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In this paper we investigate new sufficient conditions for a digraph to be kernel-perfect (KP) 
and some structural properties of kernel-perfect critical (KPC) digraphs. In particular, it is 
proved that the asymmetrical part of any KPC digraph is strongly connected. A new method to 
construct KPC digraphs is developed. The existence of KP and KPC digraphs with arbitrarily 
large dichromatic number is also discussed. 

1. Introduction 

For general concepts we refer the reader to [1]. Let D be a digraph; V(D) and 
F(D) or FD will denote the sets of vertices and arcs of D respectively. Sometimes 
we write UlU2 instead of (ut, u2). If Do is a subdigraph (resp. induced subdigraph) 
of D we write Do ~ D (resp. Do c*  D). If St, $2 c V(D), the arc UlU 2 of D will be 
called an StS2-arc whenever ul • $1 and u2 • $2; D[S1] will denote the subdigraph 
of D induced by St and D [St, Sz] the subdigraph of D with vertex-set St tO $2 and 
whose arcs are the S1S2-arcs of D. An arc UlU2 • F(D) is called asymmetrical 
(resp. symmetrical) if u2ua ~ F(D) (resp. u2ut • F(D)). The asymmetrical part of 
D (resp. symmetricalpart of D), which is denoted by Asym(D) (resp. sym(D)), is 
the spanning subdigraph of D whose arcs are the asymmetrical (resp. symmetri- 
cal) arcs of D; D is called an oriented graph if Asym(D) = D. The directed cycle 
of length n is denoted by (~,. The set I ~-V(D) is independent if FD[I] = 0. A 
kernel N of D is an independent set of vertices such that for each z • V(D) - N  
there exists a zN-arc in D. A semikernel S of D is an independent set of vertices 
such that for every z • V ( D ) -  S, for which there exists an Sz-arc, there also 
exists a zS-arc. 

A digraph D is called: 
(i) quasi R-digraph if every proper induced subdigraph of D has a kernel; 

(ii) R-digraph if every non empty induced subdigraph of D has a non empty 
semikernel; 

(iii) R--digraph if D is a quasi R-digraph and has no kernel. 
The following result was proved by Neumann-Lara [12]. 
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Theorem 1.1. D is an R-digraph if  and only if every induced subdigraph of  D has 
a kernel. 

Therefore a quasi R-digraph is either an R-digraph or an R--digraph; 
R-digraphs (resp. R--digraphs) are just kernel-perfect graphs (resp. kernel- 
perfect critical graphs) in the terminology of Duchet and Meyniel [4]. 

Sufficient conditions for the existence of kernels in a digraph have been 
investigated by several authors namely Von Neumann and Morgenstern [17], 
Richardson [14-16], Duchet and Meyniel [2-4] and Galeana-S~nchez and 
Neumann-Lara [7, 12]. In this paper we study new sufficient conditions for a 
digraph to be an R-digraph and structural properties of R--digraphs. In particular 
it is proved that the asymmetrical part of an R--digraph is strongly connected. A 
new method to construct R--digraphs is developed. 

Relations between quasi R-digraphs and its asymmetric part and the existence 
of R-digraphs with arbitrarily large dichromatic number are also investigated. 

2. The asymmetrical part of quasi R-digraphs 

Most of this section is based on Theorem 2.1. 

Theorem 2.1. Suppose that V(D)  has a partition {V1, V2} such that every V1V2-arc 
in D is symmetric and D[V1] and D[V2] are R-digraphs. Then D is an R-digraph. 

Proof. Let D '  be an induced subdigraph of D. If D' c D[V1] or D '  c D[V2], D'  
has a kernel. In the opposite case, any kernel of D '  N D[V1] is a semikernel of 
D'.  Then D is an R-digraph. [] 

A corollary of Theorem 2.1 is 

Theorem 2.2. I f  D is an R--digraph, there is no partition {111, V2} of  V(D)  such 
that D[V1, V2] c sym(D); in other words, Asym(D) is strongly connected. 

As direct consequences of Theorem 2.2 we get 

Corollary 2.1 (Duchet [2]). Every R--digraph is strongly connected. 

Corollary 2.2 (Duchet and Meyniel [4]). I f  Asym(D) is acyclic, then D is an 
R-digraph. 

