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Abstract: A vertex set X of a digraph D ¼ (V , A) is a kernel if X is inde-
pendent (i.e., all pairs of distinct vertices of X are non-adjacent) and for
every v 2 V � X there exists x 2 X such that vx 2 A. A vertex set X of a
digraph D ¼ (V , A) is a quasi-kernel if X is independent and for every
v 2 V � X there exist w 2 V � X , x 2 X such that either vx 2 A or vw ,
wx 2 A: In 1974, Chvátal and Lovász proved that every digraph has a
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quasi-kernel. In 1996, Jacob and Meyniel proved that if a digraph D has
no kernel, then D contains at least three quasi-kernels. We characterize
digraphs with exactly one and two quasi-kernels, and, thus, provide neces-
sary and sufficient conditions for a digraph to have at least three quasi-
kernels. In particular, we prove that every strong digraph of order at least
three, which is not a 4-cycle, has at least three quasi-kernels.
� 2004 Wiley Periodicals, Inc. J Graph Theory 46: 48–56, 2004
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1. INTRODUCTION, TERMINOLOGY, AND NOTATION

A vertex set X of a digraph D ¼ ðV;AÞ is a kernel if X is independent (i.e., all

pairs of distinct vertices of X are non-adjacent) and for every v 2 V � X there

exists x 2 X such that vx 2 A. A vertex set X of a digraph D ¼ ðV ;AÞ is a quasi-

kernel if X is independent and for every v 2 V � X there exist w 2 V � X; x 2 X

such that either vx 2 A or vw;wx 2 A: A digraph T ¼ ðV;AÞ is a tournament if

for every pair x; y of distinct vertices in V , either xy 2 A or yx 2 A, but not both. A

vertex of out-degree zero is called a sink.

While not every digraph has a kernel (e.g., a directed cycle ~CCn has a kernel if

and only if n is even), Chvátal and Lovász [3] (see also Chapter 12 in [2]) proved

that every digraph has a quasi-kernel. Jacob and Meyniel [6] proved that if a

digraph D has no kernel, then D contains at least three quasi-kernels. While the

assertion of Chvátal and Lovász generalizes the fact that every tournament has a

2-serf, that is a quasi-kernel of cardinality 1, the Jacob–Meyniel theorem extends

the result of Moon [7] that every tournament with no sink has at least three 2-

serfs.

While the Jacob–Meyniel theorem provides sufficient conditions for a digraph

to have at least three quasi-kernels, in Section 2, we characterize digraphs with

exactly one and two quasi-kernels, and, thus, provide necessary and sufficient

conditions for a digraph to have at least three quasi-kernels (see Theorem 2.4). In

particular, we prove that every strong digraph, of order at least three, different

from the 4-cycle ~CC4 has at least three quasi-kernels. Note that, in our proofs, we

naturally use the Chvátal–Lovász theorem, but not the more powerful Jacob–

Meyniel theorem.

We use the standard terminology and notation on digraphs as given in [2]. We

still provide most of the necessary definitions for the convenience of the reader.

For a digraph D, the vertex (arc) set is denoted by VðDÞðAðDÞÞ. Let x; y be a

pair of vertices in D. If xy 2 AðDÞ, we say x dominates y, and y is dominated by x,

and denote it by x! y. A digraph D is strong if, for every ordered pair x; y of

distinct vertices in D, there is a path from x to y: An orientation of a digraph D

is an oriented graph obtained from D by deleting exactly one arc from each

2-cycle in D: A biorientation of D is a digraph, which is a subdigraph of D

and superdigraph of an orientation of D. The closed in-neighbourhood (closed
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out-neighbourhood) of a set X of vertices of a digraph D ¼ ðV;AÞ is defined as

follows.

