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SEMIKERNELS AND (k,!)-KERNELS IN DIGRAPHS*

H. GALEANA-SANCHEZ! AND XUELIANG LI}

Abstract. Let D be a digraph with minimum indegree at least one. The following results
are proved: a digraph D has a semikernel if and only if its line digraph L(D) does; the number of
(k, 1)-kernels in L(D) is less than or equal to that in Dj; if the number of (k,!)-kernels in D is less
than or equal to the number of (2,1)-kernels in L(D), and if L(D) has a (k,1)-kernel, then D has a
(K',1)-kernel for k' +1 < k, | <1’. As a consequence, it obtains previous results about kernels and
quasikernels in the line digraph.

It is also proved that any digraph has a (k,l)-kernel with | > 2k — 2, k > 1, generalizing a
previous result on the existence of quasikernels in digraphs.
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1. Introduction. For general concepts we refer the reader to [1].

DEFINITION 1.1. Let D = (V(D), A(D)) be a digraph. The line digraph L(D) of
D s the digraph L(D) = (V(L(D)), A(L(D))) with set of vertices the set of arcs of
D, and for any h,k € A(D) there is (h, k) € A(L(D)) if and only if the corresponding
arcs h,k induce a directed walk in D, i.e., the terminal endpoint of h is the initial
endpoint of k. In what follows we denote the arc h = (u,v) € A(D) and the vertex
h € V(L(D)) by the same symbol. If H is a set of arcs in D, it is also a set of vertices
of L(D). When we want to emphasize our interest in H C A(D) as a set of vertices
of L(D), we use the symbol Hy, instead of H.

DEFINITION 1.2. A set K C V(D) is said to be a kernel if it is both independent (a
vertex in K has no successor in K ) and absorbing (a vertex not in K has a successor
in K).

This concept was introduced by Von Neumann [11] and it has found many ap-
plications [1], [2]. Several authors have been investigating sufficient conditions for
the existence of kernels in digraphs, namely, Von Neumann and Morgenstern [11] ,
Richardson [13], Duchet and Meyniel [4], [5], and Galeana-Sénchez and Neumann-
Lara [7]. In [9], Harminc considered the existence of kernels in the line digraph of a
given digraph D and he proved the following result.

THEOREM 1.1 (see [8]). The number of kernels of a digraph D is equal to the
number of kernels in its line digraph L(D).

DEFINITION 1.3 (see [12]). A semikernel S of D is an independent set of vertices
such that, for every z € (V(D)\ S) for which there exists an Sz-arc, there also exists
a zS-arc.

The concept of semikernel is nearly related to that of kernel, and is very useful
to find kernels in digraphs, where every induced subdigraph of a digraph D has a
semikernel then D has a kernel (see [12]). In [8] it was proved that the number of
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semikernels of a digraph D is less than or equal to the number of semikernels of L(D).
In this paper we prove that a digraph D has a semikernel if and only if L(D) does.

DEFINITION 1.4. A quasikernel Q of a digraph D is an independent set of vertices
such that V(D) = QUT(Q)UT (I (Q)) (where for any A C X, I'"(A) = {z €
X |z has a successor in A}).

In [3], Chvatal and Lovész proved that any digraph has a quasikernel; a general-
ization of this result was obtained by Duchet, Hamidoune, and Meyniel [6]. In [8] the
following result was proved.

THEOREM 1.2 (see [8]). If D is a digraph such that every vertex has indegree at
least one, then the number of quasikernels of D is less than or equal to the number of
quasikernels of its line digraph L(D).

DEFINITION 1.5. Let D be a digraph. By the directed distance dp(x,y) from the
vertex x to the vertex y in D we mean the length of a shortest directed path from x to
yin D.

DEFINITION 1.6 (see [10]). Let k and l be natural numbers with k > 2,1 > 1. A
set J C V(D) will be called a (k,1)-kernel of the digraph D if

(1) for each x' # x, {x,2'} C J we have dp(x,z’) >k,

(2) for each y € (V(D)\ J), there ezists x € J such that dp(y,x) <.

Notice that, for k = 2, I = 1, we have that a (k,[)-kernel is a kernel and that for
k=2,1=2, a (k,l)-kernel is a quasikernel.

2. Semikernels and (k,l)-kernels in the line digraph.

DEFINITION 2.1 (see [9]). Let D = (V(D), A(D)) be a digraph. We denote by
P(X) the set of all the subsets of the set X, and f : P(V(D)) — P(A(D)) will denote
the function defined as follows: for each Z C V (D), f(Z) = {(u,z) € A(D)|z € Z}.
Also, we denote by f : P(A(D)) — P(V(D)) the function defined as follows: for each
ACAD), f(A) ={z e V(D)|(u,z) € A}.