An important application of Corollary 2.2 is 

Theorem 2.3. I f  A s y m ( D ) =  Cn, then D is a quasi R-digraph and D - f  is an 



On kernel-perfect critical digraphs 259 

R-digraph for every f • F(Asym(D)) .  

Define the digraph C = C n ( J 1 ,  j 2 ,  • • • , jk) by 

V(C) = {0, 1 , . . . ,  n - 1}, 

F ( C ) =  { u v l v - u = j s  (modn)  for s =  1 , . . . ,  k}. 

An application of Theorem 2.3 is 

Theorem 2.4. I f  2 ~ r  < - [½n], then C = t~(1, -t-2, + 3 , . . . ,  +r) is an R-digraph or 
an R--digraph depending on whether n - 0 mod(r + 1) or n ~ 0 mod(r + 1). 

Proof. Since Asym(C) = Cn and in virtue of Theorem 2.3 we have only to prove 
that C has a kernel iff n - 0 mod(r + 1). If n -= 0 mod(r + 1), {i [ i -- 0 mod(r + 1)} 
is a kernel of C. Let N be a kernel of C. If u • N, u' = u + 1 ~N. Take u '  + j • N 
such that u(u' +j)  • F ( C ) .  Clearly u' + k ~ N  for k = + 2 , . . . ,  : i : ( r -  1), - r ,  
since for these values of k, u' + k is adjacent to u. Then j = r and u + r + 1 • N. 
Therefore u + m(r + 1) • N (operations taken mod n) for every m. Since N is an 
independent set, we must have n -- 0 mod(r + 1). In particular we have 

Corollary 2.3. (~n(1, + 2 , . . . ,  +[½n]) is an R--digraph for n >I 4. 

Another direct consequence of Theorem 2.2 is 

Theorem 2.5. D is an R-digraph iff  for every strong component tr o f  Asym(D),  
D[V(tr)] is an R-digraph. 

Proof. Let H be an induced R--subdigraph of D. By Theorem 2.2, Asym(H) is 
strongly connected and thus it is contained in a strong component ~ of Asym(D).  
Therefore H is an induced subdigraph of D[V(a0]. This gives a contradiction. 
The converse is obvious. [] 

It is well known that any bipartite digraph is R-digraph. As an application of 
Theorem 2.5 we obtain 

Corollary 2.4. I f  for  every strong component o: o f  Asym(D), D[V(te)] is bipartite, 
then D is an R-digraph. 

Corollary 2.4 includes as a particular case the following result due to Duchet. 

Theorem 2.6 (Duchet [3]). I f  every directed cycle of  odd length in D has at least 
two symmetric arcs, D is an R-digraph. 

Proof. It is sufficient to prove the following 
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Lemma 2.1. I f  every directed cycle o f  odd length in D has at least two symmetric 
arcs, then for every strong component ol o f  Asym(D), D[V(a0] is bipartite. 

Proof. Let cr be a strong component of Asym(D). 
Since cr is strongly connected and does not contain directed cycles of odd 

length, cr is bipartite [9, Theorem 6.14]. Therefore D[V(o0] is bipartite for 
otherwise a directed cycle of odd length with only one symmetric arc would be 
obtained. [] [] 

The example shown in Fig. 1 (which is an R-digraph, by Corollary 2.4) shows 
that Corollary 2.4 is strictly stronger than Theorem 2.6. 

3. R--digraphs whose asymmetrical part is separable 

The main result of this section is Theorem 3.4. The following lemma can be 
easily proved. 

Lemma 3.1. Let D1, D2 and D be digraphs, v • V(Di), i = 1, 2. Suppose that 
D1U 192 = D, V(D~) n V(D2) = {v} and N~ is a kernel o f  D~. 

(i) I f  N2 is a kernel o f  D2 and v • (N1 n N2) U (N~ O N[), then N1 U N2 is a 
kernel o f  D. " 

(ii) I f  v ~ N1 and N~ is a kernel o f  192 - v, then N1 U N~ is a kernel of  D. 

