Orientations of graphs in kernel theory

H. Galeana-Sánchez and V. Neumann-Lara

Instituto de Matemáticas, U.N.A.M., Circuito Exterior, Cd. Universitaria, México 04510, D.F., Mexico

Received 2 December 1987 Revised 19 December 1988

Abstract

Galeana-Sánchez, H. and V. Neumann-Lara, Orientations of graphs in kernel theory, Discrete Mathematics 87 (1991) 271-280.

In this paper we investigate structural properties of a certain class of graphs (W-free graphs) which are relevant in the study of kernel theory, W-free graphs satisfy the strong perfect graph conjecture of Berge. We investigate orientations of W-free graphs and other classes of graphs which produce kernel-perfect digraphs.

0. Introduction

We consider finite (except in Theorem 1.1), loopless graphs, without multiple edges. Undefined terms are in Berge [1].

If β is a class of graphs, a graph G is said to be a β -free graph whenever G has no induced subgraph isomorphic to a member of β . If β is a singular set, say $\beta = \{H\}$, we will write H-free graphs instead of $\{H\}$ -free graphs. In what follows, we will denote by \mathfrak{M} the set $\{M_1, M_2, M_3\}$ where M_1, M_2, M_3 are the graphs of Fig. 1.

The chromatic number χ of a graph G is the minimum number of colors necessary to color the vertices of G such that no two adjacent vertices are colored alike. The clique number w of a graph G is the maximum number of vertices in a complete subgraph G. A graph G is said to be perfect if $\chi(H) = \omega(H)$ for every induced subgraph G. Berge's strong perfect-graph conjecture states that G is perfect iff G does not contain C_{2n+1} and \tilde{C}_{2n+1} , $n \ge 2$ as an induced subgraph.

If G is a graph; an orientation \vec{G} of G is a digraph obtained from G by orientation of each edge of G in at least one of the two possible directions.

A kernel of a digraph $\vec{G} = (X, U)$ is a subset $K \subseteq X$ such that: K is independent $(K \cap \Gamma_{\vec{G}}(K) = \emptyset)$ and K is absorbing $(K \cup \Gamma_{\vec{G}}(K) = X)$. A semikernel S of \vec{G} is an independent set of vertices such that for every $z \in (V(\vec{G}) - S)$ for

which there exists an Sz-arc, there also exists a zS-arc; \vec{G} is an R-digraph iff every non-empty induced subdigraph of \vec{G} has a non-empty semikernel. It was proved in [15] that \vec{G} is an R-digraph if and only if every induced subdigraph of \vec{G} has a kernel (i.e., D is a kernel-perfect digraph). We say that \vec{G} is an R-digraph if \vec{G} does not have a kernel but every proper induced subdigraph of \vec{G} does have at least one (R-digraphs are also called kernel-perfect critical digraphs (see for instance [4])). Thus every complete subdigraph $\mathscr C$ of an R-digraph must have an absorbing vertex (i.e., a successor of all other vertices of $\mathscr C$).

A digraph \vec{G} is called a normal orientation of G if every complete subgraph of G possesses an absorbing vertex. R-digraphs and R—digraphs have been investigated by several authors, namely Von Neumann and Morgenstern [16], Richardson [17–18] Duchet and Meyniel [4–7] and Galeana-Sánchez and Neumann-Lara [9–13, 15].

We end this section with some definitions and previous results:

If
$$\mathscr{C} = (u = u_0, u_1, \dots, u_n, u_0)$$
 is a directed cycle, we put $\mathscr{C}_u^0 = \{u_i \mid i \equiv 0 \mod 2; i \neq 0\}, \qquad \mathscr{C}_u^1 = \{u_i \mid i \equiv 1 \mod 2\}.$

An arc (z, w) is a pseudodiagonal of $\mathscr C$ if $z, w \in V(\mathscr C)$ and $(z, w) \in (A(D) - A(\mathscr C))$.

We will need the following well-known result due to Richardson (see [1, p. 311]).

