TROPICAL GEOMETRY EXERCISES SHEET.

1. SEmirings and idempotent Semirings

A semiring (commutative with unit) is a 5 -tuple $S=(S, \times,+, 1,0)$ which is a ring, except that $(S,+, 0)$ is just a monoid, and not necessarily a group. We also demand that $0 \times a=a \times 0=0$ for every $a \in S$.

A semiring S is idempotent if $a+a=a$ for all $a \in S$.
(1) Show that the following are idempotent semirings.
(a) $S=\mathcal{P}(X)$ (the power set of a set $X \neq \emptyset$) together with union and intersection.
(b) $S=\mathcal{P}_{m}:=\left\{\operatorname{Conv}(A): A \subset \mathbb{N}^{m}\right.$ finite $\}$. We define

- $\operatorname{Conv}\left(S_{1}\right) \oplus \operatorname{Conv}\left(S_{2}\right):=\operatorname{Conv}\left(S_{1} \cup S_{2}\right)$, and
- $\operatorname{Conv}\left(S_{1}\right) \odot \operatorname{Conv}\left(S_{2}\right):=\operatorname{Conv}\left(S_{1}\right)+\operatorname{Conv}\left(S_{2}\right)$ (this is Minkowski sum).
(c) $S=\mathbb{N}^{g c d}:=\left(\mathbb{N}, \times,{ }_{g c d}, 1,0\right)$, where \times is the usual product and $a+{ }_{g c d}$ $b:=\operatorname{gcd}(a, b)$
(2) Let S be an idempotent semiring. Define a binary relation $\Re \subset S \times S$ by $a \mathfrak{R} b$ if and only if $a+b=b$.
(a) Show that \mathfrak{R} is an order relation on S, so we will denote it by \leq_{S}, or just by \leq.
(b) Show that the unit ball $S_{\leq 1}:=\{x \in S: x \leq 1\}$ is a semiring.
(c) Describe explicitly the order \leq_{S} and the unit ball $S_{\leq 1}$ for each one of the idempotent semirings S from Exercise (1).
(3) Let $\mathbb{T}=(\mathbb{R} \cup\{-\infty\}, \times,+)$ be the tropical semiring.
(a) Describe the order $\leq_{\mathbb{T}}$ and the unit ball $\mathbb{T}_{\leq 1}$.
(b) The same for $S=\mathbb{T}\left[x_{1}, \ldots, x_{n}\right]$.

2. Commutative algebra for semirings

Let S be a semiring
(4) An equivalence relation $\mathfrak{R} \subset S \times S$ is a semiring congruence if $a \mathfrak{R} b$ implies $(a+c) \mathfrak{R}(b+c)$ and $(a c) \mathfrak{R}(b c)$ for every $c \in S$.
(a) Show that the set of equivalence classes S / \mathfrak{R} is a semiring, and that the projection map $\pi: S \rightarrow S / \Re$ is a homomorphism of semirings,
(b) Show that $\sim \subset \mathbb{T}\left[x_{1}, \ldots, x_{n}\right] \times \mathbb{T}\left[x_{1}, \ldots, x_{n}\right]$ defined by $f \sim g$ iff $e v_{f}=$ $e v_{g}$ is a semiring congruence.
(*c) The semiring $\mathbb{T}\left[x_{1}, \ldots, x_{n}\right] / \sim$ is the semiring of tropical polynomial functions on \mathbb{T}^{n}. Describe $\mathbb{T}[x] / \sim$ explicitly.
(5) We say that $I \subset S$ is an ideal if it is closed under addition and it is absorbent with respect to product.
(a) Show that if $\Re \subset S \times S$ is a semiring congruence, then

$$
\mathbb{I}(\mathfrak{R}):=\{x \in R:(x, 0) \in \mathfrak{R}\}
$$

is an ideal.
(b) Describe $\mathbb{I}(\sim) \subset \mathbb{T}\left[x_{1}, \ldots, x_{n}\right]$ from Exercise (4b).
(6) An ideal $\mathfrak{p} \subset S$ is prime if $S \backslash \mathfrak{p}$ is closed under product. On $S \times(S \backslash \mathfrak{p})$, define the binary relation

$$
\begin{equation*}
(a, b) \sim(c, d) \Leftrightarrow \text { there exists } t \in S \backslash \mathfrak{p} \text { such that } t a d=t b c \tag{1}
\end{equation*}
$$

(a) Show that (1) is an equivalence relation.

