10/08/76 Richel Bnoa
The isogeny category of commutative
Coomut alg grp /k field
(possibly won aff.)
$\zeta=C_{k}=$ abelian cat (Gro(hendiedk)
e/f, Fcat. of fin gro sdremes isogenic category

Defintion: An aly groop / k is group scheme of hiuite sype.
If char $k=0$ such a gre solneme G is a k-vaniety \& smooth [caries]
$m: G \times G \longrightarrow G$ mult.
$i: G \longrightarrow G \quad$ inv. $e \in G(k)$
If char $u=p>0$ get schemes

1) $G=\operatorname{Ga}_{a}$ simple if chark=0

$$
\begin{aligned}
\text { End }(\mathbb{G} a) & =h \text { scalar mult. } \\
& =\{p \in k[t] \mid p(x+y)=p(x)+p(y)\}
\end{aligned}
$$

If cherk>0

$$
\begin{aligned}
\text { End }\left(G_{\alpha}\right) & =\left\{\begin{array}{r}
\left.t \mapsto a_{0} t+a_{1} t^{p}+\cdots+a_{m} t^{p^{m}}\right\} \\
\\
a_{01} \cdot, a_{m} \in k
\end{array}\right. \\
& =k\langle\mp\rangle /\left(F a=a^{(}+, a \in k\right)
\end{aligned}
$$

many fin. suogop scheme ecg.

$$
0 \rightarrow \overline{\pi / p x} \rightarrow G_{a} \stackrel{F^{n}-F}{\longrightarrow} \mathbb{C}_{a} \rightarrow 0
$$

(fin. Stale)
2) $G=\mathbb{G}_{m}$ End $\left(\mathbb{G}_{m}\right)=\mathbb{X}, t \leftrightarrow t^{n}, n \in \mathbb{X}$

$$
0 \rightarrow \mu_{n} \rightarrow \mathbb{G}_{m} \xrightarrow{n} \mathbb{G}_{m} \rightarrow 0
$$

nth root of unity (fin. of order n, etale (t) char (n)
3) $E=$ exuptic curve $=$ snath prop. ard of gens with ural. pt 0
(E, t)

$$
O \rightarrow E[n] \rightarrow E \stackrel{n}{\longrightarrow} E \hookrightarrow O
$$ Gin arles n^{2}

End $(E)=\left\{\begin{array}{l}T \\ \text { an order in } Q[[-d]\end{array}\right.$ an order in a quaternion
algebra over \mathbb{Q} algebra over \mathbb{Q} if ts def. aus fin. field All cases occur (Devouring)
(Sere, 1960)
e_{n} is arfician, not hoeth.
Every object G has a finite filiation

$$
0=G_{0} C G_{1} C \ldots C G_{n}=G
$$

with subquot. $G_{i /} G_{i-1}$ of one of she types
$\mathbb{T} a$ simpler $_{\text {sins }}^{\text {simple" }}$ ablian var., filuite

$$
\text { tonus }=G \text { st. } G_{\bar{k}} \cong \mathbb{G}_{m, k} \times \cdots \times \mathbb{G}_{m, \bar{k}}
$$

abelian var. = smooth prof connected alg.

$$
\begin{aligned}
& \text { group } \\
& \frac{\text { finite simple }=\overline{\mathbb{K}_{l}} \text { alg. closure }}{}, l \text { prime } \\
& \alpha_{p}, \mu_{p} \quad \text { if } k=\bar{x}
\end{aligned}
$$

if $k \neq \bar{k}$ can take r Galois gp

$$
p: r \rightarrow G_{n}\left(\mathbb{F}_{l}\right) \text { rep. ircd. }
$$

\#en decends to simple fin. gre sphere
How $\left(G_{1} H\right)=0$ if $G_{1} H$ are elementary of different types exopt when G is finite Then Hor $\left(G_{1}, t\right)$ is Gicite unless G is p-torsion But $\operatorname{end}\left(\alpha_{p}\right)=k=\operatorname{Hom}\left(\alpha_{p}, G_{a}\right)$

