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Mutations of quivers with potentials

Quiver mutation can be described by means of a three-step procedure on 2-acyclic quivers as follows. Start
with a 2-acyclic quiver Q and a vertex k of Q.

(Step 1) For every arrow α : j → k and every arrow β : k → i in Q, add an arrow [βα] : j → i;

(Step 2) replace each arrow γ incident to k with an arrow γ∗ going in the opposite direction;

(Step 3) delete 2-cycles one by one (2-cycles may have been created when applying Step 1).

The result is a 2-acyclic quiver µk(Q), called the mutation of Q with respect to k.
A quiver with potential (QP for short) is a pair (Q,S) consisting of a quiver Q and a potential S on Q,

that is, a (posibly infinite) linear combination of cycles of Q. In order to lift the notion of mutation to the
level of QPs, one needs an algebraic procedure to delete 2-cycles from a (non-necessarily 2-acyclic) QP. Such
algebraic procedure is provided by Derksen-Weyman-Zelevinsky’s Splitting Theorem, which states:

Theorem 1. Every QP (Q,S) is right-equivalent to the direct sum (Qred, Sred)⊕ (Qtriv, Striv) of a reduced

QP (Qred, Sred) and a trivial QP (Qtriv, Striv). Both of these QPs are uniquely determined by (Q,S) up to

right-equivalence.

One then keeps the reduced part (Qred, Sred) and deletes the 2-cycles that appear in Qtriv. ‘Unfortunately’,
the quiver Qred is not necessarily 2-acyclic, its 2-acyclicity depends heavily on the chosen potential S.

Given a 2-acyclic (Q,S) and a vertex k of Q, Derksen-Weyman-Zelevinsky define µk(Q,S), the mutation of
the QP (Q,S) with respect to k, to be the reduced part of the QP (µ̃k(Q), µ̃k(S)), where µ̃k(Q) is the quiver
obtained from Q by applying only the first two steps of quiver mutation, and

µ̃k(S) = [S] +
∑
→
α
k→

β

β∗[βα]α∗.

Since reduced parts of QPs are not necessarily 2-acyclic, we see that, ‘unfortunately’ again, the underlying
quiver of the QP µk(Q,S) is not necessarily 2-acyclic, its 2-acyclicity dependes heavily on the chosen poten-
tial S. A QP (Q,S) is non-degenerate if it is 2-acyclic and every possible sequence of QP-mutations applied
to it yields a 2-acyclic QP. Derksen-Weyman-Zelevinsky show that non-degenerate potentials always exist:

Theorem 2. Every 2-acyclic quiver admits a non-degenerate potential if the ground field is uncountable.

Triangulations of surfaces: their flips and quivers

A surface with marked points, or simply a surface, is a pair (Σ,M), where Σ is a compact connected oriented
Riemann surface with (possibly empty) boundary, and M is a non-empty finite subset of Σ containing at
least one point from each connected component of the boundary of Σ.

An arc on (Σ,M) is a curve on Σ that joins points in M and
is not homotopically trivial. An ideal triangulation of (Σ,M) is
a maximal collection of pairwise non-crossing arcs on (Σ,M).
A basic operation on ideal triangulations is that of flip, the
move that replaces a diagonal of any given quadrilateral with
the other diagonal. For example, the ideal triangulations of the
once-punctured hexagon on the right are related by a flip.

Every ideal triangulation τ has a quiver Q(τ) associated
in a natural way. This was first observed by Fock-Goncharov,
Fomin-Shapiro-Thurston and Gekhtman-Shapiro-Vainshtein.
The construction of Q(τ) follows the idea of drawing clockwise-
oriented arrows within the triangles of τ , as the figure on the
left exemplifies.

Fock-Goncharov, Fomin-Shapiro-Thurston and Gekhtman-Shapiro-Vainshtein realized the following:

Theorem 3. If two ideal triangulations of (Σ,M) are related by a flip, then their associated quivers are

related by the corresponding quiver mutation.