Theorem 0.1 (Richardson's Theorem). Any digraph which does not contain directed cycles of odd length has a kernel.

In this paper we will show that \mathfrak{M} -free graphs satisfy the following conjecture.

Berge-Duchet Conjecture (Berge and Duchet [2]). A graph G is perfect if and only if any normal orientation of G is kernel-perfect.

1. M-free graphs

In this section we study some structural properties of M-free graphs, in particular we show that M-free finite graphs satisfy the strong perfect graph conjecture of Berge.

Definition 1.1. For each $m \in \mathbb{N}$ let $U = \{u_0, \ldots, u_{m-1}\}$, $W = \{w_0, \ldots, w_{m-1}\}$ two disjoint sets of cardinality m. We will denote by S_m the digraph defined as follows:

$$V(S_m) = U \cup W, \qquad S_m[U] \cong K_m, \qquad S_m[W] \cong \bar{K}_m$$

and w_i adj $_{S_m}u_j$ if and only if $j \le i$. Similarly, if $U = \{u_0, u_1, \ldots\}$ and $W = \{w_0, w_1, \ldots\}$ are two disjoint countable sets (of type ω), we will denote by S_{ω} the digraph defined as follows.

$$V(S_{\alpha}) = U \cup W$$

and

$$x \operatorname{adj}_{S_{\infty}} y \Leftrightarrow \begin{cases} x = u_i, \ y = u_j & \text{for } i \neq j, \\ x = w_i, \ y = u_j & \text{for } j \leq i. \end{cases}$$

Theorem 1.1. Let G be a (possibly infinite) \mathfrak{M} -free graph, Q a maximal clique of G with $|V(Q)| \ge 3$ and I a maximal independent set of G. If $Q \cap I = \emptyset$, then G contains an induced subgraph isomorphic to S_{ω} with $\{u_0, u_1, \ldots\} \subseteq Q$ and $\{w_0, w_1, \ldots\} \subseteq I$.

Proof. First of all we shall prove that G contains an induced subgraph isomorphic to S_3 , with $\{u_0, u_1, u_2\} \subseteq Q$ and $\{w_0, w_1, w_2\} \subseteq I$. Since $Q \cap I - \emptyset$ and I is a maximal independent set; there exists $u_0 \in Q$ and $w_0 \in I$ such that $u_0 w_0 \in E(G)$. Since Q is a maximal clique, there exists $u_1 \in Q$ such that $w_0 u_1 \notin E(G)$; $u_1 \notin I$ and I is a maximal independent set. Hence there exists $w_1 \in I$ such that $u_1 w_1 \in E(G)$.

Now we analyze some possible cases.

Case 1: $u_0w_1 \in E(G)$.

In this case, there exists $u_2 \in Q$ such that, $u_2w_1 \notin A(G)$. Now we need to analyze two subcases.

1(i) $u_2w_0 \in E(G)$. In this case

$$G[\{u_0, u_1, u_2, w_0, w_1\}] \cong M_3,$$

which is impossible.

1(ii) $u_2w_0 \notin E(G)$. Since I is maximal independent set, it follows that there exists $w_2 \in I$ such that $w_2u_2 \in E(G)$.

If $w_2u_1 \notin E(G)$ and $w_2u_0 \notin E(G)$,

$$G[\{u_0, u_1, u_2, w_1, w_2\}] \cong M_2.$$

If $w_2u_0 \in E(G)$ and $w_2u_1 \notin E(G)$, it follows that

$$G[\{u_0, u_1, u_2, w_1, w_2\}] \cong M_3.$$

If $w_2u_0 \notin E(G)$ and $w_2u_1 \in E(G)$, necessarily

$$G[\{u_0, u_1, u_2, w_2, w_0\}] \cong M_2$$

or

$$G[\{u_0, u_1, u_2, w_1, w_2\}] \cong M_3.$$

Therefore $w_2u_0 \in E(G)$ and $w_2u_1 \in E(G)$ and hence

$$G[\{u_0, u_1, u_2, w_0, w_1, w_2\}] \cong S_3.$$

Case 2: $u_0w_1 \notin E(G)$.