Lemma 3.2. Let D1, 192 and D be digraphs, v • V(Di), i = 1, 2. Suppose that 

D~ U D2 = D, V(Dt)  n V(D2) = {v}, N is a kernel of  D and Ni = N n V(Di), 
i = 1, 2. I f  N2 is not a kernel of  192, then N1 is a kernel of  D1 and N2 is a kernel o f  

D 2 - v ,  

Proof. If v • N, then Ni is a kernel of Di for i = 1, 2. If v ~ N, there exists a 
vNl-arc and no vN-arc since otherwise N2 would be a kernel of/92 and Lemma 
3.2 follows. [] 

Lemma 3.3. Let D1 and 192 be digraphs, v e V(Di), i = 1, 2. Suppose that 
V(D1) n V(D2) = {v}, uiv e Sym(Di), Hi = Di - uiv - vui, i = 1, 2 and D = (ttl u 
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/'/2) + ulu2 + u2ul. I f  each one of  Hi, Hi - v, Hi - {ui, v}, (i = 1, 2), 1-11 - Ul and 
192 has a kernel, then D has a kernel. 

Proof. In what follows, N(S)  denotes in general any kernel of S. Suppose that D 
has no kernel. Then 

(i) {Ul, u2} c N(H1 t3/-/2) for every kernel N(H1U/ /2)  of H1 (3/-/2. For 
otherwise N(Ha t_J/-/2) would be a kernel of D. Let N(Ha) be a kernel of/-/1 and 
suppose that v ~ N(H1). Thus ul e N ( H  0 for otherwise N = N(H~) t3 N(H2 - v) 
would be a kernel of/-/1 t.J/-/2 not containing Ul in contradiction with (i). Then 
N '  = N ( H 0  U N ( H 2 -  {u2, v}) is a kernel of H1 U H2 and, since u2 C N'  also a 
kernel of D which is in contradiction with the initial assumption. Therefore 
v e N(H1) and similarly v • N(H2). It follows that N(H1) U N(H2) is a kernel of 
//1 t3//2 and by (i) ui • N(Hi). We have proved 

(ii) ui, v • N(Hi) for every kernel N(Hi) of Hi, i = 1, 2. 
Let  N(D2) be a kernel of D2. Then v ~ N(D2) for otherwise N = N(D2) t_J N(H1) 

would be a kernel of D. So v ~ N(D2) for every kernel N(D2) of/92. Furthermore 
u2 • N(D2) since otherwise N(D2) would be a kernel of/-/2 not containing v. We 
have proved 

(iii) Every Kernel N(D2) of/92 satisfies v ~ N(D2) and u2 • N(D2). 
(iv) Vertex v belongs to every kernel N(H1 - ul) of//1 - Ul. 
Since otherwise by (iii), N(H1 - Ul) t3 N(D2) would be a kernel of D. Finally by 

using (ii) and (iv) we conclude that N ( H 1 -  ul)t3 N(H2) is a kernel of D which 
gives the final contradiction. [] 

Lemma 3.4. Let D1, 192 be digraphs, v e V(Di), i = 1, 2. Suppose that V(D1) f'l 

V(D2) = {v}, uiv e Sym(Di), Hi = Di - u,v - vu,, i = 1, 2 and D = (H1 t.J /-/2) + 
ulu2 + u2u~. I f  N is a kernel o f  D and Ni = N N V(Di), i = 1, 2, then either N~ is a 
kernel o f  D1 or N2 is a kernel of  192. 

Proof. Let N be a kernel of D, Ni = N fq V(Di), i = 1, 2. Obviously {Ul, U2} CN, 
W.l.o.g. we can assume that ul ¢ N. If v e N, N1 is a kernel of D1; if v ¢ N and 
u2 e N, N2 is a kernel of D2. Finally, in case v ¢ N and u2 ¢ N, N~ is a kernel of Di 
provided that there exists a vN~-arc. This is dearly true for some index i. [] 

In what follows we need the following result due to Jacob. 

Theorem 3.1 (Jacob [10, pp. 78-82]). Let 191, 192 and D be digraphs such that 
V(D1) tq V(D2) = {v} and D = 191 t3 192. Then D is an R-digraph iff D1 and 1)2 are 
R-digraphs. 

Theorem 3.1 is a direct consequence of Lemma 3.1. 
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Theorem 3.2. Let 1)1, DE, D, H1 and HE be as in Lemma 3.4. Suppose that HI 
and H2 are R-digraphs. Then D is an R--digraph iff D1 and DE are R--digraphs. 