N�
D ½X� ¼ X [ fy 2 V : 9x 2 X; y!xg ðNþ

D ½X� ¼ X [ fy 2 V : 9x 2 X; x! ygÞ:

For disjoint subsets X and Y of VðDÞ, let X � Y ¼ fxy : x 2 X; y 2 Yg;
ðX; YÞD ¼ ðX � YÞ \ AðDÞ; D½X� is the subdigraph of D induced by X: If the

digraph under consideration is clear from the context, then we will omit the

subscript D.

2. DIGRAPHSWITH EXACTLY ONE AND TWO QUASI-KERNELS

We start with the following.

Lemma 2.1. Let x be a vertex in a digraph D. If x is a non-sink, then D has a

quasi-kernel not including x:

Proof. Let y 2 Nþ½x� � fxg be arbitrary. If N�½ y� ¼ VðDÞ, then y is the

required quasi-kernel. If N�½ y� 6¼ VðDÞ, let Q0 be a quasi-kernel in D� N�½y�. If

y dominates a vertex in Q0, then Q0 is a quasi-kernel in D, which does not contain

x. If y does not dominate a vertex in Q0, then Q0 [ fyg is a quasi-kernel in D,

which does not include x. &

The following is an easy characterization of digraphs with merely one quasi-

kernel.

Theorem 2.1. A digraph D has only one quasi-kernel if and only if D has a sink

and every non-sink of D dominates a sink of D. If a digraph D has only one quasi-

kernel Q, then Q is a kernel and consists of the sinks of D.

Proof. Assume that D has a sink and every non-sink of D dominates a sink of

D. Let S be the set of sinks in D. To see that S is a unique quasi-kernel of D, it is

enough to observe that every sink must be in a quasi-kernel.

Let D have only one quasi-kernel Q. To see that Q is the set of sinks in D,

observe that Q contains all sinks in D and, by Lemma 2.1, Q does not have non-

sinks. If x is a non-sink and x does not dominate a vertex in Q, then Q [ fxg is

another quasi-kernel of D, a contradiction. Thus, we have proved that D has a

sink and every non-sink of D dominates a sink of D. &

In view of Theorem 2.1, the following assertion is a strengthening of the

Jacob–Meyniel theorem for the case of digraphs with no sinks.

Theorem 2.2. Let D be a digraph with no sink. Then D has precisely two quasi-

kernels if and only if D has an induced 4-cycle or 2-cycle, C, such that no vertex

of C dominates a vertex in D� VðCÞ and every vertex in D� VðCÞ dominates at
least two adjacent vertices in C.
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To prove Theorem 2.2, we will extensively use the following.

Lemma 2.2. Let a digraph D have exactly two quasi-kernels, R and Q. Then the

following claims hold:

(i) If a vertex x in R dominates some vertex y such that VðDÞ 6¼ N�½ y� , then
Q� y is the only quasi-kernel in D� N�½ y�;

(ii) fR;Qg is the set of quasi-kernels of every biorientation of D, in which both
R and Q contain non-sinks.

Proof. Let R1;R2; . . . ;Rk be the quasi-kernels in D� N�½ y�: Then

R0
1;R

0
2; . . . ;R

0
k are quasi-kernels in D, where R0

i ¼ Ri if ðy;RiÞ 6¼ ; and

R0
i ¼ Ri [ fyg, otherwise, i ¼ 1; 2; . . . ; k. Since D has only two quasi-kernels,

k � 2: Since, x 2 N�½ y� and x 2 R, we conclude that R� y is not a quasi-kernel

in D� N�½ y�: By the Chvátal–Lovász theorem, every digraph has a quasi-kernel,

so Q� y is the unique quasi-kernel in D� N�½ y�:
Let D0 be a biorientation of D, in which both R and Q contain non-sinks.