We denote by $S_{\mathfrak{p}}:=[S \times(S \backslash \mathfrak{p})] / \sim$ the set of equivalence classes, and by $\frac{a}{b}$ the equivalence class of $(a, b) \in S \times(S \backslash \mathfrak{p})$ in $S_{\mathfrak{p}}$.
(b) Show that $S_{\mathfrak{p}}$ endowed with the usual operations of fractions, is a semiring.
$\left({ }^{*} \mathrm{c}\right)$ Show that $(0) \subset \mathbb{T}\left[x_{1}, \ldots, x_{n}\right]$ is a prime ideal, and describe the elements of $\mathbb{T}\left(x_{1}, \ldots, x_{n}\right):=\mathbb{T}\left[x_{1}, \ldots, x_{n}\right]_{(0)}$ as rational functions on \mathbb{T}^{n}.
(7) Is the ideal $\left\langle x^{2}+x^{3}, x^{4}\right\rangle \subset \mathbb{T}[x]$ principal?

3. Non-Archimedean seminorms

A non-Archimedean seminorm is a triple (R, v, S) consisting of a ring R, an idempotent semiring S (see Section 1), and a function $v: R \rightarrow S$. This triple must satisfy the following conditions for all $a, b \in R$:

- $v(\pm 1)=1, v(0)=0$,
- $v(a b) \leq v(a) v(b)$,
- $v(a+b) \leq v(a)+v(b)$
(8) Consider the function

$$
\text { New : } K\left[x_{1}, \ldots, x_{n}\right] \mapsto \mathcal{P}_{n}
$$

sending a polynomial $f=\sum_{I} a_{I} x^{I}$ to its Newton polytope $N e w(f)=$ $\operatorname{Conv}(\operatorname{Supp}(f))$. Show that it is a non-Archimedean seminorm. See Exercises (1b) and (2a).

4. Tropical geometry and tropicalization

(9) Let $h, g \in \mathbb{T}[x, y]$ with $h \neq g$.
(a) is it true that $V(h) \cup V(g)=V(h g)$?
(b) Show that $V(h) \cap V(g)$ needs not to be a finite set, nor a tropical curve,
(c) Let $\langle h, g\rangle \subset \mathbb{T}[x, y]$ be the ideal generated by $\{h, g\}$. Is

$$
\bigcap_{f \in\langle h, g\rangle} V(f)
$$

always a finite number of points?
(10) Let K be a field and let $\Gamma=(\Gamma, \times, 1, \leq)$ be a totally ordered abelian group contained in \mathbb{R}. Define

$$
K\left[t^{\Gamma}\right]=\left\{\sum_{i \in S} \alpha_{i} t^{i}: \alpha_{i} \in K, S \subset \Gamma \text { well-ordered }\right\}
$$

(a) Show that $K\left[t^{\Gamma}\right]$ is a field (endowed with the usual operations of addition and convolution product).
(b) Show that $\operatorname{ord}_{t}: K\left[t^{\Gamma}\right] \rightarrow \Gamma$ is a non-Archimedean seminorm.
(c) Consider the function

$$
\text { trop : } K\left[x_{1}, \ldots, x_{n}\right] \mapsto \mathbb{T}\left[x_{1}, \ldots, x_{n}\right]
$$

sending a polynomial $f=\sum_{I} a_{I} x^{I}$ to the tropical polynomial $\operatorname{trop}(f)=$ \sum_{I} ord $_{t}\left(a_{I}\right) x^{I}$. Show that it is a non-Archimedean seminorm. See Exercise (8).
Let $I \subset K\left[x_{1}, \ldots, x_{n}\right]$ be an ideal. Its tropicalization is $\operatorname{trop}(I)=$ $\langle\operatorname{trop}(f): f \in I\rangle$.
(11) Let $I=\langle x+y, x-y\rangle \subset K[x, y]$. Show that $f=x^{2}-y^{2} \in \operatorname{trop}(I)$, but $f \notin\langle\operatorname{trop}(x+y), \operatorname{trop}(x-y)\rangle$.

