Abstract. Let D be a digraph with minimum indegree at least one. The following results are proved: a digraph D has a semikernel if and only if its line digraph $L(D)$ does; the number of (k, l)-kernels in $L(D)$ is less than or equal to that in D; if the number of (k, l)-kernels in D is less than or equal to the number of $(2, l)$-kernels in $L(D)$, and if $L(D)$ has a (k, l)-kernel, then D has a (k', l')-kernel for $k' + l \leq k, l \leq l'$. As a consequence, it obtains previous results about kernels and quasikernels in the line digraph.

It is also proved that any digraph has a (k, l)-kernel with $l \geq 2k - 2, k \geq 1$, generalizing a previous result on the existence of quasikernels in digraphs.

Key words. kernel, (k, l)-kernels, line digraph, semikernels

AMS subject classification. 0C20

1. Introduction. For general concepts we refer the reader to [1].

DEFINITION 1.1. Let $D = (V(D), A(D))$ be a digraph. The line digraph $L(D)$ of D is the digraph $L(D) = (V(L(D)), A(L(D)))$ with set of vertices the set of arcs of D, and for any $h, k \in A(D)$ there is $(h, k) \in A(L(D))$ if and only if the corresponding arcs h, k induce a directed walk in D, i.e., the terminal endpoint of h is the initial endpoint of k. In what follows we denote the arc $h = (u, v) \in A(D)$ and the vertex $h \in V(L(D))$ by the same symbol. If H is a set of arcs in D, it is also a set of vertices of $L(D)$. When we want to emphasize our interest in $H \subseteq A(D)$ as a set of vertices of $L(D)$, we use the symbol H_L instead of H.

DEFINITION 1.2. A set $K \subseteq V(D)$ is said to be a kernel if it is both independent (a vertex in K has no successor in K) and absorbing (a vertex not in K has a successor in K).

This concept was introduced by Von Neumann [11] and it has found many applications [1], [2]. Several authors have been investigating sufficient conditions for the existence of kernels in digraphs, namely, Von Neumann and Morgenstern [11], Richardson [13], Duchet and Meyniel [4], [5], and Galeana-Sánchez and Neumann-Lara [7]. In [9], Harminc considered the existence of kernels in the line digraph of a given digraph D and he proved the following result.

THEOREM 1.1 (see [8]). The number of kernels of a digraph D is equal to the number of kernels in its line digraph $L(D)$.

DEFINITION 1.3 (see [12]). A semikernel S of D is an independent set of vertices such that, for every $z \in V(D) \setminus S$ for which there exists an Sz-arc, there also exists a zS-arc.

The concept of semikernel is closely related to that of kernel, and is very useful to find kernels in digraphs, where every induced subdigraph of a digraph D has a semikernel then D has a kernel (see [12]). In [8] it was proved that the number of
semikernels of a digraph D is less than or equal to the number of semikernels of $L(D)$. In this paper we prove that a digraph D has a semikernel if and only if $L(D)$ does.

Definition 1.4. A quasikenrel Q of a digraph D is an independent set of vertices such that $V(D) = Q \cup \Gamma^{-}(Q) \cup \Gamma^{-}(\Gamma^{-}(Q))$ (where for any $A \subseteq X$, $\Gamma^{-}(A) = \{x \in X | x \text{ has a successor in } A\}$).

In [3], Chvátal and Lovász proved that any digraph has a quasikenrel; a generalization of this result was obtained by Duchet, Hamidoune, and Meyniel [6]. In [8] the following result was proved.

Theorem 1.2 (see [8]). If D is a digraph such that every vertex has indegree at least one, then the number of quasikenrels of D is less than or equal to the number of quasikenrels of its line digraph $L(D)$.

Definition 1.5. Let D be a digraph. By the directed distance $d_{D}(x, y)$ from the vertex x to the vertex y in D we mean the length of a shortest directed path from x to y in D.

Definition 1.6 (see [10]). Let k and l be natural numbers with $k \geq 2$, $l \geq 1$. A set $J \subseteq V(D)$ will be called a (k, l)-kernel of the digraph D if

1. for each $x' \neq x$, $\{x, x'\} \subseteq J$ we have $d_{D}(x, x') \geq k$,
2. for each $y \in (V(D) \setminus J)$, there exists $x \in J$ such that $d_{D}(y, x) \leq l$.

