SEMIKERNELS AND (k, l)-KERNELS IN DIGRAPHS*

H. GALEANA-SÁNCHEZ[†] AND XUELIANG LI[‡]

Abstract. Let D be a digraph with minimum indegree at least one. The following results are proved: a digraph D has a semikernel if and only if its line digraph L(D) does; the number of (k, 1)-kernels in L(D) is less than or equal to that in D; if the number of (k, l)-kernels in D is less than or equal to the number of (2, l)-kernels in L(D), and if L(D) has a (k, l)-kernel, then D has a (k', l')-kernel for $k' + l \le k$, $l \le l'$. As a consequence, it obtains previous results about kernels and quasikernels in the line digraph.

It is also proved that any digraph has a (k, l)-kernel with $l \ge 2k - 2$, $k \ge 1$, generalizing a previous result on the existence of quasikernels in digraphs.

Key words. kernel, (k, l)-kernels, line digraph, semikernels

AMS subject classification. 0C20

PII. S0895480195291370

1. Introduction. For general concepts we refer the reader to [1].

DEFINITION 1.1. Let D = (V(D), A(D)) be a digraph. The line digraph L(D) of D is the digraph L(D) = (V(L(D)), A(L(D))) with set of vertices the set of arcs of D, and for any $h, k \in A(D)$ there is $(h, k) \in A(L(D))$ if and only if the corresponding arcs h, k induce a directed walk in D, i.e., the terminal endpoint of h is the initial endpoint of k. In what follows we denote the arc $h = (u, v) \in A(D)$ and the vertex $h \in V(L(D))$ by the same symbol. If H is a set of arcs in D, it is also a set of vertices of L(D). When we want to emphasize our interest in $H \subseteq A(D)$ as a set of vertices of L(D), we use the symbol H_L instead of H.

DEFINITION 1.2. A set $K \subseteq V(D)$ is said to be a kernel if it is both independent (a vertex in K has no successor in K) and absorbing (a vertex not in K has a successor in K).

This concept was introduced by Von Neumann [11] and it has found many applications [1], [2]. Several authors have been investigating sufficient conditions for the existence of kernels in digraphs, namely, Von Neumann and Morgenstern [11], Richardson [13], Duchet and Meyniel [4], [5], and Galeana-Sánchez and Neumann-Lara [7]. In [9], Harminc considered the existence of kernels in the line digraph of a given digraph D and he proved the following result.

THEOREM 1.1 (see [8]). The number of kernels of a digraph D is equal to the number of kernels in its line digraph L(D).

DEFINITION 1.3 (see [12]). A semikernel S of D is an independent set of vertices such that, for every $z \in (V(D) \setminus S)$ for which there exists an Sz-arc, there also exists a zS-arc.

The concept of semikernel is nearly related to that of kernel, and is very useful to find kernels in digraphs, where every induced subdigraph of a digraph D has a semikernel then D has a kernel (see [12]). In [8] it was proved that the number of

^{*}Received by the editors September 5, 1995; accepted for publication (in revised form) May 8, 1997.

http://www.siam.org/journals/sidma/11-2/29137.html

[†]Instituto de Matemáticas, Universidad Nacional Autónoma de México, México, D.F., C.P. 04510, México (imate@redvaxl.dgsca.unam.mx).

[‡]Department of Applied Mathematics, Northwestern Polytechnical University, Xi'an, Shaanxi 710072, People's Republic of China. The research of this author was supported by the Third World Academy of Sciences.

semikernels of a digraph D is less than or equal to the number of semikernels of L(D). In this paper we prove that a digraph D has a semikernel if and only if L(D) does.

DEFINITION 1.4. A quasikernel Q of a digraph D is an independent set of vertices such that $V(D) = Q \cup \Gamma^{-}(Q) \cup \Gamma^{-}(\Gamma^{-}(Q))$ (where for any $A \subseteq X$, $\Gamma^{-}(A) = \{x \in X | x \text{ has a successor in } A\}$).

