

Quivers with potentials associated to triangulated surfaces

Daniel Labardini-Fragoso

Algebra, Combinatorics and Representation Theory: in honor of the 60th birthday of Andrei Zelevinsky

Mutations of quivers with potentials

Quiver mutation can be described by means of a three-step procedure on 2-acyclic quivers as follows. Start with a 2-acyclic quiver Q and a vertex k of Q.

(Step 1) For every arrow $\alpha : j \to k$ and every arrow $\beta : k \to i$ in Q, add an arrow $[\beta \alpha] : j \to i$;

(Step 2) replace each arrow γ incident to k with an arrow γ^* going in the opposite direction;

(Step 3) delete 2-cycles one by one (2-cycles may have been created when applying Step 1).

The result is a 2-acyclic quiver $\mu_k(Q)$, called the *mutation of* Q *with respect to* k.

A quiver with potential (QP for short) is a pair (Q, S) consisting of a quiver Q and a potential S on Q, that is, a (possibly infinite) linear combination of cycles of Q. In order to lift the notion of mutation to the level of QPs, one needs an algebraic procedure to delete 2-cycles from a (non-necessarily 2-acyclic) QP. Such algebraic procedure is provided by Derksen-Weyman-Zelevinsky's *Splitting Theorem*, which states:

Theorem 1. Every QP (Q, S) is right-equivalent to the direct sum $(Q_{\text{red}}, S_{\text{red}}) \oplus (Q_{\text{triv}}, S_{\text{triv}})$ of a reduced

QP $(Q_{\text{red}}, S_{\text{red}})$ and a trivial QP $(Q_{\text{triv}}, S_{\text{triv}})$. Both of these QPs are uniquely determined by (Q, S) up to

right-equivalence.

One then keeps the *reduced part* $(Q_{\text{red}}, S_{\text{red}})$ and deletes the 2-cycles that appear in Q_{triv} . 'Unfortunately', the quiver Q_{red} is not necessarily 2-acyclic, its 2-acyclicity depends heavily on the chosen potential S.

Given a 2-acyclic (Q, S) and a vertex k of Q, Derksen-Weyman-Zelevinsky define $\mu_k(Q, S)$, the mutation of the QP (Q, S) with respect to k, to be the reduced part of the QP $(\tilde{\mu}_k(Q), \tilde{\mu}_k(S))$, where $\tilde{\mu}_k(Q)$ is the quiver obtained from Q by applying only the first two steps of quiver mutation, and

$$\widetilde{\mu}_k(S) = [S] + \sum_{\substack{\rightarrow k \\ \alpha \neq \beta}} \beta^* [\beta \alpha] \alpha^*.$$

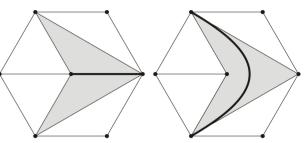
Since reduced parts of QPs are not necessarily 2-acyclic, we see that, 'unfortunately' again, the underlying quiver of the QP $\mu_k(Q, S)$ is not necessarily 2-acyclic, its 2-acyclicity dependes heavily on the chosen potential S. A QP (Q, S) is non-degenerate if it is 2-acyclic and every possible sequence of QP-mutations applied to it yields a 2-acyclic QP. Derksen-Weyman-Zelevinsky show that non-degenerate potentials always exist:

Theorem 2. Every 2-acyclic quiver admits a non-degenerate potential if the ground field is uncountable.

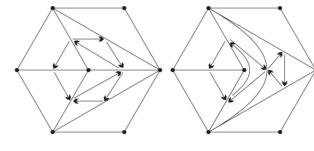
Triangulations of surfaces: their flips and quivers

A surface with marked points, or simply a surface, is a pair (Σ, \mathbb{M}) , where Σ is a compact connected oriented Riemann surface with (possibly empty) boundary, and \mathbb{M} is a non-empty finite subset of Σ containing at least one point from each connected component of the boundary of Σ .