Notice that, for $k = 2$, $l = 1$, we have that a (k, l)-kernel is a kernel and that for $k = 2$, $l = 2$, a (k, l)-kernel is a quasikenrel.

2. Semikenrels and (k, l)-kenrels in the line digraph.

Definition 2.1 (see [9]). Let $D = (V(D), A(D))$ be a digraph. We denote by $\mathcal{P}(X)$ the set of all the subsets of the set X, and $f : \mathcal{P}(V(D)) \rightarrow \mathcal{P}(A(D))$ will denote the function defined as follows: for each $Z \subseteq V(D)$, $f(Z) = \{(u, x) \in A(D) | x \in Z\}$. Also, we denote by $\bar{f} : \mathcal{P}(A(D)) \rightarrow \mathcal{P}(V(D))$ the function defined as follows: for each $A \subseteq A(D)$, $\bar{f}(A) = \{x \in V(D) | (u, x) \in A\}$.

Lemma 2.1 (see [9]). If $Z \subseteq V(D)$ is an independent set of D, then $f(Z)^{\bar{f}}$ is an independent set in $L(D)$.

Theorem 2.1. If D is a digraph such that every vertex has indegree at least one, then D has a semikenrel if and only if $L(D)$ has a semikenrel.

Proof. If D has a semikenrel S, then from the proof of Theorem 2.1 [8], we know that $f(S)^{\bar{f}}$ is a semikenrel of $L(D)$.

Conversely, if $L(D)$ has a semikenrel A, then we will show that $f(A)$ is a semikenrel of D.

First we prove that $\bar{f}(A)$ is independent. By contradiction, if $\bar{f}(A)$ is not independent, then there are two vertices $x, y \in \bar{f}(A)$ such that $(x, y) \in A(D)$. Since $x \in \bar{f}(A)$, there exists a vertex $u \in V(D)$ such that $(u, x) \in A$. Since $((u, x), (x, y))$ is an $A(x, y)$-arc in $L(D)$ and A is a semikenrel of $L(D)$, there must be an arc $(y, v) \in A(D)$ such that $(y, v) \in A$ and $((x, y), (y, v)) \in A(L(D))$. Since $y \in \bar{f}(A)$, there is a $t \in V(D)$ such that $(t, y) \in A$. Then we have $\{(t, y), (y, v)\} \subseteq A$, with $((t, y), (y, v)) \in A(L(D))$, which contradicts the indepndence of A. We conclude that $\bar{f}(A)$ is independent.

Now, let $y \in V(D)$ such that there is a $f(A)y$-arc; there exists $x \in f(A)$ with $(x, y) \in A(D)$. Since $x \in \bar{f}(A)$, there is an arc $(z, x) \in A$. Thus $((z, x), (x, y))$ is an $A(x, y)$-arc in $L(D)$. Since A is a semikenrel of $L(D)$, there exists an $(x, y)A$-arc in $L(D)$. Let that arc be $((x, y), (y, u))$ so that $(y, u) \in A$ and then $u \in \bar{f}(A)$. We have proved that there is a $y\bar{f}(A)$-arc in D. Hence $\bar{f}(A)$ is a semikenrel of D.

Theorem 2.2. Let D be a digraph such that each vertex has indegree at least one. Then the number of $(k, 1)$-kenrels in $L(D)$ is less than or equal to the number of $(k, 1)$-kenrels in D.
Clearly, from Definition 2.1, \(x \) contradicts part (1) of Definition 1.6, so it follows from Definition 1.1 that the terminal endpoint of \(u \) is contained in \(K \).

3. Consider \(D \) no \((u, x)\) of Definition 1.6 as \(K \). Let \(a, a' \) be the set of all \((u, x) \) contained in \(D \) of length \(n < k \) with \(\{u, x\}, a, a' \subseteq \bar{K} \); this contradicts part (1) of Definition 1.6, as \(\bar{K} \) is a \((k, 1)\)-kernel of \(L(D) \).