Proof. (i) Suppose that D 1 and D2 are R--digraphs.  By Lemma 3.4, D has no 

kernel. Let D '  ~* D. If {v, Ul, u2} ~ V(D') ,  D' has a kernel by Theorem 3.1. If 
{v, ul ,  u2} c V(D') ,  D' has a kernel by Lemma 3.3. I t  follows that D is an 
R--digraph.  

(ii) Suppose that D is an R--digraph.  By Lemma 3.3, Di has no kernel for 

i =  1, 2. Let DE ~*/92. If {v, u2} ~: DE, DE ~* D and therefore DE has a kernel. 
If {v, u2} c- DE, let D '  = D[V(DE) tO V(D1)]. Since D '  ~;* D, D '  has a kernel and 
by using Lemma 3.4 and the fact that D~ has no kernel we conclude that DE has a 
kernel. [] 

Theorem 3.3 can be obtained applying Theorem 3.1 and Lemmas 3.3 and 3.4. 

Theorem 3.3. Let D1, D2, H1, H2 and D be as in Lemma 3.4. I f  H1 and H2 are 
R-digraphs, then D is an R-digraph iff at least one of  D1 and DE is an R-digraph. 

Definition 3.1. Let D be a digraph such that vu, uv e F(D), D is said to be an 
R-(u ,  v)-digraph iff D is an R--digraph and D - uv - vu is an R-digraph. 

From Theorems 3.1 and 3.2 we can easily prove Theorem 3.4. 

Theorem 3.4. Let Da, DE and D be as in Lemma 3.3. If  Di is an R-(ui,  v)-digraph 
for i = 1, 2, then D is an R- (u l ,  u2)-digraph. 

Example 1. Let D = (~,(1, + 2 , . . . ,  +r) ,  n ~ 0 (mod(r + 1)). By Theorem 2.4, D 

is an R--digraph.  Let i, j, k be integers modulo r + 1 such that k =} + i, 
i = 2 , . . . ,  r. Then D is not an R-( j ,  k)-digraph only in case i = r, n ~ r (mod(r + 
1)) and n/> 2r + 1. 

Proof. By symmetry we can assume k = 0; therefore } = n - i. Any kernel N of 
O 1 = D - j0  - 0j must contain 0 and j, for otherwise N would be a kernel of D. If 
n - i m o d ( r + l ) ,  { k ( r + l )  l O < - k < ~ ( n - i ) / ( r + l ) }  is a kernel of D1 and by 
Theorem 2.3, D1 is an R-digraph. If n ~ i mod(r  + 1) and i :~ r, take A = 
{r + 1, r + 2 , . . . ,  n - i - r - 1} whenever n >I 2(r + 1) + i and otherwise A = 0 
and let N(D[A]) be a kernel  of D[A]. It is easy to see that N(D[A]) tO {0, n - i} 
is a kernel of D1. In case n ~ i  mod(r  + 1) and i = r: 

(a) if n >/2r + 1 proceed as in the proof of Theorem 2.4 to conclude that D1 is 

an R--digraph;  
(b) if n = 2r, {0, r} is a kernel  of D1. 
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Fig. 2 

Example 2. Taking D1-/)2-~ C4(1, +2), apply Lemma 3.3 to get the digraph D 
of Fig. 2 (uiv, vui are the arcs corresponding to a diagonal of C4). Using Theorem 
3.4 and the preceding paragraph we conclude that D is an R--digraph. In fact, D 
is an example of non Hamiltonian R--digraph. Starting with D and using 
repeatedly the operation o:(G, v) introduced in [4]. We can obtain examples of 
non Hamiltonian R--oriented graphs. 

4. Dichromatic number and quasi R-digraphs 

4.1. Some constructions 

The constructions given in this section are useful to enlarge the class of known 
R-digraphs and R--digraphs. 

4.1.1. If f =  uv e F(D),  D(f/Pn) will denote any digraph D '  such that D ' =  
(D - f )  U Pn(u, v), where Pn(u, v) is a uv-directed path of length n - 1 satisfying 
v(Pn(u,v)no)=(u,v}. 

Theorems 4.1 and 4.2 were found independently by Galeana-S~inchez and 
Neumann-Lara [6] and Duchet and Meyniel [4]. 

Theorem 4.1. D(f  /P2k) has a kernel iff D has a kernel. 