Clearly, every quasi-kernel in D0 is a quasi-kernel in D. However, by Theorem 2.1,

neither R nor Q can be the only quasi-kernel in D0. Thus fR;Qg is the set of

quasi-kernels of D0: &

Proof of Theorem 2.2. We first show that if D has precisely two quasi-

kernels, then D has the above-described structure. We will prove this assertion by

induction on jVðDÞj. The assertion is clearly true when jVðDÞj � 2, so we may

assume that it is true for all digraphs, D�, with jVðD�Þj < jVðDÞj. Let Q1 and Q2

be the only two quasi-kernels in D. Note that by Lemma 2.1, Q1 and Q2 must be

disjoint (if x 2 Q1 \ Q2 then use Lemma 2.1 for x). We now prove the following

claims.

Claim 2.1. If ðQi;QjÞ 6¼ ; (fi; jg ¼ f1; 2g), then for every w 2 Qi, ðw;QjÞ 6¼ ;.

Proof. Let xy 2 ðQi;QjÞ and let w be a vertex in Qi which has no arc into Qj.

By Lemma 2.2(i), Qj � y is the unique kernel in D� N�½y� and, thus, by

Theorem 2.1, we must have an arc from w to Qj � y since w 2 VðDÞ � N�½y�, a

contradiction.

Claim 2.2. Both ðQ1;Q2Þ and ðQ2;Q1Þ are non-empty.

Proof. Clearly Q1 [ Q2 is not an independent set, as then it would be a quasi-

kernel. Hence, without loss of generality, we may assume that ðQ1;Q2Þ 6¼ ;.

Suppose that ðQ2;Q1Þ ¼ ;. Since Q1 is a quasi-kernel, there exists a 2-path from

any given x 2 Q2 to Q1, say xzy (z 62 Q1 [ Q2 and y 2 Q1).

We now show that every vertex in Q2 must dominate z. Suppose that this is not

the case, and let w be a vertex not dominating z. By Lemma 2.2, Q1 is the only

quasi-kernel in D� N�½z�. However, by Theorem 2.1, this is a contradiction

against the fact that w dominates no vertex in Q1 (w 2 VðDÞ � N�½z�). Thus,

Q2 � N�½z�:
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Let D0 be any orientation of D for which ðz;Q2ÞD0 ¼ ;, and let ab be an arc in

ðQ1;Q2ÞD0 . Since z 2 VðD0Þ � N�
D0 ½b�, we have VðD0Þ 6¼ N�

D0 ½b�. By Lemma 2.2,

Q2 � b is the only quasi-kernel in D0 � N�
D0 ½b�. By Theorem 2.1, Q2 � b is a

kernel in VðD0Þ � N�
D0 ½b�. However, Q2 � b is not a kernel in D0 � N�

D0 ½b� as z

dominates no vertex in Q2 � b, a contradiction.

Claim 2.3. Let fa; bg be a set of two distinct vertices from Q1 and let fc; dg
be a set of two distinct vertices from Q2. Then we cannot have both a! c and

d! b.

Proof. Assume that a! c and d! b. Suppose first that c 6!b. By Lemma 2.2,

Q1 � b is the only quasi-kernel in VðDÞ � N�½b�. However, since the arc

ac 2 D� N�½b� we see that Q1 � b contains a non-sink in VðDÞ � N�½b� in

contradiction with Theorem 2.1. Suppose now that c! b, and let D0 equal D� bc

(if bc 62 D, then D0 ¼ D). By Lemma 2.1, Q2 � c is the only quasi-kernel in

VðD0Þ � N�½c�. However, since the arc db 2 D0 � N�
D0 ½c� we see that Q2 � c

contains a non-sink in contradiction with Theorem 2.1.

Claim 2.4. Either D½Q1 [ Q2� is a 2-cycle or D½Q1 [ Q2� contains an induced

4-cycle.