If \(a_n = (x_{n-1}, x_n) \notin \bar{K} \), then it follows from part (2) of Definition 1.6 that there exists \((x_n, z) \in \bar{K} \) such that \(((x_{n-1}, x_n), (x_n, z)) \in A(L(D)) \) (as \(\bar{K} \) is a \((k, 1)\)-kernel of \(L(D) \)). On the other hand, \(x' = x_n \in \bar{K} \), so there exists \(v \in V(D) \) with \((v, x_n) \in \bar{K} \) and then \(((v, x_n), (x_n, z)) \in A(L(D)) \) with \(\{v, x_n\}, (x_n, z) \subseteq \bar{K} \), contradicting part (1) of Definition 1.6 as \(\bar{K} \) is a \((k, 1)\)-kernel of \(L(D) \), \(k \geq 2 \).

(b) If \(y \in V(D) \setminus \bar{K} \), then there exists \(x \in \bar{K} \) such that \((y, x) \in A(D) \).

Since \(y \in V(D) \), it follows from the hypothesis of Theorem 2.1 that there exists \(u \in V(D) \) with \((u, y) \in A(D) \). Now \(y \in V(D) \setminus \bar{K} \) implies \((u, y) \in V(L(D)) \setminus \bar{K} \); it follows from part (2) of Definition 1.6 that there exists \((y, x) \in \bar{K} \) such that \(((u, y), (y, x)) \in A(L(D)) \) (because \(\bar{K} \) is a \((k, 1)\)-kernel of \(L(D) \)). Since \((y, x) \in \bar{K} \), we have \(x \in \bar{K} \) and (b) is proved.

Let \(K_1 \) be the set of all \((k, 1)\)-kernels of \(L(D) \) and \(K \) the set of all \((k, 1)\)-kernels of \(D \). We will prove that \(f' : K_1 \to K \), where \(f' \) is the restriction of \(f \) to \(K_1 \), is an injective function.

(c) If \(K_1, K_2 \subseteq K_1, K_1 \neq K_2 \), then \(f'(K_1) \neq f'(K_2) \).

Suppose, without loss of generality, that \(K_1 \setminus K_2 \neq \emptyset \) and take \((u, v) \in K_1 \setminus K_2 \). Clearly, from Definition 2.1 \(v \in f'(K_1) \) and we will show that \(v \notin f'(K_2) \). By contradiction, assume \(v \in f'(K_2) \); hence there exists \((z, v) \in K_2 \). Since \((u, v) \notin K_2 \), it follows from part (2) of Definition 1.6 that there exists \((v, y) \) in \(K_2 \) such that \(((z, v), (v, y)) \subseteq K_2 \), contradicting part (1) of Definition 1.6, because \(K_2 \) is a \((k, 1)\)-kernel of \(L(D) \). We conclude that \(v \notin f'(K_2) \), and so \(f'(K_1) \neq f'(K_2) \) and \(f' \) is injective.

Remark 2.1. The hypothesis that each vertex has indegree at least one cannot be omitted in Theorem 2.2 for \(k \geq 3 \). It suffices to consider \(D \) with \(V(D) = \{u_1, u_2, u_3, u_4, u_5, u_6\} \) and \(A(D) = \{(u_1, u_2), (u_2, u_3), (u_4, u_5), (u_5, u_6)\} \). Here \(D \) has no \((k, 1)\)-kernel but \(L(D) \) has one \((k, 1)\)-kernel for any \(k \geq 3 \).

Remark 2.2. The inequality announced in Theorem 2.2 can be strict for \(k \geq 3 \). Consider \(D \) with \(V(D) = \{u_1, u_2, u_3\} \) and \(A(D) = \{(u_1, u_2), (u_2, u_3), (u_3, u_1)\} \). Then \(D \) has a \((k, 1)\)-kernel and \(L(D) \) does not have any \((k, 1)\)-kernel for \(k \geq 3 \).

Theorem 2.3. Let \(D \) be a digraph such that every vertex has indegree at least one. Then the number of \((k, l)\)-kernels in \(D \) is less than or equal to the number of \((2, l)\)-kernels in \(L(D) \).

Proof. First we will prove that if \(K \) is a \((k, l)\)-kernel of \(D \), \(k \geq 2 \), then \(f(K) \) is a \((2, l)\)-kernel of \(L(D) \).

Let \(K \) be a \((k, l)\)-kernel of \(D \).

(a) If \(a \neq a' \), \(\{a, a'\} \subseteq f(K) \), then \(d_{L(D)}(a, a') \geq 2 \).