In [3], Chvátal and Lovász proved that any digraph has a quasikernel; a generalization of this result was obtained by Duchet, Hamidoune, and Meyniel [6]. In [8] the following result was proved.

THEOREM 1.2 (see [8]). If D is a digraph such that every vertex has indegree at least one, then the number of quasikernels of D is less than or equal to the number of quasikernels of its line digraph L(D).

DEFINITION 1.5. Let D be a digraph. By the directed distance $d_D(x, y)$ from the vertex x to the vertex y in D we mean the length of a shortest directed path from x to y in D.

DEFINITION 1.6 (see [10]). Let k and l be natural numbers with $k \ge 2$, $l \ge 1$. A set $J \subseteq V(D)$ will be called a (k, l)-kernel of the digraph D if

(1) for each $x' \neq x$, $\{x, x'\} \subseteq J$ we have $d_D(x, x') \geq k$,

(2) for each $y \in (V(D) \setminus J)$, there exists $x \in J$ such that $d_D(y, x) \leq l$.

Notice that, for k = 2, l = 1, we have that a (k, l)-kernel is a kernel and that for k = 2, l = 2, a (k, l)-kernel is a quasikernel.

2. Semikernels and (k, l)-kernels in the line digraph.

DEFINITION 2.1 (see [9]). Let D = (V(D), A(D)) be a digraph. We denote by $\mathcal{P}(X)$ the set of all the subsets of the set X, and $f : \mathcal{P}(V(D)) \to \mathcal{P}(A(D))$ will denote the function defined as follows: for each $Z \subseteq V(D)$, $f(Z) = \{(u, x) \in A(D) | x \in Z\}$. Also, we denote by $\overline{f} : \mathcal{P}(A(D)) \to \mathcal{P}(V(D))$ the function defined as follows: for each $A \subseteq A(D)$, $\overline{f}(A) = \{x \in V(D) | (u, x) \in A\}$.

LEMMA 2.1 (see [9]). If $Z \subseteq V(D)$ is an independent set of D, then $f(Z)_L$ is an independent set in L(D).

THEOREM 2.1. If D is a digraph such that every vertex has indegree at least one, then D has a semikernel if and only if L(D) has a semikernel.

Proof. If D has a semikernel S, then from the proof of Theorem 2.1 [8], we know that $f(S)_L$ is a semikernel of L(D).

Conversely, if L(D) has a semikernel A, then we will show that $\overline{f}(A)$ is a semikernel of D.

First we prove that $\overline{f}(A)$ is independent. By contradiction, if $\overline{f}(A)$ is not independent, then there are two vertices $x, y \in \overline{f}(A)$ such that $(x, y) \in A(D)$. Since $x \in \overline{f}(A)$, there exists a vertex $u \in V(D)$ such that $(u, x) \in A$. Since ((u, x), (x, y)) is an A(x, y)-arc in L(D) and A is a semikernel of L(D), there must be an arc $(y, v) \in A(D)$ such that $(y, v) \in A$ and $((x, y), (y, v)) \in A(L(D))$. Since $y \in \overline{f}(A)$, there is a $t \in V(D)$ such that $(t, y) \in A$. Then we have $\{(t, y), (y, v)\} \subseteq A$, with $((t, y), (y, v)) \in A(L(D))$, which contradicts the independence of A. We conclude that $\overline{f}(A)$ is independent.

Now, let $y \in V(D)$ such that there is a $\overline{f}(A)y$ -arc; there exists $x \in \overline{f}(A)$ with $(x, y) \in A(D)$. Since $x \in \overline{f}(A)$, there is an arc $(z, x) \in A$. Thus ((z, x), (x, y)) is an A(x, y)-arc in L(D). Since A is a semikernel of L(D), there exists an (x, y)A-arc in L(D). Let that arc be ((x, y), (y, u)) so that $(y, u) \in A$ and then $u \in \overline{f}(A)$. We have proved that there is a $y\overline{f}(A)$ -arc in D. Hence $\overline{f}(A)$ is a semikernel of D. \Box

THEOREM 2.2. Let D be a digraph such that each vertex has indegree at least one. Then the number of (k, 1)-kernels in L(D) is less than or equal to the number of (k, 1)-kernels in D.