Proof. If either Q1 or Q2 has only one vertex, then without loss of generality

we may assume that jQ1j ¼ 1. If jQ2j ¼ 1 then by Claim 2.2, D½Q1 [ Q2� is a

2-cycle, so assume that jQ2j � 2. Let Q1 ¼ fxg and observe that by Claim 2.1

and 2.2 there exists a pair a; b of distinct vertices in Q2 such that ax; xb 2 AðDÞ.
Let D0 be any orientation of D with ax; xb 2 AðD0Þ. By Lemma 2.2, Q1 � x is the

only quasi-kernel in the non-empty digraph D0 � N�
D0 ½x�, which contradicts the

fact that Q1 ¼ fxg.

Therefore, we may now assume that both Q1 and Q2 have cardinality at least

two. By Claim 2.2, there exists an arc x2x1 in ðQ2;Q1ÞD. Let y1 2 Q1 � fx1g be

arbitrary, and observe that ðy1;Q2Þ 6¼ ;, by Claim 2.1 and 2.2. By Claim 2.3,

y1x2 2 ðy1;Q2Þ. Let y2 2 Q2 � fx2g be arbitrary. Analogously, we have

y2y1 2 AðDÞ. Finally, Claims 2.1 and 2.3 imply that x1y2 2 AðDÞ. Therefore,

C ¼ x2x1y2y1x2 is a 4-cycle. Observe that C is an induced 4-cycle, by Claim 2.3

and the fact that fx1; y1g and fx2; y2g are independent sets (they are subsets of

quasi-kernels).

Claim 2.5. If abcda is a 4-cycle such that fa; cg � Q1 and fb; dg � Q2, then

there is no arc from fa; b; c; dg to any vertex in D� fa; b; c; dg.

Proof. Assume that the claim is false and that there exists a vertex

z 2 VðDÞ � fa; b; c; dg such that there is an arc from fa; b; c; dg to z. Without

loss of generality, assume that az 2 AðDÞ, and consider the following two cases.

Case 1. z! c. Let D0 be any orientation of D with zc; az 2 AðD0Þ. By

Lemma 2.2, Q2 � z is the only quasi-kernel in D0 � N�
D0 ½z�. However, the

existence of the arc bc 2 D0 contradicts Theorem 2.1.
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Case 2. z 6! c. By Lemma 2.2(i), Q1 � c is the only quasi-kernel in D� N�
D ½c�.

However, the existence of the arc az 2 D� N�½c� contradicts Theorem 2.1.

Claim 2.6. If abcda is a 4-cycle such that fa; cg � Q1 and fb; dg � Q2, then

every vertex in D� fa; b; c; dg dominates two adjacent vertices on abcda.

Proof. Let x 2 VðDÞ � fa; b; c; dg be arbitrary. If x has no arc into

fa; b; c; dg, then consider the digraph D� ¼ D� N�½x�. Clearly, Q1 � N�½x�
and Q2 � N�½x� are distinct quasi-kernels in D�; D� cannot have another quasi-

kernel as D has only two quasi-kernels. Therefore there are exactly two quasi-

kernels in D�, and by our induction hypothesis, these quasi-kernels are precisely

fa; cg and fb; dg. Observe that, by Claim 2.5, x is adjacent to no vertex from the

set fa; b; c; dg: However, this means that both fx; a; cg and fx; b; dg are quasi-

kernels in D, contradicting the fact that Q1 and Q2 are disjoint. Therefore, x must

have an arc into fa; b; c; dg. Observe that since x is arbitrary, this implies that

fa; cg and fb; dg are quasi-kernels in D.

Without loss of generality, assume that x! a in D. Suppose also that x 6! b and

x 6! d, as otherwise we would be done. However, these assumptions imply that

fx; b; dg also is a quasi-kernel, along with fa; cg and fb; dg, a contradiction.

Claim 2.7. If C ¼ D½Q1 [ Q2� is a 2-cycle, then no vertex of C dominates a

vertex in D� VðCÞ and every vertex in D� VðCÞ dominates both vertices in C.