By contradiction, suppose that \(d_{L(D)}(a, a') \leq 1 \), as \(a \neq a' \), then \(d_{L(D)}(a, a') = 1 \); it follows from Definition 1.1 that the terminal endpoint of \(a \) is the initial endpoint
of \(a' \). Denoting \(a = (x, y), a' = (y, z) \), it follows from Definition 2.1 and the fact \\
\{a, a'\} \subseteq f(K) \) that \(\{y, z\} \subseteq K \), so \((y, z) \in A(D) \) with \(\{y, z\} \subseteq K \), contradicting part \((1) \) of Definition 1.6 as \(K \) is a \((k, l)\)-kernel of \(D \).

(b) If \(b \in V(L(D)) \setminus f(K) \), then there exists \(a \in f(K) \) such that \(d_{L(D)}(b, a) \leq l \).

Denoting \(b = (u, v) \) we have from Definition 2.1 and the fact \(b \notin f(K) \) that \(v \notin K \); now part \((2)\) of Definition 1.6 implies that there exists \(w \in K \) such that \(d_D(v, w) = n \leq l \). Let \(v = x_0, x_1, \ldots, x_n = w \) be a shortest directed path from \(v \) to \(w \) in \(D \) and denote \(a_i = (x_{i-1}, x_i) \in A(D) \). Then \((b, a_1, a_2, \ldots, a_n) \) is a directed path in \(L(D) \) of length \(n \) from \(b \) to \(a_n \), and since \(w \in K \) we have \(a_n \in f(K) \), so taking \(a = a_n \), \((b)\) is proved.

Let \(\mathcal{K} \) be the set of all \((k, l)\)-kernels of \(D \), \(k \geq 2 \), and let \(\mathcal{K}_2 \) be the set of all \((2, l)\)-kernels of \(L(D) \). We will prove that \(f' : \mathcal{K} \to \mathcal{K}_2 \), where \(f' \) is the restriction of \(f \) to \(\mathcal{K} \), is an injective function.

(c) If \(K_1, K_2 \in \mathcal{K}, K_1 \neq K_2 \), then \(f'(K_1) \neq f'(K_2) \).

Suppose, without loss of generality, that \(K_1 \setminus K_2 \neq \emptyset \) and take \(v \in K_1 \setminus K_2 \). It follows from the hypothesis of Theorem 2.3 that there exists \((u, v) \in A(D) \); it follows from Definition 2.1 that \((u, v) \in f'(K_1) \setminus f'(K_2) \) and so \(f'(K_1) \neq f'(K_2) \). \(\square \)

Remark 2.3. The hypothesis that each vertex has indegree at least one cannot be omitted in Theorem 2.3 for \(l \geq 2 \). Consider that \(D \cong T_2 \) is the directed path of length two; \(L(D) \cong T_1 \) is the directed path of length one, \(D \) has two \((2, l)\)-kernels for any \(l \geq 2 \), and \(L(D) \) has just one \((2, l)\)-kernel for any \(l \geq 2 \).

Remark 2.4. The inequality announced in Theorem 2.3 can be strict for \(l \geq 2 \). Consider any \(k, k > 1 + l \) and \(T_{k-1} \) has no \((k, l)\)-kernel but that \(L(D) \cong T_{k-2} \) has a kernel, and hence a \((k, l)\)-kernel, for any \(l \geq 2 \).

Remark 2.5. As a direct consequence of Theorems 2.2 and 2.3 we obtain Theorem 1.1 in the case that each vertex has indegree at least one, as a kernel is a \((2, l)\)-kernel. In addition, Theorem 1.2 is a direct consequence of Theorem 2.3, as a quasikernel is a \((2, 2)\)-kernel.

Corollary 2.1. If \(D \) is a digraph such that each vertex has indegree at least one, then the number of \((2, l)\)-kernels in \(D \) is less than or equal to the number of \((2, l)\)-kernels in \(L(D) \).

The proof is a direct consequence of Theorem 2.3.

Theorem 2.4. Let \(D \) be a digraph such that each vertex has indegree at least one. If \(L(D) \) has a \((k, l)\)-kernel, then \(D \) has a \((k', l')\)-kernel, for \(k' + l \leq k \) and \(l \leq l' \).

Proof. Let \(D \) be a digraph as in the hypothesis, \(\tilde{K} \) a \((k, l)\)-kernel of \(L(D) \), \(k' + l \leq k \), and \(l \leq l' \). We will prove that \(\tilde{f}(\tilde{K}) \) is a \((k', l')\)-kernel of \(D \).