Many ideal triangulations present the ‘unpleasant’ feature of having
self-folded triangles. The folded side of such a triangle cannot be flipped
within the class of ideal triangulations. In order to be able to flip folded
sides, Fomin-Shapiro-Thurston introduced the concept of tagged triangu-
lation, a notion more general than that of ideal triangulation, and whose
flip combinatorics becomes rather subtle. Fomin-Shapiro-Thurston show
that all arcs in a tagged triangulation can be flipped. They furthermore
associate a quiver to each tagged triangulation, and prove that Theorem
3 is valid in the more general setting of tagged triangulations.

The quiver with potential of an ideal triangulation

The works of Derksen-Weyman-Zelevinsky and Fomin-Shapiro-Thurston lead to the following natural
question:

Question 4. Is it possible to associate to each tagged triangulation τ a potential S(τ) on the quiver Q(τ),

in such a way that tagged triangulations related by a flip always have QPs related by the corresponding

QP-mutation?

A first attempt to answer this question was made in [L1]. Such attempt was not successful at answering
the question for all tagged triangulations, but only for ideal triangulations. For an ideal triangulation τ , the
definition of the potential S(τ) is based on the following basic observation: Every ‘sufficiently nice’ ideal
triangulation τ presents two ‘obvious’ types of cycles on its quiver Q(τ), namely:

• the 3-cycles arising from the triangles of τ ;

• the cycles running around the punctures of (Σ,M).

The potential S(τ) is then defined as the sum of all these ‘obvious’ cycles.1 For example, the potentials
associated to the ideal triangulations

are S(τ) = a1a2a3 + b1b2b3 +a1b1cd and S(σ) = α1α2α3 +β1β2β3 +α1cd. For ideal triangulations that are not
‘sufficiently nice’, the definition of S(τ) becomes somewhat involved, but we stress the fact that a potential
S(τ) was associated in [L1] to every ideal triangulation τ , even under the presence of self-folded triangles.

Theorem 5. Let (Σ,M) be any surface with marked points. If τ and σ are ideal triangulations of (Σ,M)

related by the flip of an arc k, then the QPs (Q(τ), S(τ)) and (Q(σ), S(σ)) are related by QP-mutation

with respect to k.

Theorem 5, proved in [L1] by means of a lengthy case-by-case check, is still far from providing an answer to
Question 4. Indeed, in the presence of punctures, most tagged triangulations are not ideal. Using a ‘deletion
of notches ’ procedure defined by Fomin-Shapiro-Thurston, it is possible to read an ‘obvious’ potential on the
quiver of any tagged triangulation. What turns out to be hard is not reading such ‘obvious’ potential, but
providing a proof of the ‘tagged version’ of Theorem 5. The main difficulty consists in showing that Theorem
5 remains true when we apply a flip that takes us out of the class of ideal triangulations, that is, when we
flip the folded side of a self-folded triangle.

1In the particular case of unpunctured surfaces (necessarily with non-empty boundary), the potential S(τ)
was found and studied by Assem-Brüstle-Charbonneau-Plamondon independently of [L1].

The quiver with potential of a tagged triangulation

Let us illustrate how ‘deletion of notches ’ allows us to read potentials on tagged triangulations. Consider
the tagged triangulations τ̃ and σ̃ shown below.

If we delete all notches from τ̃ and σ̃, we obtain the ideal triangulations τ and σ depicted on the left side of
this poster. Thus, attaching negative signs to the punctures where at least two notches have been deleted,
we define S(τ̃) = a1a2a3 + b1b2b3 − a1b1cd and S(σ̃) = α1α2α3 + β1β2β3 − α1cd.

Theorem 6. Let (Σ,M) be any surface with marked points, with the only assumption that (Σ,M) is not

a sphere with less than six punctures. If τ and σ are tagged triangulations of (Σ,M) related by the flip

of a tagged arc k, then the QPs (Q(τ), S(τ)) and (Q(σ), S(σ)) are related by theQP-mutation µk.

Theorem 6, recently proved in [L4], provides a positive answer to Question 4. We believe it to be true for
the 5-punctured sphere as well. The following is an immediate consequence.

Corollary 7. Let (Σ,M) be any surface as in Theorem 6. The QP (Q(τ), S(τ)) associated to a tagged

triangulation τ of (Σ,M) is always non-degenerate.

References
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