G is called a normal orientation of G if every complete subgraph of
G possesses an absorbing vertex. R-digraphs and R -digraphs have been
investigated by several authors, namely Von Neumann and Morgenstern [16],
Richardson [17-18] Duchet and Meyniel [4-7] and Galeana-Sdnchez and
Neumann-Lara [9-13, 15].

We end this section with some definitions and previous results:

If €= (u=ugy, uy,...,u,, uy)is a directed cycle, we put

o= {u; | i=0mod2;i+#0}, 6., = {w; |i=1mod2}.
An arc (z, w) is a pseudodiagonal of € if z, we V(%) and (z, w) e (A(D) —
A(%)). :

We will need the following well-known result due to Richardson (see [1, p.

311)).

Theorem 0.1 (Richardson’s Theorem). Any digraph which does not contain
directed cycles of odd length has a kernel.

In this paper we will show that Ii-free graphs satisfy the following conjecture.

Berge—Duchet Conjecture (Berge and Duchet [2]). A graph G is perfect if and
only if any normal orientation of G is kernel-perfect.

1. M-free graphs

In this section we study some structural properties of Yi-free graphs, in
particular we show that I-free finite graphs satisty the strong perfect graph
conjecture of Berge.
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Definition 1.1. For each meN let U= {uy, ..., Up_1}, W={wy, ..., w,_}
two disjoint sets of cardinality m. We will denote by §,, the digraph defined as
follows:

V(S.)=UUW, S§,[Ul=K,, S.[W]|=K,

and w; adjs u; if and only if j=<i Similarly, if U= {ug, uy,...} and W=
{wy, Wy, ...} are two disjoint countable sets (of type w), we will denote by S, the
digraph defined as follows.

V(S,)=UUW
and

. x=u,y=u fori#j, or
xadjg y < .
’ x=w,y=u; forj<i

Theorem 1.1. Let G be a ( possibly infinite) Wi-free graph, QO a maximal clique of
G with |V(Q)|=3 and I a maximal independent set of G. If QN 1=49, then G
contains an induced subgraph isomorphic to S, with {uy, u,,...}<Q and
{wy, wy, ...} L

Proof. First of all we shall prove that G contains an induced subgraph isomorphic
to S,, with {ug, u,, u-} = Q and {w,, wy, wo,} = /. Since QN/—@ and [ is a
maximal independent set; there exists u,€ O and w, € [ such that ugw, € £(G).
Since Q is a maximal clique, there exists u; € Q such that wyu, ¢ E(G); u, ¢ { and
I is a maximal independent set. Hence there exists w; € / such that u;w, € E(G).

Now we analyze some possible cases.

Case 1: ugw, € E(G).

In this case, there exists u, € Q such that, u,w, ¢ A(G). Now we need to
analyze two subcases.

1(i) u,wy€e E(G). In this case

G[{u[]: Uy, Uz, Wy, W]}] = 1M3,

which is impossible.
1(i1) u,w, ¢ E(G). Since [ is maximal independent set, it follows that there

exists w, € [ such that wou, € E(G).
If Wa il é E(G) and Whll, $ E(G),

G[{ug, uy, s, wi, wo} | =M,.

If woug € E(G) and wou, ¢ E(G), it follows that
G{ug, uy, us, w, wo}| =M.

If wouy ¢ E(G) and wyu, € E(G), necessarily

Gl{ug, Uy, Uz, wy, wot| =M,
or
G[{“O, Uy, Uz, Wy, W?.}] E‘{M}
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Therefore w,u, € £(G) and w-u,; € E(G) and hence
G[{“’()J ul: s, H‘}U.! wl" W?_}] ;53‘

Case 2: ugw, ¢ E(G).
Since |V(Q)| =3, there exists u, € (Q — {u, 4;}). Now we analyze some cases.
2(i) In case u,w, € E(G) and u,w, € £(G), we have

Gl {uy, uy, tz, wy, w } =M.

2(ii) In case u-wy e E(G) and u,w; € £(G),
Gl{uwy, uy, us, wy, wi}] = M.