(a) If \((x, y) \subseteq \tilde{f}(\tilde{K}) \), then \(d_D(x, y) \geq k' \).

By contradiction, suppose that \(d_D(x, y) = n < k' \), and let \(x = x_0, x_1, \ldots, x_n = y \) be a shortest directed path from \(x \) to \(y \) in \(D \). Since \(x \in \tilde{f}(\tilde{K}) \), there exists an arc \(a = (u, x) \in \tilde{K} \). Denoting \(a_i = (x_{i-1}, x_i) \in A(D) \), \(1 \leq i \leq n \), we have from Definition 1.1 that \((a, a_1, \ldots, a_n) \) is a directed path in \(L(D) \) of length \(n \). Now consider two possible cases.

If \(a_n \in \tilde{K} \), then \(d_{L(D)}(a, a_n) \leq n < k' < k \) with \(\{a, a_n\} \subseteq \tilde{K} \), contradicting part \((1)\) of Definition 1.6, as \(\tilde{K} \) is a \((k, l)\)-kernel of \(L(D) \).

If \(a_n \notin \tilde{K} \), then it follows from part \((2)\) of Definition 1.6 that there exists \(b \in \tilde{K} \) such that \(d_{L(D)}(a_n, b) \leq l \); let \(a_n = b_0, b_1, \ldots, b_m = b \) be a shortest directed path in \(L(D) \) from \(a_n \) to \(b \). On the other hand, since \(y = x_n \in \tilde{f}(\tilde{K}) \), there exists \(c = (v, y) \in \tilde{K} \). Now consider two possibilities.

If \(c \neq b \), then it follows from Definition 1.1 that \((c, b_1, b_2, \ldots, b_m = b) \) is a directed path in \(L(D) \) from \(c \) to \(b \) in \(L(D) \) of length \(m \leq l < k \) with \(\{c, b\} \subseteq \tilde{K} \), contradicting part \((1)\) of Definition 1.6, as \(\tilde{K} \) is a \((k, l)\)-kernel of \(L(D) \).
If \(c = b \), then \((a,a_1,a_2,\ldots,a_n = b_0,b_1,\ldots,b_m = b)\) is a directed walk from \(a \) to \(b \) in \(L(D) \) of length \(n + m \); hence there exists in \(L(D) \) a directed path from \(a \) to \(b \) of length at most \(n + m \) and \(n + m < k' + l \leq k \). So \(d_{L(D)}(a,b) < k, a \neq n \) (because \(x \neq y, a = (u,x), b = c = (v,y) \), and \(\{a,b\} \subseteq K \). This contradicts part (1) of Definition 1.6, as \(K \) is a \((k,l)\)-kernel of \(L(D) \).

(b) If \(x \notin f(K) \), then there exists \(y \in f(K) \) such that \(d_D(x,y) \leq l' \).

Let \(x \in V(D) \setminus f(K) \). It follows from the hypothesis of Theorem 2.4 that there exists \(a = (u,x) \in A(D) \), and Definition 2.1 implies \(a \notin K \). Since \(a \notin K \) and \(K \) is a \((k,l)\)-kernel of \(L(D) \), it follows from part (2) of Definition 1.6 that there exists \(b \in K \) such that \(d_{L(D)}(a,b) \leq l \); let \(b = (v,y) \). Clearly \(y \in f(K) \) and \(d_D(x,y) \leq l \leq l' \).

Theorem 2.5. Let \(D \) be a digraph such that each vertex has indegree at least one. If \(L(D) \) has a \((k,l)\)-kernel \(\hat{A} \) with the properties that \(l < k \) and, for each arc \(a \in \hat{A} \), there is an arc \(b \neq a \) in \(\hat{A} \) such that the terminal endpoints of \(a \) and \(b \) are the same, then \(f(\hat{A}) \) is a \((k,l)\)-kernel of \(D \).

Proof. Let \(D \) be a digraph and \(\hat{A} \) a \((k,l)\)-kernel of \(L(D) \) as in the hypothesis of Theorem 2.5. We will prove that \(f(\hat{A}) \) is a \((k,l)\)-kernel of \(D \).

(a) If \((x,y) \notin f(\hat{A}), x \neq y \), then \(d_D(x,y) \geq k \).