Proof. First we will prove that if \overline{K} is a (k, 1)-kernel of L(D), then $\overline{f}(\overline{K})$ is a (k, 1)-kernel of D.

Let \overline{K} be a (k, 1)-kernel of L(D).

(a) If $x \neq x'$, $\{x, x'\} \subseteq \overline{f}(\overline{K})$, then $d_D(x, x') \ge k$.

By contradiction, suppose that $d_D(x, x') = n < k$. Take $\alpha = (x = x_0, x_1, \dots, x_n = x')$, a shortest directed path from x to x' contained in D. Since $x \in \overline{f}(\overline{K})$, there exists $u \in V(D)$ such that $(u, x) \in \overline{K}$. Denote by $a_i = (x_{i-1}, x_i) \in A(D)$, $1 \le i \le n$, and consider the following two possibilities:

If $a_n = (x_{n-1}, x_n) \in \overline{K}$, consider that $((u, x), a_1, a_2, \dots, a_n)$ is a directed path from (u, x) to a_n contained in L(D) of length n < k with $\{(u, x), a_n\} \subseteq \overline{K}$; this contradicts part (1) of Definition 1.6, as \overline{K} is a (k, 1)-kernel of L(D).

If $a_n = (x_{n-1}, x_n) \notin \bar{K}$, then it follows from part (2) of Definition 1.6 that there exists $(x_n, z) \in \bar{K}$ such that $((x_{n-1}, x_n), (x_n, z)) \in A(L(D))$ (as \bar{K} is a (k, 1)-kernel of L(D)). On the other hand, $x' = x_n \in \bar{f}(\bar{K})$, so there exists $v \in V(D)$ with $(v, x_n) \in \bar{K}$ and then $((v, x_n), (x_n, z)) \in A(L(D))$ with $\{(v, x_n), (x_n, z)\} \subseteq \bar{K}$, contradicting part (1) of Definition 1.6 as \bar{K} is a (k, 1)-kernel of $L(D), k \geq 2$.

(b) If $y \in V(D) \setminus \overline{f(K)}$, then there exists $x \in \overline{f(K)}$ such that $(y, x) \in A(D)$.

Since $y \in V(D)$, it follows from the hypothesis of Theorem 2.1 that there exists $u \in V(D)$ with $(u, y) \in A(D)$. Now $y \in V(D) \setminus \overline{f}(\overline{K})$ implies $(u, y) \in V(L(D)) \setminus \overline{K}$; it follows from part (2) of Definition 1.6 that there exists $(y, x) \in \overline{K}$ such that $((u, y), (y, x)) \in A(L(D))$ (because \overline{K} is a (k, 1)-kernel of L(D)). Since $(y, x) \in \overline{K}$, we have $x \in \overline{f}(\overline{K})$ and (b) is proved.

Let \mathcal{K}_1 be the set of all (k, 1)-kernels of L(D) and \mathcal{K} the set of all (k, 1)-kernels of D. We will prove that $\bar{f}' : \mathcal{K}_1 \to \mathcal{K}$, where \bar{f}' is the restriction of \bar{f} to \mathcal{K}_1 , is an injective function.

(c) If $\bar{K}_1, \bar{K}_2 \in \mathcal{K}_1, \ \bar{K}_1 \neq \bar{K}_2$, then $\bar{f}'(\bar{K}_1) \neq \bar{f}'(\bar{K}_2)$.