2(iii) In case u,wy ¢ E(G) and u,w, € £(G),
Gl{ug, uy, ta, Wy, wi}]= M.

2(iv) In case u,wy ¢ E(G) and u,w, ¢ £(G), since [ is a maximal stable set,
there exists w, € I such that w-u, € E(G).
If Waily ¢ E(G) and WhHhily ¢ E(G),

Gl{ug, uy, us, wo, wy, wo}| =M.
If wouy € E(G) and wou, ¢ E(G),
Gl{uo, uy, Uz, wa, wi}|=M,.
If wou, ¢ E(G) and wyu, € E(G),
Gl{ug, Uy, U, wy, wo}| = M,.

Finally, suppose wyu, € E(G) and wyu,€ E(G) and take upo=u,, u,=u,,
wy=w, and w; = w,. Arguing as in Case 1, we conclude that G contains S; as an
induced subgraph with {u,, u,, u,} < Q and {w,, w;, wo} < I. Now we proceed by
induction on r to prove that G contains S, as an induced subgraph with

{ug, uy, ..., U1} = Q and {wy, wy, ..., w,_} = I for each »r = 3. We know that
G contains S;. Assume that we have proved that G contains §, as an induced
subgraph with {ug, u, ..., u,_1} =@, {wo, w1, ..., w,_} =1, and where u;w; €

E(S,) if and only if i <j.

We will prove that G contains an extension S, ., of S, as an induced subgraph,
with {ug, u, ..., u}=Q and {wy, w,, ..., w,} = Since Q is a maximal clique
there exists u, € (Q — {ug, Uy, . .., u,_;}) such that u,w,_, ¢ E(G).

Observation 1. u,w; ¢ E(G) foreach i {0,1,...,r—2}.

Proof. Suppose the contrary and let

k=max{i{0,1,...,r—2}|wu, € E(G)}
then
U Wy, EE(G)) urwk+l¢E(G) and

G[{wk! Upy Up+15 Wirrs ur}] EIM}' O
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Since / is a maximal independent set and u, ¢/, there exists w, e (I —
two, wi, ..., W,_1}) such that u.w, € E(G).

Observation 2. w,u; € E(G) for each i {0,1,.. ., r—1}.

Proof. Suppose the contrary and let
t=max{ie{0,1,...,r—1}/wu; ¢ E(G))

we analyze two possible cases:
Case 1: >0,
If u,_,w, e E(G), then

Gl{tmr, ty, Uiy, W, Wr}] = M.
If u, \w, ¢ E(G), then
G[{ur—ly Uy, U1, W wr}]_:uMZ-

Case 2: t=0.
In this case

Gl{uy, uy, uz, wy, w,}| =M,. O

It follows from Observations 1 and 2 and from Definition 1.1. that

G[{u()) ul)) LR ur} U {W[], w‘lr LR wr}] E‘S‘r+‘i

with {ug, uy, ..., u}cQand {wy, w,, ..., w,} < I. Theorem 1.1 follows. [J
As a direct consequence of Theorem 1.1 we obtain the following corollary.

Corollary 1.1. Let G be a finite M-free graph. If Q is a maximal clique of G with
[V(Q)|=3 and I is a maximal stable set of G then Q NI + .

Theorem 1.2. Let G be a finite graph. The following statements are equivalent:
(1) G is an Di-free graph.
(i) For each induced subgraph H of G, if I, is a maximal independent set of H
and Qy, is a maximal clique of H with |V (Q)| = 3 then we have Qj N Iy #0.

Proof. This result is a direct consequence of Corollary 1.1 and the fact that each
M,, ie{1, 2, 3} of Fig. 1 has a maximal independent set /, and a maximal clique

14

Q;suchthat LN O, =98. O

Notice that the class of J-free graphs neither contains nor is contained in the

class of P,-free graphs.
The following result is proved by Corneil et al. [3].
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Theorem 1.3. Ler G be a graph with a point ser X. The following statements gre
equivalent:

(1) G is a Pi-free graph.

(2) For each induced subgraph H of G, if I, is a maximal independent set of H
and Q4 is a maximal clique of H then 1, N QO #0.

