Gráficas y juegos

Segunda tarea

Lee, piensa y responde con cuidado. No olvides justificar bien tus respuestas.

- 1. Prueba que toda gráfica conexa posee un subárbol generador. No olvides decir explícitamente qué entendemos por subárbol generador.
- 2. Prueba que si G es un árbol con al menos dos vértices entonces tiene al menos dos hojas.
- 3. Prueba que si G es un árbol con al menos tres vértices y T_0 es el conjunto de todos los vértices de grado uno de T (es decir, es el conjunto de todas sus hojas) entonces $G T_0$ es un árbol. No olvides decir explícitamente qué se entiende por $G T_0$ y no olvides la definición de árbol.
- 4. Sean u y v vértices de una gráfica conexa G. Se define la distancia d(u, v) entre u y v como la mínima de entre las longitudes de todas las posibles uv-trayectorias en G. Prueba que d es una métrica para V(G), es decir,
 - (a) $d(u, v) \ge 0$ para cualesquiera u y v en V(G) y d(u, v) = 0 si y sólo si u = v,
 - (b) d(u, v) = d(v, u) para cualesquiera u y v en V(G) y
 - (c) $d(u, w) \leq d(u, v) + d(v, w)$ para cualesquiera $u \vee v$ en V(G).
- 5. Prueba que si T es un árbol entonces el centro de T es el mismo que el centro de $T T_0$ (donde T_0 es el conjunto de todas las hojas de T).
- 6. Considera T un árbol y u un vértice de T. Muestra que existe una trayectoria $P = (u = x_0, x_1, \ldots, x_n)$ de longitud $e_T(u)$ en T y que x_n en dicha trayectoria es una hoja de T.
- 7. Prueba que el centro de un árbol es K_1 o K_2 .
- 8. Un bosque es una gráfica acíclica. Prueba que toda componente de un bosque es un árbol y que si ω denota el número de componentes conexas de una gráfica entonces en un bosque se tiene que:

$$q = p - \omega$$
.

- 9. Prueba que todo árbol con al menos dos vértices es bipartito al dar **explícitamente** una bipartición de sus vértices y al mostrar que efectivamente es una bipartición.
- 10. Considera una gráfica G con p vértices y q aristas tales que $q \ge p \ge 3$. Muestra que G posee al menos un ciclo.

Extras

- A. Considera una gráfica conexa G y a una arista acíclica de G. Prueba que a está en todo subárbol generador de G.
- B. Muestra que el centro de un árbol es K_1 si la trayectoria de longitud máxima es de longitud par y que el centro es K_2 si la longitud de la trayectoria de longitud máxima es impar.
- C. (a) Pruebe que un árbol tiene exactamente dos hojas si y sólo si es una trayectoria.
 - (b) Pruebe que un árbol tiene diámetro 2 si y sólo si es una estrella.
- D. Muestra que todo árbol tiene al menos Δ hojas.
- E. Prueba que una gráfica G es un bosque si y sólo si toda subgráfica inducida de G tiene un vértice de grado a lo más uno.
- F. Considera un árbol T con k+1 vértices. Prueba que si G es una gráfica con grado mínimo al menos k entonces G posee una subgráfica isomorfa a T.