Proof. Let C ¼ xyx. Assume there exists an arc xz, z 6¼ y: Consider an

orientation, D0, of D such that D0 � N�
D0 ½x� contains z and does not contain y:

On one hand, D0 has no quasi-kernels other than fxg and fyg; on the other hand,

either Q or Q [ fxg is a quasi-kernel in D0, where Q is a quasi-kernel in

D0 � N�
D0 ½x�. We have arrived at a contradiction. Therefore ðVðCÞ;VðDÞ�

VðCÞÞ ¼ ;. Furthermore, every vertex v 2 VðDÞ � VðCÞ must dominate both

vertices on C since otherwise there would be a quasi-kernel containing v.

Claim 2.4–2.7. prove the assertion on the structure of D.

Now assume that D has the structure described in this theorem, and C is the

cycle in D. If C is a 2-cycle, then it is easy to see that each of the two vertices on

C is a quasi-kernel (and kernel) in D, and that there are no other quasi-kernels in

D. So now assume that C ¼ abcda is an induced 4-cycle in D. Observe that fa; cg
and fb; dg are quasi-kernels in D. Since ðfa; b; c; dg;VðDÞ � fa; b; c; dgÞ ¼ ;,

any quasi-kernel in D must contain a vertex, x, in C. Since the successor xþ of x in

C has to be able to reach the quasi-kernel with a path of length at most two, ðxþÞþ
must also belong to the quasi-kernel. Since all other vertices are adjacent to one

of these vertices, the only quasi-kernels are fa; cg and fb; dg. &

As corollaries we obtain the following two theorems.

Theorem 2.3. A strong digraph D of order at least three has at least three

quasi-kernels, unless D is ~CC4:

Proof. Immediate from the previous theorems, Theorems 2.1 and 2.2. &
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Theorem 2.4. Let D be a digraph, S the set of sinks in D, R the set of vertices

that have an arc into S, and H ¼ D� S� R. Then D has precisely two quasi-

kernels, if and only if one of the following holds:

(a) There is a 2-cycle C in H such that at most one of the vertices in C has an

arc into R, no vertex of C dominates a vertex in H � VðCÞ, and every

vertex in H � VðCÞ dominates both vertices in C.

(b) There is an induced 4-cycle, C, in H such that no vertex of C dominates a

vertex in D� VðCÞ and every vertex in H � VðCÞ dominates two adjacent

vertices in C.

(c) The digraph H has at least two vertices. There is a vertex x in H such that

no vertex of H is dominated by x, all the vertices of H � x dominate x, i.e.,

ðVðHÞ � fxg; xÞ ¼ ðVðHÞ � fxgÞ � fxg, and there is a kernel Q in H � x,

consisting only of sinks in H � x. Moreover, there is no arc from Q to R.

(d) The digraph H has exactly one vertex and this vertex dominates a vertex in R.

Proof. We first show that if D has precisely two quasi-kernels, then D has the

above-described structure. Let D be a digraph with exactly two quasi-kernels. If D

has no sinks, then by Theorem 2.2, D has the structure described in part (a) or (b)

with R [ S ¼ ;. Hence, we may assume that D contains some sinks, and let S, R,

and H be as defined in the formulation of this theorem. Let us first prove that H

has at most one sink.

Suppose that there are at least two sinks in H. Let x and y be two distinct sinks

in H. Note that both x and y have arcs into R, since otherwise they would belong

to S or R. Let Q1 be a quasi-kernel in H, Q2 a quasi-kernel in H � x, and Q3 a

quasi-kernel in H � y. Since fx; yg � Q1, fx; yg \ Q2 ¼ fyg, and fx; yg \ Q3 ¼
fxg we see that Q1 [ S, Q2 [ S and Q3 [ S, are three different quasi-kernels in D,

a contradiction. Hence, H has at most one sink.

Suppose that there is exactly one sink x in H. Since the case of H having

exactly one vertex is trivial, we may assume that H contains at least two vertices.

