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Abstract. Let D be a digraph with minimum indegree at least one. The following results
are proved: a digraph D has a semikernel if and only if its line digraph L(D) does; the number of
(k, 1)-kernels in L(D) is less than or equal to that in D; if the number of (k, l)-kernels in D is less
than or equal to the number of (2, l)-kernels in L(D), and if L(D) has a (k, l)-kernel, then D has a
(k′, l′)-kernel for k′ + l ≤ k, l ≤ l′. As a consequence, it obtains previous results about kernels and
quasikernels in the line digraph.

It is also proved that any digraph has a (k, l)-kernel with l ≥ 2k − 2, k ≥ 1, generalizing a
previous result on the existence of quasikernels in digraphs.
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1. Introduction. For general concepts we refer the reader to [1].
DEFINITION 1.1. Let D = (V (D), A(D)) be a digraph. The line digraph L(D) of

D is the digraph L(D) = (V (L(D)), A(L(D))) with set of vertices the set of arcs of
D, and for any h, k ∈ A(D) there is (h, k) ∈ A(L(D)) if and only if the corresponding
arcs h, k induce a directed walk in D, i.e., the terminal endpoint of h is the initial
endpoint of k. In what follows we denote the arc h = (u, v) ∈ A(D) and the vertex
h ∈ V (L(D)) by the same symbol. If H is a set of arcs in D, it is also a set of vertices
of L(D). When we want to emphasize our interest in H ⊆ A(D) as a set of vertices
of L(D), we use the symbol HL instead of H.

DEFINITION 1.2. A set K ⊆ V (D) is said to be a kernel if it is both independent (a
vertex in K has no successor in K) and absorbing (a vertex not in K has a successor
in K).

This concept was introduced by Von Neumann [11] and it has found many ap-
plications [1], [2]. Several authors have been investigating sufficient conditions for
the existence of kernels in digraphs, namely, Von Neumann and Morgenstern [11] ,
Richardson [13], Duchet and Meyniel [4], [5], and Galeana-Sánchez and Neumann-
Lara [7]. In [9], Harminc considered the existence of kernels in the line digraph of a
given digraph D and he proved the following result.

THEOREM 1.1 (see [8]). The number of kernels of a digraph D is equal to the
number of kernels in its line digraph L(D).

DEFINITION 1.3 (see [12]). A semikernel S of D is an independent set of vertices
such that, for every z ∈ (V (D) \ S) for which there exists an Sz-arc, there also exists
a zS-arc.

The concept of semikernel is nearly related to that of kernel, and is very useful
to find kernels in digraphs, where every induced subdigraph of a digraph D has a
semikernel then D has a kernel (see [12]). In [8] it was proved that the number of
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SEMIKERNELS AND (k, l)-KERNELS IN LINE DIGRAPH 341

semikernels of a digraph D is less than or equal to the number of semikernels of L(D).
In this paper we prove that a digraph D has a semikernel if and only if L(D) does.

DEFINITION 1.4. A quasikernel Q of a digraph D is an independent set of vertices
such that V (D) = Q ∪ Γ−(Q) ∪ Γ−(Γ−(Q)) (where for any A ⊆ X, Γ−(A) = {x ∈
X|x has a successor in A}).

In [3], Chvátal and Lovász proved that any digraph has a quasikernel; a general-
ization of this result was obtained by Duchet, Hamidoune, and Meyniel [6]. In [8] the
following result was proved.

THEOREM 1.2 (see [8]). If D is a digraph such that every vertex has indegree at
least one, then the number of quasikernels of D is less than or equal to the number of
quasikernels of its line digraph L(D).

DEFINITION 1.5. Let D be a digraph. By the directed distance dD(x, y) from the
vertex x to the vertex y in D we mean the length of a shortest directed path from x to
y in D.

DEFINITION 1.6 (see [10]). Let k and l be natural numbers with k ≥ 2, l ≥ 1. A
set J ⊆ V (D) will be called a (k, l)-kernel of the digraph D if

(1) for each x′ 6= x, {x, x′} ⊆ J we have dD(x, x′) ≥ k,
(2) for each y ∈ (V (D) \ J), there exists x ∈ J such that dD(y, x) ≤ l.
Notice that, for k = 2, l = 1, we have that a (k, l)-kernel is a kernel and that for

k = 2, l = 2, a (k, l)-kernel is a quasikernel.