Proof. Any kernel of D can be extended to a kernel of D(f/P2k). If N'  is a kernel 
of D(f/P2k), N' N V(D) is a kernel of D. [] 

By using Theorems 3.1 and 4.1 we can prove 

Theorem 4.2. Suppose that D - f  is an R-digraph. Then D(f/P2k) is an R-digraph 
(resp. R--digraph) iff D is an R-digraph (resp. R--digraph). 

Remark 4.1. By Theorem 4.1 it is sufficient to prove that D(f/P2k) is a quasi 
R-digraph iff D is a quasi R-digraph. 

We omit the proof of Theorem 4.3 which is a simple generalization of Theorem 

4.2. 
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Theorem 4.3. Let 0 ~ Fo ~ F(D) and D' a digraph obtained from D by replacing 
each uv e Fo by a uv-directed path P(u, v) of odd length so that V(D N P(u, v)) = 
{u, v} and V(P(u, v) N P(u', v')) = {u, v} N {u', v '} whenever uv ~ u'v ' ,  
uv, u'v'  e Fo. Suppose furthermore that D - F' is an R-digraph provided 0 ~ F' c 
Fo. Then D' is an R-digraph (resp. R--digraph) iff D is an R-digraph (resp. 
R--digraph). 

4.1.2. Let D be a digraph and tr = (Olu),~v(o) a family of non empty mutually 
disjoint digraphs. The diagraph a(D, ol) is defined by: 

(i) V(a(D,  ol))=Uu~vW) V(ocu); 
(ii) wlw2 e F(a(D, tr)) iff 
(1) wl, w2e V(ol~) and w~w2eF(ol~) for some u e V(D),  or 
(2) Wl e V(a~,,), w2e V(o:v) and uv eF(D)  for some u, v ~ V(D). 

Remark 4.2. Notice that if a~v is isomorphic to tr ° for every u ~ V(D), a(D, re) is 
isomorphic to the lexicographic product D[tr°]. Moreover if D and the a~,'s are 
oriented graphs, a(D, o 0 is an oriented graph. 

Theorem 4.4. a(D, re) is an R-digraph iff D and every olu are R-digraphs. 

Proof. Since ~v and D are induced subdigraphs of a(D, o 0 it follows that.D and 
a~,, are R-digraphs provided o(D, a) is an R-digraph. The converse follows by 
observing that every induced subdigraph of a(D, ol) has the form a(D', o:'), 
where D'  c*  D and re',, c*teu for u ~ V(D'),  and therefore U, , , r  Qu is a kernel of 
D '  whenever K is a kernel of D'  and Qv is a kernel of tru for each u ~ V(D').  [] 

Corollary 4.1. D[tr °]/s an R-digraph iff D and te ° are R-digraphs. 

4.2. Dichromatic number and kernel theory 

The dichromatic number dk(D) of D was defined in [13] (see also [5]), and 
independently in [11] as the minimum number of colours required to colour the 
vertices of D in such a way that the chromatic classes induce acyclic subdigraphs 
of D. Clearly dk(D)>I x(D). The dichromatic number is a generalization of the 
chromatic number. In particular, they coincide for symmetric digraphs. It was 
proved in [13] that dk(D)<~ 2 for any digraph D not containing directed cycles of 
odd length. Therefore Richardson's theorem is useful only for digraphs whose 
dichromatic number is less or equal to 2. According to Corollary 2.3 there exist 
R--digraphs (and obviously R-digraphs) with arbitrarily large dichromatic num- 
ber; more precisely dk(Cn(1, + 2 , . . . ,  +[½n])) =[2n]1 ,. 

For oriented graphs the situation is more complicated: The only tournament 
which is an R--digraph is the triangle (directed cycle of length 3); therefore a 
tournament T is an R-digraph iff T is acyclic or equivalently, dk(T)= 1. It was 
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proved in [131 that dk(D[tr]) >i dk(D) + dk(O 0 -- 1. Then dk(D[&]) >i dk[D] + 1 
since dk(C.4)=2. From this inequality and Remark 4.2, it turns out that 
R-oriented graphs with arbitrarily large dichromatic number can be constructed. 
In a forthcoming paper [8] we shall prove the following result. 

Theorem 4.5. For every R-digraph (resp. R-oriented graph) Do there exists an 
R--digraph (resp. R--oriented graph) D such that Do c* D. 

This theorem implies that there exist R--oriented graphs with arbitrarily large 
dichromatic number and consequently with arbitrarily large chromatic number. 
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