Suppose, without loss of generality, that $\bar{K}_1 \setminus \bar{K}_2 \neq \emptyset$ and take $(u, v) \in \bar{K}_1 \setminus \bar{K}_2$. Clearly, from Definition 2.1 $v \in \bar{f}'(\bar{K}_1)$ and we will show that $v \notin \bar{f}'(\bar{K}_2)$. By contradiction, assume $v \in \bar{f}'(\bar{K}_2)$; hence there exists $(z, v) \in \bar{K}_2$. Since $(u, v) \notin \bar{K}_2$, it follows from part (2) of Definition 1.6 that there exists $(v, y) \in \bar{K}_2$. Hence $((z, v), (v, y)) \in A(L(D))$ with $\{(z, v), (v, y)\} \subseteq \bar{K}_2$, contradicting part (1) of Definition 1.6, because \bar{K}_2 is a (k, 1)-kernel of L(D). We conclude that $v \notin \bar{f}'(\bar{K}_2)$, and so $\bar{f}'(\bar{K}_1) \neq \bar{f}'(\bar{K}_2)$ and \bar{f}' is injective. \Box

Remark 2.1. The hypothesis that each vertex has indegree at least one cannot be omitted in Theorem 2.2 for $k \geq 3$. It suffices to consider D with $V(D) = \{u_1, u_2, u_3, u_4, u_5, u_6\}$ and $A(D) = \{(u_1, u_2), (u_2, u_3), (u_4, u_5), (u_5, u_6)\}$. Here D has no (k, 1)-kernel but L(D) has one (k, 1)-kernel for any $k \geq 3$.

Remark 2.2. The inequality announced in Theorem 2.2 can be strict for $k \geq 3$. 3. Consider D with $V(D) = \{u_1, u_2, u_3\}$ and $A(D) = \{(u_1, u_2), (u_2, u_3), (u_3, u_1), (u_1, u_3)\}$. Then D has a (k, 1)-kernel and L(D) does not have any (k, 1)-kernel for $k \geq 3$.

THEOREM 2.3. Let D be a digraph such that every vertex has indegree at least one. Then the number of (k, l)-kernels in D is less than or equal to the number of (2, l)-kernels in L(D).

Proof. First we will prove that if K is a (k, l)-kernel of $D, k \ge 2$, then f(K) is a (2, l)-kernel of L(D).

Let K be a (k, l)-kernel of D.

(a) If $a \neq a'$, $\{a, a'\} \subseteq f(K)$, then $d_{L(D)}(a, a') \ge 2$.

By contradiction, suppose that $d_{L(D)}(a, a') \leq 1$, as $a \neq a'$, then $d_{L(D)}(a, a') = 1$; it follows from Definition 1.1 that the terminal endpoint of a is the initial endpoint of a'. Denoting a = (x, y), a' = (y, z), it follows from Definition 2.1 and the fact $\{a, a'\} \subseteq f(K)$ that $\{y, z\} \subseteq K$, so $(y, z) \in A(D)$ with $\{y, z\} \subseteq K$, contradicting part (1) of Definition 1.6 as K is a (k, l)-kernel of D.

(b) If $b \in V(L(D)) \setminus f(K)$, then there exists $a \in f(K)$ such that $d_{L(D)}(b, a) \leq l$. Denoting b = (u, v) we have from Definition 2.1 and the fact $b \notin f(K)$ that $v \notin K$; now part (2) of Definition 1.6 implies that there exists $w \in K$ such that $d_D(v, w) = n \leq l$. Let $(v = x_0, x_1, \ldots, x_n = w)$ be a shortest directed path from v to w in D and denote $a_i = (x_{i-1}, x_i) \in A(D)$. Then $(b, a_1, a_2, \ldots, a_n)$ is a directed path in L(D) of length n from b to a_n , and since $w \in K$ we have $a_n \in f(K)$, so taking $a = a_n$, (b) is proved.

Let \mathcal{K} be the set of all (k, l)-kernels of $D, k \geq 2$, and let \mathcal{K}_2 be the set of all (2, l)-kernels of L(D). We will prove that $f' : \mathcal{K} \to \mathcal{K}_2$, where f' is the restriction of f to \mathcal{K} , is an injective function.

(c) If $K_1, K_2 \in \mathcal{K}, K_1 \neq K_2$, then $f'(K_1) \neq f'(K_2)$.