2. Semikernels and (k, l)-kernels in the line digraph.
DEFINITION 2.1 (see [9]). Let D = (V (D), A(D)) be a digraph. We denote by

P(X) the set of all the subsets of the set X, and f : P(V (D))→ P(A(D)) will denote
the function defined as follows: for each Z ⊆ V (D), f(Z) = {(u, x) ∈ A(D)|x ∈ Z}.
Also, we denote by f̄ : P(A(D))→ P(V (D)) the function defined as follows: for each
A ⊆ A(D), f̄(A) = {x ∈ V (D)|(u, x) ∈ A}.

LEMMA 2.1 (see [9]). If Z ⊆ V (D) is an independent set of D, then f(Z)L is an
independent set in L(D).

THEOREM 2.1. If D is a digraph such that every vertex has indegree at least one,
then D has a semikernel if and only if L(D) has a semikernel.

Proof. If D has a semikernel S, then from the proof of Theorem 2.1 [8], we know
that f(S)L is a semikernel of L(D).

Conversely, if L(D) has a semikernelA, then we will show that f̄(A) is a semikernel
of D.

First we prove that f̄(A) is independent. By contradiction, if f̄(A) is not indepen-
dent, then there are two vertices x, y ∈ f̄(A) such that (x, y) ∈ A(D). Since x ∈ f̄(A),
there exists a vertex u ∈ V (D) such that (u, x) ∈ A. Since ((u, x), (x, y)) is an A(x, y)-
arc in L(D) and A is a semikernel of L(D), there must be an arc (y, v) ∈ A(D) such
that (y, v) ∈ A and ((x, y), (y, v)) ∈ A(L(D)). Since y ∈ f̄(A), there is a t ∈ V (D)
such that (t, y) ∈ A. Then we have {(t, y), (y, v)} ⊆ A, with ((t, y), (y, v)) ∈ A(L(D)),
which contradicts the independence of A. We conclude that f̄(A) is independent.

Now, let y ∈ V (D) such that there is a f̄(A)y-arc; there exists x ∈ f̄(A) with
(x, y) ∈ A(D). Since x ∈ f̄(A), there is an arc (z, x) ∈ A. Thus ((z, x), (x, y)) is an
A(x, y)-arc in L(D). Since A is a semikernel of L(D), there exists an (x, y)A-arc in
L(D). Let that arc be ((x, y), (y, u)) so that (y, u) ∈ A and then u ∈ f̄(A). We have
proved that there is a yf̄(A)-arc in D. Hence f̄(A) is a semikernel of D.

THEOREM 2.2. Let D be a digraph such that each vertex has indegree at least
one. Then the number of (k, 1)-kernels in L(D) is less than or equal to the number
of (k, 1)-kernels in D.
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342 H. GALEANA-SÁNCHEZ AND X. LI

Proof. First we will prove that if K̄ is a (k, 1)-kernel of L(D), then f̄(K̄) is a
(k, 1)-kernel of D.

Let K̄ be a (k, 1)-kernel of L(D).
(a) If x 6= x′, {x, x′} ⊆ f̄(K̄), then dD(x, x′) ≥ k.
By contradiction, suppose that dD(x, x′) = n < k. Take α = (x = x0, x1, . . . , xn =

x′), a shortest directed path from x to x′ contained in D. Since x ∈ f̄(K̄), there exists
u ∈ V (D) such that (u, x) ∈ K̄. Denote by ai = (xi−1, xi) ∈ A(D), 1 ≤ i ≤ n, and
consider the following two possibilities:

If an = (xn−1, xn) ∈ K̄, consider that ((u, x), a1, a2, . . . , an) is a directed path
from (u, x) to an contained in L(D) of length n < k with {(u, x), an} ⊆ K̄; this
contradicts part (1) of Definition 1.6, as K̄ is a (k, 1)-kernel of L(D).

If an = (xn−1, xn) /∈ K̄, then it follows from part (2) of Definition 1.6 that there
exists (xn, z) ∈ K̄ such that ((xn−1, xn), (xn, z)) ∈ A(L(D)) (as K̄ is a (k, 1)-kernel of
L(D)). On the other hand, x′ = xn ∈ f̄(K̄), so there exists v ∈ V (D) with (v, xn) ∈ K̄
and then ((v, xn), (xn, z)) ∈ A(L(D)) with {(v, xn), (xn, z)} ⊆ K̄, contradicting part
(1) of Definition 1.6 as K̄ is a (k, 1)-kernel of L(D), k ≥ 2.