Since $|V(Q)| \ge 3$, there exists $u_2 \in (Q - \{u_0, u_1\})$. Now we analyze some cases.

2(i) In case $u_2w_0 \in E(G)$ and $u_2w_1 \in E(G)$, we have

$$G[\{u_0, u_1, u_2, w_0, w_1\} \cong M_3.$$

2(ii) In case $u_2w_0 \in E(G)$ and $u_2w_1 \notin E(G)$,

$$G[\{u_0, u_1, u_2, w_0, w_1\}] \cong M_2.$$

2(iii) In case $u_2w_0 \notin E(G)$ and $u_2w_1 \in E(G)$,

$$G[\{u_0, u_1, u_2, w_0, w_1\}] \cong M_2.$$

2(iv) In case $u_2w_0 \notin E(G)$ and $u_2w_1 \notin E(G)$, since I is a maximal stable set, there exists $w_2 \in I$ such that $w_2u_2 \in E(G)$.

If $w_2u_1 \notin E(G)$ and $w_2u_0 \notin E(G)$,

$$G[\{u_0, u_1, u_2, w_0, w_1, w_2\}] \cong M_1.$$

If $w_2u_0 \in E(G)$ and $w_2u_1 \notin E(G)$,

$$G[\{u_0, u_1, u_2, w_2, w_1\}] \cong M_2.$$

If $w_2u_0 \notin E(G)$ and $w_2u_1 \in E(G)$,

$$G[\{u_0, u_1, u_2, w_0, w_2\}] \cong M_2.$$

Finally, suppose $w_2u_1 \in E(G)$ and $w_2u_0 \in E(G)$ and take $u_0' = u_1$, $u_1' = u_2$, $w_0' = w_1$ and $w_1' = w_2$. Arguing as in Case 1, we conclude that G contains S_3 as an induced subgraph with $\{u_0, u_1, u_2\} \subseteq Q$ and $\{w_0, w_1, w_2\} \subseteq I$. Now we proceed by induction on r to prove that G contains S_r as an induced subgraph with $\{u_0, u_1, \ldots, u_{r-1}\} \subseteq Q$ and $\{w_0, w_1, \ldots, w_{r-1}\} \subseteq I$ for each $r \ge 3$. We know that G contains S_3 . Assume that we have proved that G contains S_r as an induced subgraph with $\{u_0, u_1, \ldots, u_{r-1}\} \subseteq Q$, $\{w_0, w_1, \ldots, w_{r-1}\} \subseteq I$, and where $u_i w_j \in E(S_r)$ if and only if $i \le j$.

We will prove that G contains an extension S_{r+1} of S_r as an induced subgraph, with $\{u_0, u_1, \ldots, u_r\} \subseteq Q$ and $\{w_0, w_1, \ldots, w_r\} \subseteq I$. Since Q is a maximal clique there exists $u_r \in (Q - \{u_0, u_1, \ldots, u_{r-1}\})$ such that $u_r w_{r-1} \notin E(G)$.

Observation 1. $u_r w_i \notin E(G)$ for each $i \in \{0, 1, ..., r-2\}$.

Proof. Suppose the contrary and let

$$k = \max\{i \in \{0, 1, ..., r-2\} \mid w_i u_r \in E(G)\}$$

then

$$u_r w_k \in E(G)$$
, $u_r w_{k+1} \notin E(G)$ and

$$G[\{w_k, u_k, u_{k+1}, w_{k+1}, u_r\}] \cong M_3.$$

Since I is a maximal independent set and $u_r \notin I$, there exists $w_r \in (I - \{w_0, w_1, \ldots, w_{r-1}\})$ such that $u_r w_r \in E(G)$.

Observation 2. $w_r u_i \in E(G)$ for each $i \in \{0, 1, ..., r-1\}$.

Proof. Suppose the contrary and let

$$t = \max\{i \in \{0, 1, \dots, r-1\} / w_r u_i \notin E(G)\}\$$

we analyze two possible cases:

Case 1: t > 0.