Theorem:

1) If $k=\bar{k}$ (drab $=0$ then $h d\left(e_{k}\right)=1$ (Sere) (halon dian.

$$
\forall G_{r} H \quad \operatorname{Ext}_{e_{k}^{2}}^{5}(G \cdot(t)=0
$$

2) cheerkpo then $h d\left(e_{k}\right)=2$ (Out, 66)
3) If k perfect, then $h d\left(e_{k}\right)$ can be arbitrarily large (Milne, (970)

Approach: E_{k} has not enoveh injechives, projectives

$$
\text { ing }=0 \text {, prog }= \begin{cases}\mathbb{C}_{3} x \cdot * \text { tia } & \text { coal } \\ 0 & \text { dor }>0\end{cases}
$$

Describe all Ext gp btw elem. alg. gaps by working in $\hat{e}=$ (pro-alybordic groups) (projective limits)

Some examples of extensions

1) Ext'e ($\left.G_{\alpha}, G_{a}\right)=\{0$, if hoar $\alpha=0$
free mod over End (G_{a}) acting on left with gen.
wilt vector

$$
\begin{aligned}
0 \rightarrow G_{a} & \stackrel{(a l)_{n}}{ } w_{2} \xrightarrow{x} \mathbb{G}_{a} \rightarrow 0 \\
A^{2} & (x, y)+\left(x^{\prime}, y^{\prime}\right)=\left(x+x^{\prime}, y+y^{\prime}+\frac{x^{p}+x^{2 p}-\left(x+x^{p}\right)^{p}}{p}\right.
\end{aligned}
$$

2) Ext $[A, G a y)=H^{\prime}\left(A, \theta_{A}\right)=k$-vector space of $\operatorname{dim}=\operatorname{dim} A$
abelilan veers
3) $\operatorname{Extef}_{1}^{\prime}\left(G, Q_{m}\right)=\operatorname{Pic}(G)^{G}=\left\{\begin{array}{r}\text { translation invar. Wing } \\ \text { bund lew on } G\end{array} \simeq\right.$ smooth conneded

$$
O \rightarrow \mathbb{Q}_{m} \rightarrow E \rightarrow G \rightarrow 0 \quad \begin{aligned}
& \text { Sere, Totaro) } \\
& 2013
\end{aligned}
$$

eg. $E_{x t}^{\prime}\left(\mathbb{G a}_{1}, G_{m}\right)=0$
$G=A$ abelian var. $\operatorname{Pic}(A)=\operatorname{Pic}(A)$

$$
=\hat{A}(k)
$$

L dual alb. var

$$
E x t^{\prime}(A, E)=\hat{A}(k)
$$

4) If G unipotent, ic $G=\left(V_{1}^{*}\right)=u_{n}$ for some Ext' $(G, G m)$ and Pic (G) unknown over k imperfect
(Totanos
Ext ${ }^{2}(\mathbb{B}$ al $\mathbb{A m})$ unknown
Def: An isogeny is a morph $f: G \rightarrow H, G, H$ alg. gros st. $\operatorname{ker}(t)$ and comer (t) fin.

By inverting al isogenies one defines the isogeny category elF
$F=$ full sobcat of fin gre schemes.

Main result:

1) e / F is arrimian and noeth.
2) Simple sajects Gaa, vicuple ton, siluple abelian vas.
3) hd $(e / F)=($ for any ficled
4) $e_{i x} \longrightarrow e_{\mid x}{ }_{x}$ yields $e_{x /} / F_{x} \xrightarrow{\sim} e_{i x} / \sigma_{x^{\prime}}$ (when k'/u field ext. W'/u purely insepoarable)
e full subcat. of e/F with doj. smooth \& con. Then $\underline{\sim} e / F$ equivalence
$\operatorname{Hom} e(G, H)=\underset{\substack{H^{\prime} c H \\ \text { firite }}}{\lim _{\substack{ \\\text { Hom }}}\left(G, H /\left(H^{\prime}\right)\right)}$