(b) If y ∈ V (D) \ f̄(K̄), then there exists x ∈ f̄(K̄) such that (y, x) ∈ A(D).
Since y ∈ V (D), it follows from the hypothesis of Theorem 2.1 that there exists

u ∈ V (D) with (u, y) ∈ A(D). Now y ∈ V (D) \ f̄(K̄) implies (u, y) ∈ V (L(D)) \
K̄; it follows from part (2) of Definition 1.6 that there exists (y, x) ∈ K̄ such that
((u, y), (y, x)) ∈ A(L(D)) (because K̄ is a (k, 1)-kernel of L(D)). Since (y, x) ∈ K̄, we
have x ∈ f̄(K̄) and (b) is proved.

Let K1 be the set of all (k, 1)-kernels of L(D) and K the set of all (k, 1)-kernels
of D. We will prove that f̄ ′ : K1 → K, where f̄ ′ is the restriction of f̄ to K1, is an
injective function.

(c) If K̄1, K̄2 ∈ K1, K̄1 6= K̄2, then f̄ ′(K̄1) 6= f̄ ′(K̄2).
Suppose, without loss of generality, that K̄1 \ K̄2 6= ∅ and take (u, v) ∈ K̄1 \ K̄2.

Clearly, from Definition 2.1 v ∈ f̄ ′(K̄1) and we will show that v /∈ f̄ ′(K̄2). By con-
tradiction, assume v ∈ f̄ ′(K̄2); hence there exists (z, v) ∈ K̄2. Since (u, v) /∈ K̄2,
it follows from part (2) of Definition 1.6 that there exists (v, y) ∈ K̄2. Hence
((z, v), (v, y)) ∈ A(L(D)) with {(z, v), (v, y)} ⊆ K̄2, contradicting part (1) of Defi-
nition 1.6, because K̄2 is a (k, 1)-kernel of L(D). We conclude that v /∈ f̄ ′(K̄2), and
so f̄ ′(K̄1) 6= f̄ ′(K̄2) and f̄ ′ is injective.

Remark 2.1. The hypothesis that each vertex has indegree at least one can-
not be omitted in Theorem 2.2 for k ≥ 3. It suffices to consider D with V (D) =
{u1, u2, u3, u4, u5, u6} and A(D) = {(u1, u2), (u2, u3), (u4, u5), (u5, u6)}. Here D has
no (k, 1)-kernel but L(D) has one (k, 1)-kernel for any k ≥ 3.

Remark 2.2. The inequality announced in Theorem 2.2 can be strict for k ≥
3. Consider D with V (D) = {u1, u2, u3} and A(D) = {(u1, u2), (u2, u3), (u3, u1),
(u1, u3)}. Then D has a (k, 1)-kernel and L(D) does not have any (k, 1)-kernel for
k ≥ 3.

THEOREM 2.3. Let D be a digraph such that every vertex has indegree at least
one. Then the number of (k, l)-kernels in D is less than or equal to the number of
(2, l)-kernels in L(D).

Proof. First we will prove that if K is a (k, l)-kernel of D, k ≥ 2, then f(K) is a
(2, l)-kernel of L(D).

Let K be a (k, l)-kernel of D.
(a) If a 6= a′, {a, a′} ⊆ f(K), then dL(D)(a, a′) ≥ 2.
By contradiction, suppose that dL(D)(a, a′) ≤ 1, as a 6= a′, then dL(D)(a, a′) = 1;

it follows from Definition 1.1 that the terminal endpoint of a is the initial endpoint
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SEMIKERNELS AND (k, l)-KERNELS IN LINE DIGRAPH 343

of a′. Denoting a = (x, y), a′ = (y, z), it follows from Definition 2.1 and the fact
{a, a′} ⊆ f(K) that {y, z} ⊆ K, so (y, z) ∈ A(D) with {y, z} ⊆ K, contradicting part
(1) of Definition 1.6 as K is a (k, l)-kernel of D.