Suppose, without loss of generality, that $K_1 \setminus K_2 \neq \emptyset$ and take $v \in K_1 \setminus K_2$. It follows from the hypothesis of Theorem 2.3 that there exists $(u, v) \in A(D)$; it follows from Definition 2.1 that $(u, v) \in f'(K_1) \setminus f'(K_2)$ and so $f'(K_1) \neq f'(K_2)$. \Box

Remark 2.3. The hypothesis that each vertex has indegree at least one cannot be omitted in Theorem 2.3 for $l \geq 2$. Consider that $D \cong T_2$ is the directed path of length two; $L(D) \cong T_1$ is the directed path of length one, D has two (2, l)-kernels for any $l \geq 2$, and L(D) has just one (2, l)-kernel for any $l \geq 2$.

Remark 2.4. The inequality announced in Theorem 2.3 can be strict for $l \geq 2$. Consider any k, k > l + 1 and T_{k-1} has no (k, l)-kernel but that $L(D) \cong T_{k-2}$ has a kernel, and hence a (k, l)-kernel, for any $l \geq 2$.

Remark 2.5. As a direct consequence of Theorems 2.2 and 2.3 we obtain Theorem 1.1 in the case that each vertex has indegree at least one, as a kernel is a (2, 1)-kernel. In addition, Theorem 1.2 is a direct consequence of Theorem 2.3, as a quasikernel is a (2, 2)-kernel.

COROLLARY 2.1. If D is a digraph such that each vertex has indegree at least one, then the number of (2, l)-kernels in D is less than or equal to the number of (2, l)-kernels in L(D).

The proof is a direct consequence of Theorem 2.3.

THEOREM 2.4. Let D be a digraph such that every vertex has indegree at least one. If L(D) has a (k, l)-kernel, then D has a (k', l')-kernel, for $k' + l \le k$ and $l \le l'$.

Proof. Let D be a digraph as in the hypothesis, \bar{K} a (k, l)-kernel of L(D), $k' + l \le k$, and $l \le l'$. We will prove that $\bar{f}(\bar{K})$ is a (k', l')-kernel of D.

(a) If $\{x, y\} \subseteq \overline{f}(\overline{K})$, then $d_D(x, y) \ge k'$.

By contradiction, suppose that $d_D(x,y) = n < k'$, and let $(x = x_0, x_1, \ldots, x_n = y)$ be a shortest directed path from x to y in D. Since $x \in \bar{f}(\bar{K})$, there exists an arc $a = (u, x) \in \bar{K}$. Denoting $a_i = (x_{i-1}, x_i) \in A(D)$, $1 \le i \le n$, we have from Definition 1.1 that (a, a_1, \ldots, a_n) is a directed path in L(D) of length n. Now consider two possible cases.

If $a_n \in \overline{K}$, then $d_{L(D)}(a, a_n) \leq n < k' < k$ with $\{a, a_n\} \subseteq \overline{K}$, contradicting part (1) of Definition 1.6, as \overline{K} is a (k, l)-kernel of L(D).

If $a_n \notin \bar{K}$, then it follows from part (2) of Definition 1.6 that there exists $b \in \bar{K}$ such that $d_{L(D)}(a_n, b) \leq l$; let $(a_n = b_0, b_1, \ldots, b_m = b)$ be a shortest directed path in L(D) from a_n to b. On the other hand, since $y = x_n \in \bar{f}(\bar{K})$, there exists $c = (v, y) \in \bar{K}$. Now consider two possibilities.

If $c \neq b$, then it follows from Definition 1.1 that $(c, b_1, b_2, \ldots, b_m = b)$ is a directed path in L(D) from c to b in L(D) of length $m \leq l < k$ with $\{c, b\} \subseteq \overline{K}$, contradicting part (1) of Definition 1.6, as \overline{K} is a (k, l)-kernel of L(D). If c = b, then $(a, a_1, a_2, \ldots, a_n = b_0, b_1, \ldots, b_m = b)$ is a directed walk from a to b in L(D) of length n + m; hence there exists in L(D) a directed path from a to b of length at most n + m and $n + m < k' + l \le k$. So $d_{L(D)}(a, b) < k, a \ne n$ (because $x \ne y, a = (u, x), b = c = (v, y)$), and $\{a, b\} \subseteq \overline{K}$. This contradicts part (1) of Definition 1.6, as \overline{K} is a (k, l)-kernel of L(D).