LEMMA 2.1 (see [9]). If Z C V(D) is an independent set of D, then f(Z)y is an
independent set in L(D).

THEOREM 2.1. If D is a digraph such that every vertex has indegree at least one,
then D has a semikernel if and only if L(D) has a semikernel.

Proof. If D has a semikernel S, then from the proof of Theorem 2.1 [8], we know
that f(S5)r is a semikernel of L(D).

Conversely, if L(D) has a semikernel A, then we will show that f(A) is a semikernel
of D.

First we prove that f(A) is independent. By contradiction, if f(A) is not indepen-
dent, then there are two vertices 2,y € f(A) such that (z,y) € A(D). Since x € f(A),
there exists a vertex v € V(D) such that (u,x) € A. Since ((u, ), (z,y)) is an A(z, y)-
arc in L(D) and A is a semikernel of L(D), there must be an arc (y,v) € A(D) such
that (y,v) € A and ((z,9), (y,v)) € A(L(D)). Since y € f(A), there is a t € V(D)
such that (¢,y) € A. Then we have {(¢,y), (y,v)} C A, with ((¢,v), (y,v)) € A(L(D)),
which contradicts the independence of A. We conclude that f(A) is independent.

Now, let y € V(D) such that there is a f(A)y-arc; there exists x € f(A) with
(z,y) € A(D). Since z € f(A), there is an arc (z,2) € A. Thus ((z,2), (z,y)) is an
A(z,y)-arc in L(D). Since A is a semikernel of L(D), there exists an (z,y)A-arc in
L(D). Let that arc be ((x,%), (y,u)) so that (y,u) € A and then u € f(A). We have
proved that there is a yf(A)-arc in D. Hence f(A) is a semikernel of D. 0

THEOREM 2.2. Let D be a digraph such that each vertex has indegree at least
one. Then the number of (k,1)-kernels in L(D) is less than or equal to the number
of (k,1)-kernels in D.
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Proof. First we will prove that if K is a (k,1)-kernel of L(D), then f(K) is a
(k, 1)-kernel of D.

Let K be a (k, 1)-kernel of L(D).

(a) If x # 2/, {z,2'} C f(K), then dp(z,2’) > k.

By contradiction, suppose that dp(z,2') = n < k. Take a = (x = g, 21,...,2, =
'), a shortest directed path from x to 2’ contained in D. Since x € f(K), there exists
u € V(D) such that (u,x) € K. Denote by a; = (v;_1,2;) € A(D), 1 <i < n, and
consider the following two possibilities:

If a, = (zn_1,7,) € K, consider that ((u,z),ay,as,...,a,) is a directed path
from (u, ) to a, contained in L(D) of length n < k with {(u,z),a,} C K; this
contradicts part (1) of Definition 1.6, as K is a (k, 1)-kernel of L(D).

If a, = (Tn_1,7,) ¢ K, then it follows from part (2) of Definition 1.6 that there
exists (z,,2) € K such that ((z,—1,2n), (¥n, 2)) € A(L(D)) (as K is a (k, 1)-kernel of

L(D)). On the other hand, 2’ = z,, € f(K), so there exists v € V(D) with (v,z,) € K
and then ((v,x,), (z,,2)) € A(L(D)) with {(v,7,), (zn,2)} C K, contradicting part
(1) of Definition 1.6 as K is a (k, 1)-kernel of L(D), k > 2.

(b) If y € V(D) \ f(K), then there exists x € f(K) such that (y,z) € A(D).

Since y € V (D), it follows from the hypothesis of Theorem 2.1 that there exists
u € V(D) with (u,y) € A(D). Now y € V(D) \ f(K) implies (u,y) € V(L(D)) \
K; it follows from part (2) of Definition 1.6 that there exists (y,z) € K such that
((u,y), (y, 7)) € A(L(D)) (because K is a (k, 1)-kernel of L(D)). Since (y,z) € K, we
have z € f(K) and (b) is proved.

Let K1 be the set of all (k,1)-kernels of L(D) and K the set of all (k, 1)-kernels
of D. We will prove that f’ : K; — K, where f’ is the restriction of f to K1, is an
injective function.