(b) If b ∈ V (L(D)) \ f(K), then there exists a ∈ f(K) such that dL(D)(b, a) ≤ l.
Denoting b = (u, v) we have from Definition 2.1 and the fact b /∈ f(K) that

v /∈ K; now part (2) of Definition 1.6 implies that there exists w ∈ K such that
dD(v, w) = n ≤ l. Let (v = x0, x1, . . . , xn = w) be a shortest directed path from v to
w in D and denote ai = (xi−1, xi) ∈ A(D). Then (b, a1, a2, . . . , an) is a directed path
in L(D) of length n from b to an, and since w ∈ K we have an ∈ f(K), so taking
a = an, (b) is proved.

Let K be the set of all (k, l)-kernels of D, k ≥ 2, and let K2 be the set of all
(2, l)-kernels of L(D). We will prove that f ′ : K → K2, where f ′ is the restriction of
f to K, is an injective function.

(c) If K1,K2 ∈ K, K1 6= K2, then f ′(K1) 6= f ′(K2).
Suppose, without loss of generality, that K1 \K2 6= ∅ and take v ∈ K1 \K2. It

follows from the hypothesis of Theorem 2.3 that there exists (u, v) ∈ A(D); it follows
from Definition 2.1 that (u, v) ∈ f ′(K1) \ f ′(K2) and so f ′(K1) 6= f ′(K2).

Remark 2.3. The hypothesis that each vertex has indegree at least one cannot
be omitted in Theorem 2.3 for l ≥ 2. Consider that D ∼= T2 is the directed path of
length two; L(D) ∼= T1 is the directed path of length one, D has two (2, l)-kernels for
any l ≥ 2, and L(D) has just one (2, l)-kernel for any l ≥ 2.

Remark 2.4. The inequality announced in Theorem 2.3 can be strict for l ≥ 2.
Consider any k, k > l + 1 and Tk−1 has no (k, l)-kernel but that L(D) ∼= Tk−2 has a
kernel, and hence a (k, l)-kernel, for any l ≥ 2.

Remark 2.5. As a direct consequence of Theorems 2.2 and 2.3 we obtain Theorem
1.1 in the case that each vertex has indegree at least one, as a kernel is a (2, 1)-kernel.
In addition, Theorem 1.2 is a direct consequence of Theorem 2.3, as a quasikernel is
a (2, 2)-kernel.

COROLLARY 2.1. If D is a digraph such that each vertex has indegree at least
one, then the number of (2, l)-kernels in D is less than or equal to the number of
(2, l)-kernels in L(D).

The proof is a direct consequence of Theorem 2.3.
THEOREM 2.4. Let D be a digraph such that every vertex has indegree at least

one. If L(D) has a (k, l)-kernel, then D has a (k′, l′)-kernel, for k′+ l ≤ k and l ≤ l′.
Proof. Let D be a digraph as in the hypothesis, K̄ a (k, l)-kernel of L(D), k′+ l ≤

k, and l ≤ l′. We will prove that f̄(K̄) is a (k′, l′)-kernel of D.
(a) If {x, y} ⊆ f̄(K̄), then dD(x, y) ≥ k′.
By contradiction, suppose that dD(x, y) = n < k′, and let (x = x0, x1, . . . ,

xn = y) be a shortest directed path from x to y in D. Since x ∈ f̄(K̄), there exists
an arc a = (u, x) ∈ K̄. Denoting ai = (xi−1, xi) ∈ A(D), 1 ≤ i ≤ n, we have from
Definition 1.1 that (a, a1, . . . , an) is a directed path in L(D) of length n. Now consider
two possible cases.

If an ∈ K̄, then dL(D)(a, an) ≤ n < k′ < k with {a, an} ⊆ K̄, contradicting part
(1) of Definition 1.6, as K̄ is a (k, l)-kernel of L(D).

If an /∈ K̄, then it follows from part (2) of Definition 1.6 that there exists b ∈ K̄
such that dL(D)(an, b) ≤ l; let (an = b0, b1, . . . , bm = b) be a shortest directed path in
L(D) from an to b. On the other hand, since y = xn ∈ f̄(K̄), there exists c = (v, y) ∈
K̄. Now consider two possibilities.