(b) If $x \notin \bar{f}(\bar{K})$, then there exists $y \in \bar{f}(\bar{K})$ such that $d_D(x,y) \leq l'$.

Let $x \in V(D) \setminus \overline{f}(\overline{K})$. It follows from the hypothesis of Theorem 2.4 that there exists $a = (u, x) \in A(D)$, and Definition 2.1 implies $a \notin \overline{K}$. Since $a \notin \overline{K}$ and \overline{K} is a (k, l)-kernel of L(D), it follows from part (2) of Definition 1.6 that there exists $b \in \overline{K}$ such that $d_{L(D)}(a, b) \leq l$; let b = (v, y). Clearly $y \in \overline{f}(\overline{K})$ and $d_D(x, y) \leq l \leq l'$. \Box

THEOREM 2.5. Let D be a digraph such that each vertex has indegree at least one. If L(D) has a (k,l)-kernel \overline{A} with the properties that l < k and, for each arc $a \in \overline{A}$, there is an arc $b \neq a$ in \overline{A} such that the terminal endpoints of a and b are the same, then $\overline{f}(\overline{A})$ is a (k,l)-kernel of D.

Proof. Let D be a digraph and \overline{A} a (k, l)-kernel of L(D) as in the hypothesis of Theorem 2.5. We will prove that $\overline{f}(\overline{A})$ is a (k, l)-kernel of D.

(a) If $\{x, y\} \subseteq f(\overline{A}), x \neq y$, then $d_D(x, y) \ge k$.

By contradiction, suppose that $d_D(x, y) = n < k$ and let $(x = x_0, x_1, \ldots, x_n = y)$ be a shortest directed path from x to y in D. Since $x \in \overline{f}(\overline{A})$, there exists $a = (u, x) \in \overline{A}$. Denote by $a_i = (x_{i-1}, x_i), 1 \leq i \leq n$ and consider the following two possible cases.

If $a_n = (x_{n-1}, y) \in \overline{A}$, then $(a, a_1, a_2, \ldots, a_n)$ is a directed path of length n < k contained in L(D) from a to a_n with $a \neq a_n$ and $\{a, a_n\} \subseteq \overline{A}$. This contradicts part (1) of Definition 1.6, as \overline{A} is a (k, l)-kernel of L(D).

If $a_n = (x_{n-1}, y) \notin A$, it follows from part (2) of Definition 1.6 that there exists $b \in \overline{A}$ such that $d_{L(D)}(a_n, b) \leq l < k$. On the other hand, since $y \in \overline{f}(\overline{A})$, there exists $c = (v, y) \in \overline{A}$. Now consider two possibilities.

If $b \neq c$, we consider a shortest directed path from a_n to b, say $(a_n = b_0, b_1, \ldots, b_n = b)$, contained in L(D); then it follows from Definition 2.1 that $(c, b_1, b_2, \ldots, b_n = b)$ is also a directed path in L(D) of length n < k from c to b with $c \neq b$ and $\{c, b\} \subseteq \overline{A}$, contradicting part (1) of Definition 1.6, as \overline{A} is a (k, l)-kernel of L(D).

If b = c, we consider an arc $d \in \overline{A}$, $d \neq b$ such that d and b have the same terminal endpoint (this is from the hypothesis of Theorem 2.5). It follows from Definition 2.1 that $(d, b_1, b_2, \ldots, b_n = b)$ is a directed path contained in L(D) from d to b of length n < k with $d \neq b$, $\{d, b\} \subseteq \overline{A}$, contradicting part (1) of Definition 1.6.