By contradiction, suppose that \(d_D(x,y) = n < k \) and let \((x = x_0, x_1, \ldots, x_n = y) \) be a shortest directed path from \(x \) to \(y \) in \(D \). Since \(x \notin f(\hat{A}) \), there exists \(a = (u,x) \in \hat{A} \). Denote by \(a_i = (x_{i-1}, x_i), 1 \leq i \leq n \) and consider the following two possible cases.

If \(a_n = (x_{n-1}, y) \notin \hat{A} \), then \((a_1, a_2, \ldots, a_n)\) is a directed path of length \(n < k \) contained in \(L(D) \) from \(a \) to \(a_n \) with \(a \neq a_n \) and \(\{a, a_n\} \subseteq \hat{A} \). This contradicts part (1) of Definition 1.6, as \(\hat{A} \) is a \((k,l)\)-kernel of \(L(D) \).

If \(a_n = (x_{n-1}, y) \notin \hat{A} \), it follows from part (2) of Definition 1.6 that there exists \(b \in \hat{A} \) such that \(d_{L(D)}(a_n, b) \leq l < k \). On the other hand, since \(y \notin f(\hat{A}) \), there exists \(c = (v,y) \in \hat{A} \). Now consider two possibilities.

If \(b \neq c \), we consider a shortest directed path from \(a_n \) to \(b \), say \((a_n, b_0, b_1, \ldots, b_n = b)\), contained in \(L(D) \); then it follows from Definition 2.1 that \((c, b_1, b_2, \ldots, b_n = b)\) is also a directed path in \(L(D) \) of length \(n < k \) from \(c \) to \(b \) with \(c \neq b \) and \(\{c, b\} \subseteq \hat{A} \), contradicting part (1) of Definition 1.6, as \(\hat{A} \) is a \((k,l)\)-kernel of \(L(D) \).

If \(b = c \), we consider an arc \(d \in \hat{A}, d \neq b \) such that \(d \) and \(b \) have the same terminal endpoint (this is from the hypothesis of Theorem 2.5). It follows from Definition 2.1 that \((d, b_1, b_2, \ldots, b_n = b)\) is a directed path contained in \(L(D) \) from \(d \) to \(b \) of length \(n < k \) with \(d \neq b \), \(\{d, b\} \subseteq \hat{A} \), contradicting part (1) of Definition 1.6.

(b) If \(x \notin f(\hat{A}) \), then there exists \(y \in f(\hat{A}) \) such that \(d_D(x,y) \leq l \).

It follows from the hypothesis of Theorem 2.5 that there exists an arc \(a = (u,x) \in A(D) \); since \(x \notin f(\hat{A}) \), we have \(a \notin \hat{A} \). Now \(a \notin \hat{A} \) and \(\hat{A} \) is a \((k,l)\)-kernel of \(L(D) \), so there exists \(b \in \hat{A} \) such that \(d_{L(D)}(a,b) \leq l \). Let \((a = a_0, a_1, \ldots, a_n = b)\) be a shortest directed path in \(L(D) \) from \(a \) to \(b \), and \(a_i = (x_{i-1}, x_i) \) for \(1 \leq i \leq n, b = (x_n, x_{n+1}) \); then \((x, x_1, \ldots, x_{n-1}, x_n)\) is a directed walk in \(D \) of length \(n \leq l \) from \(x \) to \(x_n \); clearly Definition 2.1 implies \(x_n \in f(\hat{A}) \). So, taking \(y = x_n \), (b) is thus proved.

Corollary 2.2. Let \(D \) be a digraph such that each vertex has indegree at least one and let \(1 \leq l < k \). If each \((k,l)\)-kernel \(\hat{A} \) of \(L(D) \) satisfies that, for each arc \(a \in \hat{A} \), there is an arc \(b \in \hat{A} \) such that the terminal endpoints of \(a \) and \(b \) are the same, then the number of \((k,l)\)-kernels of \(L(D) \) is less than or equal to the number of \((k,l)\)-kernels of \(D \).

Proof. Let \(1 \leq l < k \), \(K_1 \) be the set of all \((k,l)\)-kernels of \(L(D) \), let \(K \) be the set of all \((k,l)\)-kernels of \(D \), and let \(f' : K_1 \rightarrow K \) be the restriction of \(f \) to \(K_1 \). From Theorem 2.5 it suffices to prove that \(f' \) is an injective function.