If $u_{t-1}w_r \in E(G)$, then

$$G[\{u_{t-1}, u_t, u_{t+1}, w_t, w_r\}] \cong M_3.$$

If $u_{t-1}w_t \notin E(G)$, then

$$G[\{u_{t-1}, u_t, u_{t+1}, w_t, w_r\}] \cong M_2.$$

Case 2: t = 0.

In this case

$$G[\{u_0, u_1, u_2, w_0, w_r\}] \cong M_2.$$

It follows from Observations 1 and 2 and from Definition 1.1. that

$$G[\{u_0, u_1, \ldots, u_r\} \cup \{w_0, w_1, \ldots, w_r\}] \cong S_{r+1}$$

with $\{u_0, u_1, \ldots, u_r\} \subseteq Q$ and $\{w_0, w_1, \ldots, w_r\} \subseteq I$. Theorem 1.1 follows. \square

As a direct consequence of Theorem 1.1 we obtain the following corollary.

Corollary 1.1. Let G be a finite \mathfrak{M} -free graph. If Q is a maximal clique of G with $|V(Q)| \ge 3$ and I is a maximal stable set of G then $Q \cap I \ne \emptyset$.

Theorem 1.2. Let G be a finite graph. The following statements are equivalent:

- (i) G is an M-free graph.
- (ii) For each induced subgraph H of G, if I_H is a maximal independent set of H and Q_H is a maximal clique of H with $|V(Q_H)| \ge 3$ then we have $Q_H \cap I_H \ne \emptyset$.

Proof. This result is a direct consequence of Corollary 1.1 and the fact that each M_i , $i \in \{1, 2, 3\}$ of Fig. 1 has a maximal independent set I_i and a maximal clique Q_i such that $I_i \cap Q_i = \emptyset$. \square

Notice that the class of \mathfrak{M} -free graphs neither contains nor is contained in the class of P_4 -free graphs.

The following result is proved by Corneil et al. [3].

Theorem 1.3. Let G be a graph with a point set X. The following statements are equivalent:

- (1) G is a P₄-free graph.
- (2) For each induced subgraph H of G, if I_H is a maximal independent set of H and Q_H is a maximal clique of H then $I_H \cap Q_H \neq \emptyset$.

Theorem 1.4. If G is an \mathfrak{M} -free graph then the following statements are equivalent:

- (i) G does not contain C_{2n+1} , \bar{C}_{2n+1} , $n \ge 2$ as an induced subgraph.
- (ii) For each non-bipartite induced subgraph H of G, if I_H is a maximal independent set of H and Q_H a maximum clique of H then we have $Q_H \cap I_H \neq \emptyset$.
- **Proof.** (i) \Rightarrow (ii). Let G be an \mathfrak{M} -free graph which does not contain C_{2n+1} as an induced subgraph for each $n \geq 2$, H an induced subgraph of G, I_H a maximal stable set and Q_H a maximum clique of H. It follows from (i) that H contains a triangle and since G is \mathfrak{M} -free it follows from Theorem 1.2 that $Q_H \cap I_H \neq \emptyset$.
- (ii) \Rightarrow (i). If G contains C_{2n+1} as an induced subgraph for some $n \ge 2$, then C_{2n+1} is an induced subgraph which contains a maximal stable set I and a maximum clique Q such that $Q \cap I = \emptyset$. If G contains \bar{C}_{2n+1} as an induced subgraph for some $n \ge 2$ then G contains C_5 as an induced subgraph or G contains M_3 as an induced subgraph. \square

Corollary 1.2. M-free graphs satisfy the Strong Perfect Graph Conjecture.

Proof. It follows directly from property (ii) of Theorem 1.4. \square

Remark 1.1. Let $\mathfrak{M}^* = \mathfrak{M} \cup \{C_{2n+1} \mid n \ge 2\}$. Then \mathfrak{M}^* -free graphs are perfect as a consequence of Corollary 1.2. The class of \mathfrak{M}^* -free graphs does not contain nor is contained in any of the following subclasses of perfect graphs: triangulated graphs, cotriangulated graphs, comparability graphs, co-comparability graphs.