(b) If $x \notin \overline{f}(\overline{A})$, then there exists $y \in \overline{f}(\overline{A})$ such that $d_D(x, y) \leq l$.

It follows from the hypothesis of Theorem 2.5 that there exists an arc $a = (u, x) \in A(D)$; since $x \notin \overline{f}(\overline{A})$, we have $a \notin \overline{A}$. Now $a \notin \overline{A}$ and \overline{A} is a (k, l)-kernel of L(D), so there exists $b \in \overline{A}$ such that $d_{L(D)}(a, b) \leq l$. Let $(a = a_0, a_1, \ldots, a_n = b)$ be a shortest directed path in L(D) from a to b, and $a_i = (x_{i-1}, x_i)$ for $1 \leq i \leq n$, $b = (x_{n-1}, x_n)$; then $(x, x_1, \ldots, x_{n-1}, x_n)$ is a directed walk in D of length $n \leq l$ from x to x_n ; clearly Definition 2.1 implies $x_n \in \overline{f}(\overline{A})$. So, taking $y = x_n$, (b) is thus proved.

COROLLARY 2.2. Let D be a digraph such that each vertex has indegree at least one and let $1 \leq l < k$. If each (k, l)-kernel \overline{A} of L(D) satisfies that, for each arc $a \in \overline{A}$, there is an arc $b \in \overline{A}$ such that the terminal endpoints of a and b are the same, then the number of (k, l)-kernels of L(D) is less than or equal to the number of (k, l)-kernels of D.

Proof. Let $1 \leq l < k$, \mathcal{K}_1 be the set of all (k, l)-kernels of L(D), let \mathcal{K} be the set of all (k, l)-kernels of D, and let $\bar{f}' : \mathcal{K}_1 \to \mathcal{K}$ be the restriction of \bar{f} to \mathcal{K}_1 . From Theorem 2.5 it suffices to prove that \bar{f}' is an injective function.

(c) If $\overline{K}_1 \neq \overline{K}_2$ and $\{\overline{K}_1, \overline{K}_2\} \subseteq \mathcal{K}_1$, then $\overline{f'}(\overline{K}_1) \neq \overline{f'}(\overline{K}_2)$.

Since $\overline{K}_1 \neq \overline{K}_2$, we can assume, without loss of generality, that $\overline{K}_1 \setminus \overline{K}_2 \neq \emptyset$. Let $a = (u, x) \in \overline{K}_1 \setminus \overline{K}_2$. It follows from Definition 2.1 that $x \in \overline{f'}(\overline{K}_1)$, and we will show that $x \notin \bar{f}'(\bar{K}_2)$.

By contradiction, suppose that $x \in \bar{f}'(\bar{K}_2)$. Hence there exists $b = (v, x) \in \bar{K}_2$. Since $a = (u, x) \notin \overline{K}_2$ and \overline{K}_2 is a (k, l)-kernel of L(D), there exists $c \in \overline{K}_2$ such that $d_{L(D)}(a,c) \leq l < k$. Let $(a = a_0, a_1, \ldots, a_n = c)$ be a shortest directed path in L(D)from a to c and consider the following two possibilities:

If $b \neq c$, then it follows from Definition 2.1 that $(b, a_1, a_2, \ldots, a_n = c)$ is a directed path in L(D) from b to c of length $n \leq l < k$ with $\{b, c\} \subseteq \overline{K}_2, b \neq c$. This contradicts part (1) of Definition 1.6, as \overline{K}_2 is a (k, l)-kernel of L(D).

If b = c, we have from the hypothesis of Corollary 2.2 that there exists an arc $d \in K_2$ such that $d \neq b$ and that d and b have the same terminal endpoint x. Then it follows from Definition 2.1 that $(d, a_1, a_2, \ldots, a_n = c = b)$ is a directed path in L(D)of length $n \leq k < l$ from d to b with $d \neq b$, $\{d, b\} \subseteq \overline{K}_2$, contradicting part (1) of Definition 1.6, as \overline{K}_2 is a (k, l)-kernel of L(D). П

THEOREM 2.6. Every digraph has a (k, 2k - 2)-kernel.