(C) If Kl,kg € K4, Rl #* [_(27 then fl<Rl) =+ f/(Kg)

Suppose, without loss of generality, that K; \ Ky # () and take (u,v) € K \ K.
Clearly, from Definition 2.1 v € f’(K;) and we will show that v ¢ f'(K5). By con-
tradiction, assume v € f'(Ks); hence there exists (z,v) € K. Since (u,v) ¢ Ko,
it follows from part (2) of Definition 1.6 that there exists (v,y) € K. Hence
((z,v), (v,y)) € A(L(D)) with {(z,v), (v,y)} C K, contradicting part (1) of Defi-
nition 1.6, because Ko is a (k, 1)-kernel of L(D). We conclude that v ¢ f'(K3), and
so f'(Ky) # f'(K3) and f’ is injective. 0

Remark 2.1. The hypothesis that each vertex has indegree at least one can-
not be omitted in Theorem 2.2 for k£ > 3. It suffices to consider D with V(D) =
{u1, ug, ug, ug, us, ug} and A(D) = {(u1,u2), (uz,us), (ug,us), (us,ug)}. Here D has
no (k,1)-kernel but L(D) has one (k, 1)-kernel for any k > 3.

Remark 2.2. The inequality announced in Theorem 2.2 can be strict for k& >
3. Consider D with V(D) = {uy,u2,uz} and A(D) = {(u1,uz2), (uz,us), (us,u1),
(u1,u3)}. Then D has a (k,1)-kernel and L(D) does not have any (k, 1)-kernel for
k> 3.

THEOREM 2.3. Let D be a digraph such that every verter has indegree at least
one. Then the number of (k,l)-kernels in D is less than or equal to the number of
(2,1)-kernels in L(D).

Proof. First we will prove that if K is a (k,l)-kernel of D, k > 2, then f(K) is a
(2,1)-kernel of L(D).

Let K be a (k,1)-kernel of D.

(a) If a # a’, {a,a’} C f(K), then dr(p)(a,a’) > 2.

By contradiction, suppose that dr(p)(a,a’) <1, as a # a’, then dp(py(a,a’) = 1;
it follows from Definition 1.1 that the terminal endpoint of a is the initial endpoint
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of a’. Denoting a = (x,y),a’ = (y, 2), it follows from Definition 2.1 and the fact
{a,d’} C f(K) that {y, 2z} C K, so (y,2) € A(D) with {y, z} C K, contradicting part
(1) of Definition 1.6 as K is a (k,[)-kernel of D.

(b) If b€ V(L(D)) \ f(K), then there exists a € f(K) such that dpp)(b,a) <.

Denoting b = (u,v) we have from Definition 2.1 and the fact b ¢ f(K) that
v ¢ K; now part (2) of Definition 1.6 implies that there exists w € K such that
dp(v,w) =n <. Let (v=xg,21,...,2, = w) be a shortest directed path from v to
w in D and denote a; = (x;-1,x;) € A(D). Then (b,a1,as,...,a,) is a directed path
in L(D) of length n from b to a,, and since w € K we have a,, € f(K), so taking
a = an, (b) is proved.

Let K be the set of all (k,l)-kernels of D, k > 2, and let Ky be the set of all
(2,1)-kernels of L(D). We will prove that f': K — Ko, where f’ is the restriction of
f to K, is an injective function.

(C) If K, K5 € IC, K 75 KQ, then f/(Kl) 75 f/(KQ)

Suppose, without loss of generality, that K; \ Ko # 0 and take v € K7 \ K. Tt
follows from the hypothesis of Theorem 2.3 that there exists (u,v) € A(D); it follows
from Definition 2.1 that (u,v) € f/(K1) \ f/(K2) and so f'(K7) # f/(K2). O

Remark 2.3. The hypothesis that each vertex has indegree at least one cannot
be omitted in Theorem 2.3 for [ > 2. Consider that D = T is the directed path of
length two; L(D) 2 T} is the directed path of length one, D has two (2,1)-kernels for
any [ > 2, and L(D) has just one (2,1)-kernel for any [ > 2.

Remark 2.4. The inequality announced in Theorem 2.3 can be strict for [ > 2.
Consider any k, k > 1+ 1 and T has no (k,[)-kernel but that L(D) = Tj_5 has a
kernel, and hence a (k,1)-kernel, for any [ > 2.

Remark 2.5. As a direct consequence of Theorems 2.2 and 2.3 we obtain Theorem
1.1 in the case that each vertex has indegree at least one, as a kernel is a (2, 1)-kernel.
In addition, Theorem 1.2 is a direct consequence of Theorem 2.3, as a quasikernel is
a (2,2)-kernel.

COROLLARY 2.1. If D is a digraph such that each vertex has indegree at least
one, then the number of (2,1)-kernels in D is less than or equal to the number of
(2,1)-kernels in L(D).

The proof is a direct consequence of Theorem 2.3.