Theorem 14. If G is an Di-free graph then the following statements are
equivalent:

(1) G does not contain Consts Coner, n=2 as an induced subgraph.

(ii) For each non-bipartite induced subgraph H of G, if Iy is a maximal
independent set of H and Q,; a maximum clique of H then we have Qu N Ly 0.

Proof. (i) = (ii). Let G be an M-free graph which does not contain C,, ., as an
induced subgraph for each n>=2, H an induced subgraph of G, /,, a maxima]
stable set and Q4 a maximum clique of H. It follows from (1) that A contains a
triangle and since G is M-free it follows from Theorem 1.2 that OuNiy#40.

(i)=>(i). If G contains Coneq as an induced subgraph for some n =2, then
C,,.1 is an induced subgraph which contains a maximal stable set / and a
maximum clique Q such that QNI=6. If G contains C,,., as an induced
subgraph for some n>=2 then G contains Cs as an induced subgraph or G
contains M; as an induced subgraph. O

Corollary 1.2. M-free graphs satisfy the Strong Perfect Graph Conjecture.
Proof. It follows directly from property (ii) of Theorem 1.4. [J

Remark 1.1. Let :* =Py {Cons1|n=2). Then P*-free graphs are perfect as
a consequence of Corollary 1.2. The class of Jt*-free graphs does not contain nor
is contained in any of the following subclasses of perfect graphs: triangulated
graphs, cotriangulated graphs, comparability graphs, Co-comparability graphs.

For m =2 we will denote by N, the graph defined as follows:
VN ={z,2,...,2,}U 1 TR Nol{zi, ..., z,}]=K,,
Nal{xi, ..., x,}] is an independent set and x;z; € E(N,) iffi=j.

Theorem 1.5. Let G be a K¢ free graph with w(G)=2. The following statements
are equivalent:

(1) G does not contain Nuic) as an induced subgraph.

(i) For each maximal independent set I of G and each maximum cligue Q of G

we have O N [ #@.

Proof. For w(G)=2 Theorem 1.5 follows from Theorem 1.3. Suppose that
w(G) =3.
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(i)= (ii). Let G be a K,-¢ free graph, with @(G) =3 which does not contain
N, as an induced subgraph and suppose that there exists a maximal
independent set [ of G, and a maximum clique Q of G such that Q N/ =4.

Clearly each pont of Q is adjacent to at least one point of 7 and each point in /
is adjacent to at most one point of Q. It follows that G contains N,y as an
induced subgraph.

(ii) = (i) Let G be a graph which contains Vs, as an induced subgraph with

V(INu@Gy) =421 - -+ Zoy} YU {x, - 50 Xw(G) )
No@l{zs - - -5 Zoior} = Koy
Nuol{x1, - .-, Xy} | is an independent set and zx; € E(Ny ) 1t £ = .
Clearly {xi, ..., Xu)) is contained in a maximal independent set / of G and
Noonl{zts - -+ » Zwoy] is @ maximum clique of G which does not intersect /. [

2. Orientations of certain classes of graphs

In this section we obtain some results relating normal orientations of Wi-free
graphs and R-digraphs. In particular we prove that the class of Yi-free graphs
satisfy the Berge—Duchet Conjecture, also we consider orientations of K,-e free
graphs which result in kernel-perfect digraphs.

Theorem 2.1. Let G be an W-free graph. If there exists a normal orientation of G
which is an R -digraph, then G is a triangle free graph.

Proof. Let G be an IM-free graph which has a triangle and suppose that there
exists a normal orientation G of G which is an R -digraph. Consider Q a
maximum clique of G and u a source of Q in G and N, a kernel of (G — {u}). If
{u} UN, is an independent set it follows that {u} U N, is a kernel of G, so we can
assume that N, is a maximal independent set of G and it follows from Theorem
1.1 that Q NN, %0, (O —{u}) NN, #9 and so N, is a kernel of G. O

Theorem 2.2. Let G be an W-free graph and let G be a normal orientation of G. If
every triangle free induced subdigraph G, of G is an R-digraph then G is an
R-digraph.