For $m \ge 2$ we will denote by N_m the graph defined as follows:

$$V(N_m) = \{z_1, z_2, \dots, z_m\} \cup \{x_1, \dots, x_m\}, \qquad N_m[\{z_1, \dots, z_m\}] \cong K_m,$$

 $N_m[\{x_1, \dots, x_m\}]$ is an independent set and $x_i z_j \in E(N_m)$ iff $i = j$.

Theorem 1.5. Let G be a K_4 -e free graph with $\omega(G) \ge 2$. The following statements are equivalent:

- (i) G does not contain $N_{\omega(G)}$ as an induced subgraph.
- (ii) For each maximal independent set I of G and each maximum clique Q of G we have $Q \cap I \neq \emptyset$.

Proof. For $\omega(G) = 2$ Theorem 1.5 follows from Theorem 1.3. Suppose that $\omega(G) \ge 3$.

(i) \Rightarrow (ii). Let G be a K_4 -e free graph, with $\omega(G) \ge 3$ which does not contain $N_{\omega(G)}$ as an induced subgraph and suppose that there exists a maximal independent set I of G, and a maximum clique Q of G such that $Q \cap I = \emptyset$.

Clearly each point of Q is adjacent to at least one point of I and each point in I is adjacent to at most one point of Q. It follows that G contains $N_{\omega(G)}$ as an induced subgraph.

(ii) \Rightarrow (i) Let G be a graph which contains $N_{\omega(G)}$ as an induced subgraph with

$$V(N_{\omega(G)}) = \{z_1, \dots, z_{\omega(G)}\} \cup \{x_1, \dots, x_{\omega(G)}\},$$

$$N_{\omega(G)}[\{z_1,\ldots,z_{\omega(G)}\}]\cong K_{\omega(G)},$$

 $N_{\omega(G)}[\{x_1,\ldots,x_{\omega(G)}\}]$ is an independent set and $z_ix_j \in E(N_{\omega(G)})$ iff i=j.

Clearly $\{x_1, \ldots, x_{\omega(G)}\}$ is contained in a maximal independent set I of G and $N_{\omega(G)}[\{z_1, \ldots, z_{\omega(G)}\}]$ is a maximum clique of G which does not intersect I. \square

2. Orientations of certain classes of graphs

In this section we obtain some results relating normal orientations of \mathfrak{M} -free graphs and R-digraphs. In particular we prove that the class of \mathfrak{M} -free graphs satisfy the Berge-Duchet Conjecture, also we consider orientations of K_4 -e free graphs which result in kernel-perfect digraphs.

Theorem 2.1. Let G be an \mathfrak{M} -free graph. If there exists a normal orientation of G which is an R^- -digraph, then G is a triangle free graph.

Proof. Let G be an \mathfrak{M} -free graph which has a triangle and suppose that there exists a normal orientation \vec{G} of G which is an R^- -digraph. Consider Q a maximum clique of G and u a source of Q in \vec{G} and N_u a kernel of $(\vec{G} - \{u\})$. If $\{u\} \cup N_u$ is an independent set it follows that $\{u\} \cup N_u$ is a kernel of \vec{G} , so we can assume that N_u is a maximal independent set of G and it follows from Theorem 1.1 that $Q \cap N_u \neq \emptyset$, $(Q - \{u\}) \cap N_u \neq \emptyset$ and so N_u is a kernel of \vec{G} . \square

Theorem 2.2. Let G be an \mathfrak{M} -free graph and let \vec{G} be a normal orientation of G. If every triangle free induced subdigraph \vec{G}_0 of \vec{G} is an R-digraph then \vec{G} is an R-digraph.