THEOREM 2.4. Let D be a digraph such that every vertex has indegree at least
one. If L(D) has a (k,l)-kernel, then D has a (k',l')-kernel, for k'+1 <k andl <.

Proof. Let D be a digraph as in the hypothesis, K a (k,[)-kernel of L(D), k' +1 <
k, and [ <1’. We will prove that f(K) is a (k',1’)-kernel of D.

(a) If {z,y} C f(K), then dp(z,y) > k'

By contradiction, suppose that dp(z,y) = n < k', and let (x = xg,21,...,
x, = y) be a shortest directed path from x to y in D. Since z € f(K), there exists
an arc a = (u,z) € K. Denoting a; = (z;_1,2;) € A(D), 1 < i < n, we have from
Definition 1.1 that (a, ay, ..., a,) is a directed path in L(D) of length n. Now consider
two possible cases.

If a, € K, then drpy(a,a,) <n <k <k with {a,a,} C K, contradicting part
(1) of Definition 1.6, as K is a (k,)-kernel of L(D).

If a,, ¢ K, then it follows from part (2) of Definition 1.6 that there exists b € K
such that dpp)(an,b) <I; let (a, = bo, b1, ..., by, = b) be a shortest directed path in
L(D) from a,, to b. On the other hand, since y = x,, € f(K), there exists ¢ = (v,y) €
K. Now consider two possibilities.

If ¢ # b, then it follows from Definition 1.1 that (¢, by, ba, ..., b, = b) is a directed
path in L(D) from ¢ to b in L(D) of length m <[ < k with {c,b} C K, contradicting
part (1) of Definition 1.6, as K is a (k,[)-kernel of L(D).
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If ¢ = b, then (a,a1,az,...,a, = bg,b1,...,b,, = b) is a directed walk from a
to b in L(D) of length n + m; hence there exists in L(D) a directed path from a
to b of length at most n +m and n+m < k' +1 < k. So dppy(a,b) < k, a #n
(because © # y, a = (u,z),b =c = (v,y)), and {a,b} C K. This contradicts part (1)
of Definition 1.6, as K is a (k,l)-kernel of L(D).

(b) If x ¢ f(K), then there exists y € f(K) such that dp(z,y) <.

Let 2 € V(D) \ f(K). It follows from the hypothesis of Theorem 2.4 that there
exists a = (u,z) € A(D), and Definition 2.1 implies @ ¢ K. Since a ¢ K and K
is a (k,l)-kernel of L(D), it follows from part (2) of Definition 1.6 that there exists
b € K such that dp(py(a,b) < I; let b = (v,y). Clearly y € f(K) and dp(z,y) <
<. 0

THEOREM 2.5. Let D be a digraph such that each vertex has indegree at least one.
If L(D) has a (k,1)-kernel A with the properties that | < k and, for each arc a € A,
there is an arc b # a in A such that the terminal endpoints of a and b are the same,
then f(A) is a (k,1)-kernel of D.

Proof. Let D be a digraph and A a (k,[)-kernel of L(D) as in the hypothesis of
Theorem 2.5. We will prove that f(A) is a (k,[)-kernel of D.

(a) If {z,y} C f(A), x # y, then dp(z,y) > k.

By contradiction, suppose that dp(z,y) = n < k and let (z = zg,z1,..., Tn, = Y)
be a shortest directed path from z to y in D. Since z € f(A), there exists a = (u, ) €
A. Denote by a; = (;_1,7;),1 < i < n and consider the following two possible cases.

If a, = (v,_1,y) € A, then (a,ay,as,...,a,) is a directed path of length n < k
contained in L(D) from a to a, with a # a, and {a,a,} C A. This contradicts part
(1) of Definition 1.6, as A is a (k,[)-kernel of L(D).

If a, = (,_1,y) ¢ A, it follows from part (2) of Definition 1.6 that there exists
b € A such that dp(p)(an,b) <1 < k. On the other hand, since y € f(A), there exists
¢ = (v,y) € A. Now consider two possibilities.

If b # ¢, we consider a shortest directed path from a,, to b, say (a, = bo,b1,...,b, =
b), contained in L(D); then it follows from Definition 2.1 that (¢, b1, ba, ..., b, = b) is
also a directed path in L(D) of length n < k from ¢ to b with ¢ # b and {c,b} C A,
contradicting part (1) of Definition 1.6, as A is a (k,[)-kernel of L(D).

If b = ¢, we consider an arc d € A, d # b such that d and b have the same terminal
endpoint (this is from the hypothesis of Theorem 2.5). It follows from Definition 2.1
that (d,b1,bq,...,b, = b) is a directed path contained in L(D) from d to b of length
n < k with d # b, {d,b} C A, contradicting part (1) of Definition 1.6.