Let Q1 be a quasi-kernel in H, and let Q2 be a quasi-kernel in H � x. Note that

S [ Q1 and S [ Q2 are different quasi-kernels in D (as x 2 Q1 and x has an arc

into R). Therefore, Q2 must be the unique quasi-kernel in H � x, and, by

Theorem 2.1, Q2 is a kernel in H � x consisting only of sinks in H � x. Since x is

the only sink in H, every vertex in Q2 dominates x. Therefore, fxg is a quasi-

kernel in H. Since x must be the unique quasi-kernel in H and x is a sink, we must

have ðVðHÞ � fxg; xÞ ¼ ðVðHÞ � fxgÞ � fxg. Thus, S [ fxg and S [ Q2 are

quasi-kernels in D. If there is a vertex w 2 Q2 which dominates a vertex in R, then

let Q3 be a quasi-kernel in H � w� x, and observe that Q3 [ S is a third quasi-

kernel, a contradiction. Therefore, D has the structure described in part (c).

Suppose now that H has no sink. (Since D has more than one quasi-kernel, H is

non-empty.) By Theorem 2.1, there are at least two quasi-kernels, Q1 and Q2, in

H. If Q is a quasi-kernel in H, then S [ Q is a quasi-kernel in D. Hence, Q1 and

Q2 are the only quasi-kernels in H, and, thus, the structure of H is provided by

Theorem 2.2. Let C be the 2-cycle or induced 4-cycle given in Theorem 2.2.
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If C is a 2-cycle, xyx, then, by Theorem 2.2, to show that D has the structure

described in part (a) it suffices to prove that at most one of the vertices x and y has

an arc into R. Assume that both x and y have arcs into R. Let Q3 be a quasi-kernel

in H � x� y, if VðHÞ 6¼ fx; yg, and the empty set, otherwise. However, S [ x,

S [ y, and S [ Q3 are three different quasi-kernels in D, a contradiction.

If C is an induced 4-cycle, abcda, then, by Theorem 2.2, to show that D has the

structure described in part (b) it suffices to prove that no vertex in VðCÞ
dominates a vertex in R. Without loss of generality, assume that a dominates a

vertex in R. By Lemma 2.1, there exists a quasi-kernel, Q, in H � a, which does

not contain b, as b is not a sink in H � a. However, Q [ S, fa; cg [ S, and

fb; dg [ S are three different quasi-kernels in D, a contradiction.

This proves that if D has exactly two quasi-kernels, then D has the structure

described in the formulation of this theorem. If D has the structure provided in

part (a), (b), (c), or (d), then it is not too difficult to check that there are exactly

two quasi-kernels in D. &

3. DISJOINT QUASI-KERNELS

If a digraph D has a sink x, then every quasi-kernel in D must contain x. Hence,

a digraph with sinks has no disjoint quasi-kernels. However, one may suspect that

every digraph with no sink has a pair of disjoint quasi-kernels. By Lemma 2.1,

this is true for digraphs with exactly two quasi-kernels: see the first paragraph in

the proof of Theorem 2.2. One can show that this is also true for every digraph

which possesses a quasi-kernel of cardinality at most two.

Unfortunately, in general, the above claim does not hold. Consider the

following construction suggested to us by the referee. Let T be a tournament

having the property that for every pair x; y of vertices there exists a vertex z such

that x! z and y! z: (The existence of such tournaments was first proved by

Erdös [4], see also Section 1.2 in [1]. It was shown by Graham and Spencer [5]

that some quadratic residue tournaments are such tournaments, see also

Section 9.1 in [1].) Extend T to a digraph D by adding, for every vertex x in

T , a new vertex x0 together with the arc x0x.

Clearly, D has no sink and every quasi-kernel of D contains exactly one vertex

in T: If Qx and Qy are a pair of quasi-kernels of D containing the vertices x and y,

respectively, then they are not disjoint because they both have to contain z0, where

x! z and y! z:
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