(c) If \(K_1 \neq K_2 \) and \((K_1, K_2) \subseteq K_1 \), then \(f'(K_1) \neq f'(K_2) \).
Since \(\bar{K}_1 \neq \bar{K}_2 \), we can assume, without loss of generality, that \(\bar{K}_1 \setminus \bar{K}_2 \neq \emptyset \). Let \(a = (u, x) \in \bar{K}_1 \setminus \bar{K}_2 \). It follows from Definition 2.1 that \(x \in \bar{f}(\bar{K}_1) \), and we will show that \(x \notin \bar{f}(\bar{K}_2) \).

By contradiction, suppose that \(x \in \bar{f}(\bar{K}_2) \). Hence there exists \(b = (v, x) \in \bar{K}_2 \). Since \(a = (u, x) \notin \bar{K}_2 \) and \(\bar{K}_2 \) is a \((k, l)\)-kernel of \(L(D) \), there exists \(c \in \bar{K}_2 \) such that

\[
d_{L(D)}(a, c) \leq l < k.
\]

Let \((a = a_0, a_1, \ldots, a_n = c) \) be a shortest directed path in \(L(D) \) from \(a \) to \(c \) and consider the following two possibilities:

If \(b \neq c \), then it follows from Definition 2.1 that \((b, a_1, a_2, \ldots, a_n = c) \) is a directed path in \(L(D) \) from \(b \) to \(c \) of length \(n \leq l < k \) with \(\{b, c\} \subseteq \bar{K}_2 \), \(b \neq c \). This contradicts part (1) of Definition 1.6, as \(\bar{K}_2 \) is a \((k, l)\)-kernel of \(L(D) \).

If \(b = c \), we have from the hypothesis of Corollary 2.2 that there exists an arc \(d \in \bar{K}_2 \) such that \(d \neq b \) and that \(d \) and \(b \) have the same terminal endpoint \(x \). Then it follows from Definition 2.1 that \((d, a_1, a_2, \ldots, a_n = c = b) \) is a directed path in \(L(D) \) of length \(n \leq k < l \) from \(d \) to \(b \) with \(d \neq b \), \(\{d, b\} \subseteq \bar{K}_2 \), contradicting part (1) of Definition 1.6, as \(\bar{K}_2 \) is a \((k, l)\)-kernel of \(L(D) \).

Theorem 2.6. Every digraph has a \((k, 2k - 2)\)-kernel.

Proof. We proceed by induction on \(|V(D)| \).

For \(D \) with \(|V(D)| = 1 \) it is obvious. Suppose that if \(D' \) is a digraph with \(|V(D')| < n \), then \(D' \) has a \((k, 2k - 2)\)-kernel, and let \(D \) be a digraph with \(|V(D)| = n \).

Let \(x_0 \in V(D) \) and \(D^* = D[V(D) \setminus \{x \in V(D) \setminus d_D(x, x_0) \leq k - 1\}] \). Clearly \(|V(D^*)| < n \), and hence \(D^* \) has a \((k, 2k - 2)\)-kernel, namely \(S^* \). Consider the following two possibilities:

If there exists a directed path in \(D \) of length less than or equal to \(k - 1 \), then \(S^* \) is a \((k, 2k - 2)\)-kernel of \(D \).

If there is no directed path in \(D \) from \(x_0 \) to some point of \(S^* \) of length less than or equal to \(k - 1 \), then \(S^* \cup \{x_0\} \) is a \((k, 2k - 2)\)-kernel of \(D \).

Corollary 2.3. Every digraph has a \((k, l)\)-kernel for \(l \geq 2k - 2 \).

The proof is a direct consequence of Theorem 2.6 and Definition 1.6, as a \((k, l)\)-kernel of a digraph \(D \) is also a \((k, l')\)-kernel for every \(l' \geq l \).

Remark 2.6. The hypothesis \(l \geq 2k - 2 \) cannot be omitted in Corollary 2.3. Consider \(C_{2k - 1} \) to be the directed cycle of length \(2k - 1 \); for any \(l < 2k - 1 \), the digraph \(C_{2k - 1} \) has no \((k, l)\)-kernel.

Corollary 2.4 (see [3]). Every digraph has a quasikernel.

The proof is a direct consequence of Theorem 2.6 by taking \(k = 2 \), as a quasikernel is a \((2, 2)\)-kernel.

REFERENCES