Proof. Suppose that G is not an R-digraph and let H be an induced subdigraph
of G which is an R -digraph. By hypothesis the underlying graph H of H is
I-free and has a triangle which, by Theorem 2.1, is impossible. [

Remark 2.1. Maffray [8] has proved that a graph such that every normal
orientation is kernel-perfect neither contains C,, m::ar_(:},,+l for n =2 as an
induced subgraph.
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The next Theorem asserts that Wi-free graphs satisfy the Berge-Duchet
Conjecture.

Theorem 2.3. Let G be an M-free graph. G is a perfect graph iff every normal
orientation of G is kernel-perfect.

Proof. Let G be a perfect M-free graph, G a normal orientation of G and G, a
triangle-free induced subdigraph of G. Since G is a perfect graph, G, has a
bipartite underlying graph so G, is an R-digraph by Theorem 0.1 and by Theorem
2.2 we have that G is an R-digraph.

If every normal orientation of G is kernel perfect, then by Maffray’s [8] result
does not contain C,,., C,., for n>2. Then G is perfect by Corollary 1.2. [J

Theorem 2.4. Let G be a K¢ free graph with w(G)=3. If there exists a normal
orientation of G which is an R -digraph then G contains | w(G) 48 an induced

subgraph.

Proof. Let G be a K,-¢ free graph with w(G) =3 such that G does not contain
Nu(c) as an induced subgraph. Suppose that there exists a normal orientation G
of G which is an R-digraph. Let Q a maximum clique of G and u a source of Q
in G and N, a kernel of G — {u}. If {u} UN, is an independent set it follows that
{u} UN, is a kernel of G, so we can assume that N, 1s a maximal independent set
of G and it follows from Theorem 1.5 that ONN,#8, (Q—{u}))NN,#9 and so
N, is a kernel of G. O

Theorem 2.5, Let G be an M-free graph which does not contain an induced
subgraph isomorphic to H, to H, (Fig. 2). If G is a normal orientation of G such
that G does not contain induced odd directed cycles then G is an R-digraph.

Proof. We argue by induction on the number of vertices of G, |[V(G)|. The
proposition is obvious for graphs with at most three vertices. Assume that we
have proved Theorem 2.5 for graphs with at most p vertices and let G and G be
as in the hypothesis and G with p + 1 vertices.

H Ho

Fig. 2.
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By the inductive hypothesis we know that for each u V(G) we have G —u is
an R-digraph; so it suffices to prove that G has a kernel. Now we analyze two
possible cases:

Case 1: For each z e V(G), 85(z)< L

In this case G has no odd directed cycles and Theorem 0.1 implies that G is an
R-digraph.

Case 2: These exists u € G such that $5(1) > 1.

Again we consider two possible cases:

Case 2(a): G is a triangle free graph. Let u € V(G) such that d:(u) > 1, and let
N, be a kernel of G —u. If {u} UN, is an independent set or if there exists some
uN,-arc in G we have that {u} U N, is a kernel of G or N, is a kernel of G; so we
can assume that there exists n € N, such that (n, u)c A(G) and there is no
uN,-arc in G. By the choice of u we have

u, u, € V(G), uueA(G), uu,eA(G); ny, nsN,,
un e A(G) usny e A(G).
When n, = n, we have
Gl{u, n, u,, u,, ni}|=H,.
If ny # n, and u,n, € A(G),
G[{u, n, uy, uy, ny}]=H,
and if n, #n, and n,u, € A(G),
G[{n, u, u,, u,, n,}|=H,.
In the other case we have
G[{n, u, u,, u,, ny, ny}| = H,.

It follows that N, is a kernel of G.
Case 2(b): G has a triangle. Since for each u € G G — {u} is an R-digraph, if G
has no kernel then G is an R -digraph by Theorem 2.1 is impossible. So G has a

kernel. O
Corollary 2.1. Let G be an Wi-free graph which does not contain an induced

subgraph zsom()rphzc to H, or H,. If G is an orientation of G which is an
R -digraph then G=Chyp1, n=1.
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