If c 6= b, then it follows from Definition 1.1 that (c, b1, b2, . . . , bm = b) is a directed
path in L(D) from c to b in L(D) of length m ≤ l < k with {c, b} ⊆ K̄, contradicting
part (1) of Definition 1.6, as K̄ is a (k, l)-kernel of L(D).
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344 H. GALEANA-SÁNCHEZ AND X. LI

If c = b, then (a, a1, a2, . . . , an = b0, b1, . . . , bm = b) is a directed walk from a
to b in L(D) of length n + m; hence there exists in L(D) a directed path from a
to b of length at most n + m and n + m < k′ + l ≤ k. So dL(D)(a, b) < k, a 6= n
(because x 6= y, a = (u, x),b = c = (v, y)), and {a, b} ⊆ K̄. This contradicts part (1)
of Definition 1.6, as K̄ is a (k, l)-kernel of L(D).

(b) If x /∈ f̄(K̄), then there exists y ∈ f̄(K̄) such that dD(x, y) ≤ l′.
Let x ∈ V (D) \ f̄(K̄). It follows from the hypothesis of Theorem 2.4 that there

exists a = (u, x) ∈ A(D), and Definition 2.1 implies a /∈ K̄. Since a /∈ K̄ and K̄
is a (k, l)-kernel of L(D), it follows from part (2) of Definition 1.6 that there exists
b ∈ K̄ such that dL(D)(a, b) ≤ l; let b = (v, y). Clearly y ∈ f̄(K̄) and dD(x, y) ≤ l
≤ l′.

THEOREM 2.5. Let D be a digraph such that each vertex has indegree at least one.
If L(D) has a (k, l)-kernel Ā with the properties that l < k and, for each arc a ∈ Ā,
there is an arc b 6= a in Ā such that the terminal endpoints of a and b are the same,
then f̄(Ā) is a (k, l)-kernel of D.

Proof. Let D be a digraph and Ā a (k, l)-kernel of L(D) as in the hypothesis of
Theorem 2.5. We will prove that f̄(Ā) is a (k, l)-kernel of D.

(a) If {x, y} ⊆ f̄(Ā), x 6= y, then dD(x, y) ≥ k.
By contradiction, suppose that dD(x, y) = n < k and let (x = x0, x1, . . . , xn = y)

be a shortest directed path from x to y in D. Since x ∈ f̄(Ā), there exists a = (u, x) ∈
Ā. Denote by ai = (xi−1, xi), 1 ≤ i ≤ n and consider the following two possible cases.

If an = (xn−1, y) ∈ Ā, then (a, a1, a2, . . . , an) is a directed path of length n < k
contained in L(D) from a to an with a 6= an and {a, an} ⊆ Ā. This contradicts part
(1) of Definition 1.6, as Ā is a (k, l)-kernel of L(D).

If an = (xn−1, y) /∈ Ā, it follows from part (2) of Definition 1.6 that there exists
b ∈ Ā such that dL(D)(an, b) ≤ l < k. On the other hand, since y ∈ f̄(Ā), there exists
c = (v, y) ∈ Ā. Now consider two possibilities.

If b 6= c, we consider a shortest directed path from an to b, say (an = b0, b1, . . . , bn =
b), contained in L(D); then it follows from Definition 2.1 that (c, b1, b2, . . . , bn = b) is
also a directed path in L(D) of length n < k from c to b with c 6= b and {c, b} ⊆ Ā,
contradicting part (1) of Definition 1.6, as Ā is a (k, l)-kernel of L(D).

If b = c, we consider an arc d ∈ Ā, d 6= b such that d and b have the same terminal
endpoint (this is from the hypothesis of Theorem 2.5). It follows from Definition 2.1
that (d, b1, b2, . . . , bn = b) is a directed path contained in L(D) from d to b of length
n < k with d 6= b, {d, b} ⊆ Ā, contradicting part (1) of Definition 1.6.

(b) If x /∈ f̄(Ā), then there exists y ∈ f̄(Ā) such that dD(x, y) ≤ l.
It follows from the hypothesis of Theorem 2.5 that there exists an arc a = (u, x) ∈

A(D); since x /∈ f̄(Ā), we have a /∈ Ā. Now a /∈ Ā and Ā is a (k, l)-kernel of L(D), so
there exists b ∈ Ā such that dL(D)(a, b) ≤ l. Let (a = a0, a1, . . . , an = b) be a shortest
directed path in L(D) from a to b, and ai = (xi−1, xi) for 1 ≤ i ≤ n, b = (xn−1, xn);
then (x, x1, . . . , xn−1, xn) is a directed walk in D of length n ≤ l from x to xn; clearly
Definition 2.1 implies xn ∈ f̄(Ā). So, taking y = xn, (b) is thus proved.