An arc on (Σ, \mathbb{M}) is a curve on Σ that joins points in \mathbb{M} and is not homotopically trivial. An *ideal triangulation of* (Σ, \mathbb{M}) is a maximal collection of pairwise non-crossing arcs on (Σ, \mathbb{M}) . A basic operation on ideal triangulations is that of *flip*, the • move that replaces a diagonal of any given quadrilateral with the other diagonal. For example, the ideal triangulations of the once-punctured hexagon on the right are related by a flip.



universitätbonn



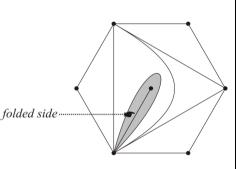
Every ideal triangulation τ has a quiver $Q(\tau)$ associated in a natural way. This was first observed by Fock-Goncharov, Fomin-Shapiro-Thurston and Gekhtman-Shapiro-Vainshtein. The construction of $Q(\tau)$ follows the idea of drawing clockwiseoriented arrows within the triangles of τ , as the figure on the left exemplifies.

Fock-Goncharov, Fomin-Shapiro-Thurston and Gekhtman-Shapiro-Vainshtein realized the following:

Theorem 3. If two ideal triangulations of (Σ, \mathbb{M}) are related by a flip, then their associated quivers are

related by the corresponding quiver mutation.

Many ideal triangulations present the 'unpleasant' feature of having *self-folded triangles.* The *folded side* of such a triangle cannot be flipped within the class of ideal triangulations. In order to be able to flip folded sides, Fomin-Shapiro-Thurston introduced the concept of *tagged triangulation*, a notion more general than that of ideal triangulation, and whose flip combinatorics becomes rather subtle. Fomin-Shapiro-Thurston show that all arcs in a tagged triangulation can be flipped. They furthermore associate a quiver to each tagged triangulation, and prove that Theorem 3 is valid in the more general setting of tagged triangulations.



The quiver with potential of an ideal triangulation

The quiver with potential of a tagged triangulation

The works of Derksen-Weyman-Zelevinsky and Fomin-Shapiro-Thurston lead to the following natural question:

Question 4. Is it possible to associate to each tagged triangulation τ a potential $S(\tau)$ on the quiver $Q(\tau)$,

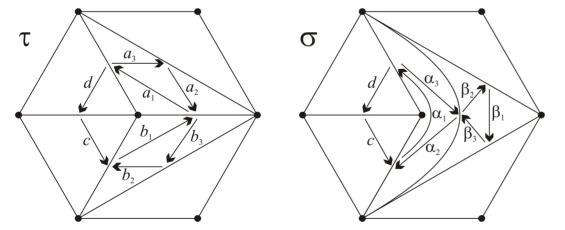
in such a way that tagged triangulations related by a flip always have QPs related by the corresponding

QP-mutation?

A first attempt to answer this question was made in [L1]. Such attempt was not successful at answering the question for all tagged triangulations, but only for ideal triangulations. For an ideal triangulation τ , the definition of the potential $S(\tau)$ is based on the following basic observation: Every 'sufficiently nice' ideal triangulation τ presents two 'obvious' types of cycles on its quiver $Q(\tau)$, namely:

- the 3-cycles arising from the triangles of τ ;
- the cycles running around the punctures of (Σ, \mathbb{M}) .

The potential $S(\tau)$ is then defined as the sum of all these 'obvious' cycles.¹ For example, the potentials associated to the ideal triangulations



are $S(\tau) = a_1 a_2 a_3 + b_1 b_2 b_3 + a_1 b_1 cd$ and $S(\sigma) = \alpha_1 \alpha_2 \alpha_3 + \beta_1 \beta_2 \beta_3 + \alpha_1 cd$. For ideal triangulations that are not 'sufficiently nice', the definition of $S(\tau)$ becomes somewhat involved, but we stress the fact that a potential $S(\tau)$ was associated in [L1] to every ideal triangulation τ , even under the presence of self-folded triangles.