Proof. Suppose that \vec{G} is not an R-digraph and let \vec{H} be an induced subdigraph of \vec{G} which is an R-digraph. By hypothesis the underlying graph H of \vec{H} is \mathfrak{M} -free and has a triangle which, by Theorem 2.1, is impossible. \square

Remark 2.1. Maffray [8] has proved that a graph such that every normal orientation is kernel-perfect neither contains C_{2n+1} nor \bar{C}_{2n+1} for $n \ge 2$ as an induced subgraph.

The next Theorem asserts that \mathfrak{M} -free graphs satisfy the Berge-Duchet Conjecture.

Theorem 2.3. Let G be an \mathfrak{M} -free graph. G is a perfect graph iff every normal orientation of G is kernel-perfect.

Proof. Let G be a perfect \mathfrak{M} -free graph, \vec{G} a normal orientation of G and \vec{G}_0 a triangle-free induced subdigraph of \vec{G} . Since G is a perfect graph, \vec{G}_0 has a bipartite underlying graph so \vec{G}_0 is an R-digraph by Theorem 0.1 and by Theorem 2.2 we have that \vec{G} is an R-digraph.

If every normal orientation of G is kernel perfect, then by Maffray's [8] result does not contain C_{2n+1} , \tilde{C}_{2n+1} for $n \ge 2$. Then G is perfect by Corollary 1.2. \square

Theorem 2.4. Let G be a K_4 -e free graph with $\omega(G) \ge 3$. If there exists a normal orientation of G which is an R^- -digraph then G contains $N_{\omega(G)}$ as an induced subgraph.

Proof. Let G be a K_4 -e free graph with $\omega(G) \ge 3$ such that G does not contain $N_{\omega(G)}$ as an induced subgraph. Suppose that there exists a normal orientation \vec{G} of G which is an R^- -digraph. Let Q a maximum clique of G and u a source of Q in \vec{G} and N_u a kernel of $\vec{G} - \{u\}$. If $\{u\} \cup N_u$ is an independent set it follows that $\{u\} \cup N_u$ is a kernel of \vec{G} , so we can assume that N_u is a maximal independent set of G and it follows from Theorem 1.5 that $Q \cap N_u \ne \emptyset$, $(Q - \{u\}) \cap N_u \ne \emptyset$ and so N_u is a kernel of \vec{G} . \square

Theorem 2.5. Let G be an \mathfrak{M} -free graph which does not contain an induced subgraph isomorphic to H_1 to H_2 (Fig. 2). If \vec{G} is a normal orientation of G such that \vec{G} does not contain induced odd directed cycles then \vec{G} is an R-digraph.

Proof. We argue by induction on the number of vertices of G, |V(G)|. The proposition is obvious for graphs with at most three vertices. Assume that we have proved Theorem 2.5 for graphs with at most p vertices and let G and G be as in the hypothesis and G with p+1 vertices.

By the inductive hypothesis we know that for each $u \in V(\vec{G})$ we have $\vec{G} - u$ is an R-digraph; so it suffices to prove that \vec{G} has a kernel. Now we analyze two possible cases:

Case 1: For each $z \in V(G)$, $\delta_G^{\pm}(z) \leq 1$.

In this case \vec{G} has no odd directed cycles and Theorem 0.1 implies that \vec{G} is an R-digraph.

Case 2: These exists $u \in \vec{G}$ such that $\delta_{\vec{G}}^+(u) > 1$.

Again we consider two possible cases:

Case 2(a): G is a triangle free graph. Let $u \in V(G)$ such that $\delta_{\vec{G}}^+(u) > 1$, and let N_u be a kernel of $\vec{G} - u$. If $\{u\} \cup N_u$ is an independent set or if there exists some uN_u -arc in \vec{G} we have that $\{u\} \cup N_u$ is a kernel of \vec{G} or N_u , is a kernel of \vec{G} ; so we can assume that there exists $n \in N_u$ such that $(n, u) \in A(\vec{G})$ and there is no uN_u -arc in \vec{G} . By the choice of u we have

$$u_1, u_2 \in V(\vec{G}), \quad uu_1 \in A(\vec{G}), \quad uu_2 \in A(\vec{G}); \quad n_1, n_2 \cdot N_u,$$