(b) If x ¢ f(A), then there exists y € f(A) such that dp(x,y) < L.

It follows from the hypothesis of Theorem 2.5 that there exists an arc a = (u, x) €
A(D); since = ¢ f(A), we have a ¢ A. Now a ¢ A and A is a (k,[)-kernel of L(D), so
there exists b € A such that dp(p(a,b) < 1. Let (a = ag, a1, ..., a, = b) be a shortest
directed path in L(D) from a to b, and a; = (z;—1,2;) for 1 <i <n, b= (xp_1,2n);
then (z,21,...,Z_1,2Zy) is a directed walk in D of length n < from z to x,; clearly
Definition 2.1 implies x,, € f(A). So, taking y = x,,, (b) is thus proved. 0

COROLLARY 2.2. Let D be a digraph such that each verter has indegree at least
one and let 1 < | < k. If each (k,l)-kernel A of L(D) satisfies that, for each arc
a € A, there is an arc b € A such that the terminal endpoints of a and b are the
same, then the number of (k,l)-kernels of L(D) is less than or equal to the number of
(k,1)-kernels of D.

Proof. Let 1 <1 < k, K1 be the set of all (k,)-kernels of L(D), let K be the set
of all (k,l)-kernels of D, and let f’ : K1 — K be the restriction of f to ;. From
Theorem 2.5 it suffices to prove that f’ is an injective function.

(C) If Kl 7& RQ and {Kl,KQ} Q Kl, then f_/(Kl) 7é f_/(KQ)
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Since K1 # K, we can assume, without loss of generality, that K; \ Ky # ). Let
a = (u,r) € K1\ Ky. It follows from Definition 2.1 that = € f’(K), and we will show
that = ¢ f'(Ky).

By contradiction, suppose that € f'(K5). Hence there exists b = (v,7) € Ko.
Since a = (u,z) ¢ Ko and K, is a (k,[)-kernel of L(D), there exists ¢ € Ko such that
dr(pyla,c) <1 < k. Let (a = ap,a1,...,a, = c) be a shortest directed path in L(D)
from a to ¢ and consider the following two possibilities:

If b # ¢, then it follows from Definition 2.1 that (b, a1, aq,...,a, = c) is a directed
path in L(D) from b to ¢ of length n < I < k with {b,c} C K», b # c. This contradicts
part (1) of Definition 1.6, as Ko is a (k,[)-kernel of L(D).

If b = ¢, we have from the hypothesis of Corollary 2.2 that there exists an arc
d € K, such that d # b and that d and b have the same terminal endpoint . Then it
follows from Definition 2.1 that (d,as,as,...,a, = ¢ =1) is a directed path in L(D)
of length n < k < [ from d to b with d # b, {d,b} C Ka, contradicting part (1) of
Definition 1.6, as K> is a (k, l)-kernel of L(D). d

THEOREM 2.6. Every digraph has a (k,2k — 2)-kernel.

Proof. We proceed by induction on |V (D)|.

For D with |V(D)| = 1 it is obvious. Suppose that if D’ is a digraph with
|[V(D")| < n, then D’ has a (k, 2k —2)-kernel, and let D be a digraph with [V (D)| = n.

Let 9 € V(D) and D* = D[V(D) \ {z € V(D)|dp(z,z0) < k —1}]. Clearly
|V (D*)| < n, and hence D* has a (k, 2k —2)-kernel, namely S*. Consider the following
two possibilities.

If there exists a directed path in D of length less than or equal to k — 1, then S*
is a (k,2k — 2)-kernel of D.

If there is no directed path in D from xg to some point of S* of length less than
or equal to k — 1, then S* U {xz¢} is a (k, 2k — 2)-kernel of D. 0

COROLLARY 2.3. Ewvery digraph has a (k,1)-kernel for 1 > 2k — 2.

The proof is a direct consequence of Theorem 2.6 and Definition 1.6, as a (k,1)-
kernel of a digraph D is also a (k,1’)-kernel for every I’ > 1.

Remark 2.6. The hypothesis [ > 2k — 2 cannot be omitted in Corollary 2.3.
Consider Cy,_1 to be the directed cycle of length 2k — 1; for any | < 2k — 1, the
digraph Co,_1 has no (k,1)-kernel.

COROLLARY 2.4 (see [3]). Every digraph has a quasikernel.

The proof is a direct consequence of Theorem 2.6 by taking k = 2, as a quasikernel
is a (2, 2)-kernel.
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