Proof. We proceed by induction on |V(D)|.

For D with |V(D)| = 1 it is obvious. Suppose that if D' is a digraph with |V(D')| < n, then D' has a (k, 2k-2)-kernel, and let D be a digraph with |V(D)| = n.

Let $x_0 \in V(D)$ and $D^* = D[V(D) \setminus \{x \in V(D) | d_D(x, x_0) \leq k - 1\}]$. Clearly $|V(D^*)| < n$, and hence D^* has a (k, 2k-2)-kernel, namely S^* . Consider the following two possibilities.

If there exists a directed path in D of length less than or equal to k-1, then S^* is a (k, 2k-2)-kernel of D.

If there is no directed path in D from x_0 to some point of S^* of length less than or equal to k-1, then $S^* \cup \{x_0\}$ is a (k, 2k-2)-kernel of D. Π

COROLLARY 2.3. Every digraph has a (k, l)-kernel for l > 2k - 2.

The proof is a direct consequence of Theorem 2.6 and Definition 1.6, as a (k, l)kernel of a digraph D is also a (k, l')-kernel for every l' > l.

Remark 2.6. The hypothesis $l \geq 2k-2$ cannot be omitted in Corollary 2.3. Consider C_{2k-1} to be the directed cycle of length 2k-1; for any l < 2k-1, the digraph C_{2k-1} has no (k, l)-kernel.

COROLLARY 2.4 (see [3]). Every digraph has a quasikernel.

The proof is a direct consequence of Theorem 2.6 by taking k = 2, as a quasikernel is a (2, 2)-kernel.

REFERENCES

- [1] C. BERGE, Graphs, North-Holland, Amsterdam, New York, 1985.
- [2] C. BERGE AND A. RAMACHANDRA RAO, A combinatorial problem in logic, Discrete Math., 17 (1977), pp. 23–26.
- [3] V. CHVÁTAL AND L. LOVÁSZ, Every directed graph has a semi-kernel, in Hypergraph Seminar, Lecture Notes in Math. 441, Springer-Verlag, Berlin, 1974, p. 175.
- [4] P. DUCHET, A sufficient condition for a digraph to be kernel-perfect, J. Graph Theory, 11 (1987), pp. 81-85.
- P. DUCHET AND H. MEYNIEL, Une généralization du théoréme de Richardson sur l'existence de noyaux dans les graphes orientés, Discrete Math., 43 (1983), pp. 21-27.
- P. DUCHET, Y.O. HAMIDOUNE, AND H. MEYNIEL, Sur les quasi-noyaux d'un graphe, Discrete Math., 65 (1987), pp. 231–235.
- H. GALEANA-SÁNCHEZ AND V. NEUMANN-LARA, On kernels and semikernels of digraphs, Discrete Math., 48 (1984), pp. 67–76.

- [8] H. GALEANA-SÁNCHEZ, L. PASTRANA-RAMIREZ, AND H.A. RINCÓN-MEJIA, Semikernels, quasikernels, and grundy functions in the line digraph, SIAM J. Discrete Math., 4 (1991), pp. 80–83.
- [9] M. HARMINC, Solutions and kernels of a directed graph, Math. Slovaca, 32 (1982), pp. 263–267.
 [10] M. KWAŚNIK, The generalization of Richardson theorem, Discussiones Math., IV (1981), pp. 11 - 14.
- [11] J. VON NEUMANN AND O. MORGENSTERN, Theory of Games and Economic Behavior, Princeton University Press, Princeton, NJ, 1944.
- [12] V. NEUMANN-LARA, Seminúcleos en una digráfica, Anales del Instituto de Matemáticas de la Universidad Nacional Autónoma de México, 11 (1971), pp. 55-62.
- [13] M. RICHARDSON, Solution of irreflective relations, Ann. Math., 58 (1953), pp. 573-580.