 $u_1 n_1 \in A(\vec{G}) \quad u_2 n_2 \in A(\vec{G}).$

When $n_1 = n_2$ we have

$$G[\{u, n, u_1, u_2, n_1\}] \cong H_1.$$

If $n_1 \neq n_2$ and $u_2 n_1 \in A(G)$,

$$G[\{u, n, u_1, u_2, n_1\}] \cong H_1$$

and if $n_1 \neq n_2$ and $n_2 u_1 \in A(G)$,

$$G[{n, u, u_1, u_2, n_2}] \cong H_1.$$

In the other case we have

$$G[\{n, u, u_1, u_2, n_1, n_2\}] \cong H_2.$$

It follows that N_u is a kernel of \vec{G} .

Case 2(b): G has a triangle. Since for each $u \in G$ $\vec{G} - \{u\}$ is an R-digraph, if \vec{G} has no kernel then \vec{G} is an R-digraph by Theorem 2.1 is impossible. So \vec{G} has a kernel. \square

Corollary 2.1. Let G be an \mathfrak{M} -free graph which does not contain an induced subgraph isomorphic to H_1 or H_2 . If \vec{G} is an orientation of G which is an R^- -digraph then $\vec{G} \cong \vec{C}_{2n+1}$, $n \ge 1$.

Acknowledgment

The authors wish to thank the referees for their helpful comments and suggestions in the rewriting of this paper.

References

- [1] C. Berge, Graphs and Hypergraphs (North-Holland, Amsterdam, 1976).
- [2] C. Berge and P. Duchet, A perfect graph conjecture, Discrete Math., to appear.
- [3] D.G. Corneil, H. Lerchs and L. Stewart Burlingham, Complement reducible graphs, Discrete Appl. Math. 3 (1981) 163-174.
- [4] P. Duchet, Representation; noyaux en théorie des graphes et hypergraphes, Thése París, 1979.
- [5] P. Duchet, Graphes noyau-parfaits, Ann. Discrete Math. 9 (1980) 93-101.
- [6] P. Duchet and H. Mayniel, A note on kernel-critical graphs, Discrete Math. 33 (1981) 103-105.
- [7] P. Duchet and H. Meyniel, Une generalization du théorème de Richardson sur l'existence de noyaux dans les graphes orientes, Discrete Math. 43 (1983) 21-27.
- [8] F. Maffray, Sur l'existence de noyaux dans les graphes parfaits, Thése, Université Pierre et Marie Curie, Paris 6, 1984.
- [9] H. Galeana-Sánchez and V. Neumann-Lara, On kernels and semikernels of digraphs. Discrete Math. 48 (1983) 67-76.
- [10] H. Galeana-Sánchez and V. Neumann-Lara, On kernel-perfect critical digraphs. Discrete Math. 59 (1986) 257-265.
- [11] H. Galeana-Sánchez and V. Neumann-Lara, Extending kernel-perfect digraphs to kernel-perfect critical digraphs, submitted.
- [12] H. Galeana-Sánchez, A counterexample to a conjecture of Meyniel on kernel-perfect graphs, Discrete Math. 41 (1982) 105-107.
- [13] H. Galeana-Sánchez, A theorem about a conjecture of Meyniel on kernel-perfect graphs, Discrete Math. 59 (1986) 35-41.
- [14] H. Jacob, Etude Théorique du Noyaux d'un graphe, Université Pierre et Marie Curie, París VI
- [15] V. Neumann-Lara, Seminúcleos de una digráfica, An. Inst. Mat. Univ. Nac. Autónoma México
- [16] J. Von Neumann and O. Morgenstern, Theory of Games and Economic Behavior (Princeton Univ. Press., Princeton).
- [17] M. Richardson, Solution of irreflexive relations, Ann. Math. 58 (2) (1953) 573.
- [18] M. Richardson, Extension theorems for solutions of irreflexive relations, Proc. Nat. Acad. Sci. USA 39 (1953).