Theorem 5. Let (Σ, \mathbb{M}) be any surface with marked points. If τ and σ are ideal triangulations of (Σ, \mathbb{M})

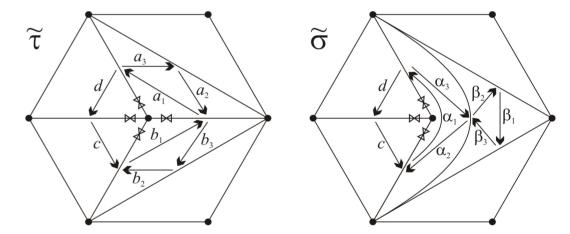
related by the flip of an arc k, then the QPs $(Q(\tau), S(\tau))$ and $(Q(\sigma), S(\sigma))$ are related by QP-mutation

with respect to k.

Theorem 5, proved in [L1] by means of a lengthy case-by-case check, is still far from providing an answer to Question 4. Indeed, in the presence of punctures, most tagged triangulations are not ideal. Using a 'deletion of notches' procedure defined by Fomin-Shapiro-Thurston, it is possible to read an 'obvious' potential on the quiver of any tagged triangulation. What turns out to be hard is not reading such 'obvious' potential, but providing a proof of the 'tagged version' of Theorem 5. The main difficulty consists in showing that Theorem 5 remains true when we apply a flip that takes us out of the class of ideal triangulations, that is, when we flip the folded side of a self-folded triangle.

¹In the particular case of unpunctured surfaces (necessarily with non-empty boundary), the potential $S(\tau)$ was found and studied by Assem-Brüstle-Charbonneau-Plamondon independently of [L1].

Let us illustrate how 'deletion of notches' allows us to read potentials on tagged triangulations. Consider the tagged triangulations $\tilde{\tau}$ and $\tilde{\sigma}$ shown below.



If we delete all notches from $\tilde{\tau}$ and $\tilde{\sigma}$, we obtain the ideal triangulations τ and σ depicted on the left side of this poster. Thus, attaching negative signs to the punctures where at least two notches have been deleted, we define $S(\tilde{\tau}) = a_1 a_2 a_3 + b_1 b_2 b_3 - a_1 b_1 cd$ and $S(\tilde{\sigma}) = \alpha_1 \alpha_2 \alpha_3 + \beta_1 \beta_2 \beta_3 - \alpha_1 cd$.

Theorem 6. Let (Σ, \mathbb{M}) be any surface with marked points, with the only assumption that (Σ, \mathbb{M}) is not

a sphere with less than six punctures. If τ and σ are tagged triangulations of (Σ, \mathbb{M}) related by the flip

of a tagged arc k, then the QPs $(Q(\tau), S(\tau))$ and $(Q(\sigma), S(\sigma))$ are related by the QP-mutation μ_k .

Theorem 6, recently proved in [L4], provides a positive answer to Question 4. We believe it to be true for the 5-punctured sphere as well. The following is an immediate consequence.

Corollary 7. Let (Σ, \mathbb{M}) be any surface as in Theorem 6. The QP $(Q(\tau), S(\tau))$ associated to a tagged

triangulation τ of (Σ, \mathbb{M}) is always non-degenerate.

References

- [ABCP] I. Assem, T. Brüstle, G. Charbonneau-Jodoin, P-G. Plamondon. *Gentle algebras arising from surface triangulations*. Algebra & Number Theory Vol. 4 (2010), No. 2, 201-229. arXiv:0903.3347
- [DWZ] H. Derksen, J. Weyman, A. Zelevinsky. *Quivers with potentials and their representations I: Mutations.* Selecta Math. 14 (2008), no. 1, 59119. arXiv:0704.0649
- [FST] S. Fomin, M. Shapiro, D. Thurston. Cluster algebras and triangulated surfaces, part I: Cluster complexes. Acta Mathematica 201 (2008), 83-146. arXiv:math.RA/0608367
- [LF1] D. Labardini-Fragoso. Quivers with potentials associated to triangulated surfaces. Proc. London Mathematical Society (2009) 98 (3): 797-839. arXiv:0803.1328
- [LF4] D. Labardini-Fragoso. Quivers with potentials associated to triangulated surfaces, part IV: Removing boundary assumptions. arXiv:1206.1798

April 2013, Mathematisches Institut, Universität Bonn labardini@math.uni-bonn.de