COROLLARY 2.2. Let D be a digraph such that each vertex has indegree at least
one and let 1 ≤ l < k. If each (k, l)-kernel Ā of L(D) satisfies that, for each arc
a ∈ Ā, there is an arc b ∈ Ā such that the terminal endpoints of a and b are the
same, then the number of (k, l)-kernels of L(D) is less than or equal to the number of
(k, l)-kernels of D.

Proof. Let 1 ≤ l < k, K1 be the set of all (k, l)-kernels of L(D), let K be the set
of all (k, l)-kernels of D, and let f̄ ′ : K1 → K be the restriction of f̄ to K1. From
Theorem 2.5 it suffices to prove that f̄ ′ is an injective function.

(c) If K̄1 6= K̄2 and {K̄1, K̄2} ⊆ K1, then f̄ ′(K̄1) 6= f̄ ′(K̄2).
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Since K̄1 6= K̄2, we can assume, without loss of generality, that K̄1 \ K̄2 6= ∅. Let
a = (u, x) ∈ K̄1 \ K̄2. It follows from Definition 2.1 that x ∈ f̄ ′(K̄1), and we will show
that x /∈ f̄ ′(K̄2).

By contradiction, suppose that x ∈ f̄ ′(K̄2). Hence there exists b = (v, x) ∈ K̄2.
Since a = (u, x) /∈ K̄2 and K̄2 is a (k, l)-kernel of L(D), there exists c ∈ K̄2 such that
dL(D)(a, c) ≤ l < k. Let (a = a0, a1, . . . , an = c) be a shortest directed path in L(D)
from a to c and consider the following two possibilities:

If b 6= c, then it follows from Definition 2.1 that (b, a1, a2, . . . , an = c) is a directed
path in L(D) from b to c of length n ≤ l < k with {b, c} ⊆ K̄2, b 6= c. This contradicts
part (1) of Definition 1.6, as K̄2 is a (k, l)-kernel of L(D).

If b = c, we have from the hypothesis of Corollary 2.2 that there exists an arc
d ∈ K̄2 such that d 6= b and that d and b have the same terminal endpoint x. Then it
follows from Definition 2.1 that (d, a1, a2, . . . , an = c = b) is a directed path in L(D)
of length n ≤ k < l from d to b with d 6= b, {d, b} ⊆ K̄2, contradicting part (1) of
Definition 1.6, as K̄2 is a (k, l)-kernel of L(D).

THEOREM 2.6. Every digraph has a (k, 2k − 2)-kernel.
Proof. We proceed by induction on |V (D)|.
For D with |V (D)| = 1 it is obvious. Suppose that if D′ is a digraph with

|V (D′)| < n, then D′ has a (k, 2k−2)-kernel, and let D be a digraph with |V (D)| = n.
Let x0 ∈ V (D) and D∗ = D[V (D) \ {x ∈ V (D)|dD(x, x0) ≤ k − 1}]. Clearly

|V (D∗)| < n, and hence D∗ has a (k, 2k−2)-kernel, namely S∗. Consider the following
two possibilities.

If there exists a directed path in D of length less than or equal to k − 1, then S∗

is a (k, 2k − 2)-kernel of D.
If there is no directed path in D from x0 to some point of S∗ of length less than

or equal to k − 1, then S∗ ∪ {x0} is a (k, 2k − 2)-kernel of D.
COROLLARY 2.3. Every digraph has a (k, l)-kernel for l ≥ 2k − 2.
The proof is a direct consequence of Theorem 2.6 and Definition 1.6, as a (k, l)-

kernel of a digraph D is also a (k, l′)-kernel for every l′ ≥ l.
Remark 2.6. The hypothesis l ≥ 2k − 2 cannot be omitted in Corollary 2.3.

Consider C2k−1 to be the directed cycle of length 2k − 1; for any l < 2k − 1, the
digraph C2k−1 has no (k, l)-kernel.

COROLLARY 2.4 (see [3]). Every digraph has a quasikernel.
The proof is a direct consequence of Theorem 2.6 by taking k = 2, as a quasikernel

is a (2, 2)-kernel.

REFERENCES

[1] C. BERGE, Graphs, North-Holland, Amsterdam, New York, 1985.
[2] C. BERGE AND A. RAMACHANDRA RAO, A combinatorial problem in logic, Discrete Math., 17

(1977), pp. 23–26.
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