EXERCISES ON TROPICALIZED LINEAR SPACES AND TROPICAL LINEAR SPACES.

For $n \in \mathbb{Z}_{\geq 1}$, denote by $[n]$ the set $\{1, \ldots, n\}$. Our running example in the talk is W, the plane in \mathbb{R}^{5} passing through the points:

$$
\begin{aligned}
a & =(1,1,0,2,1) \\
b & =(0,2,1,0,4) \\
c & =(0,1,1,0,3)
\end{aligned}
$$

(1) A dimension d affine space is defined by $d+1$ points in general position. Given an affine space defined by points, we want to test if a given point lies in it.
(a) Is $(1,2,3,4)$ in the line defined by $(5,6,7,8)$ and $(9,10,11,12) ?$
(b) Calculate a parameter α such that the point $(2,4,6,8,1)$ is in the line defined by $(5,6,7,8, \alpha)$ and $(9,10,11,12, \alpha)$ in \mathbb{R}^{5}.
(c) Calculate a parameter β such that the point $(2,4,6,8,1)$ is in the line defined by $(1,1,1,1,0)$ and $(1,1,1,1, \beta)$ in \mathbb{R}^{5}.
(2) Let $\mathcal{L}=\left\{\ell_{1}, \ldots, \ell_{n}\right\}$ be a family of n lines in \mathbb{R}^{2}, which are in generic position, that is for every three distinct indices i, j, k we have $\ell_{i} \cap \ell_{j} \cap \ell_{k}=\varnothing$.

Let X be the complement of the lines, that is the following set:

$$
X=\mathbb{R}^{2} \backslash \bigcup_{i \in[n]} \ell_{i}
$$

For n equals 3 the number of connected components of X is 7 .
(a) Calculate by making examples the number of connected components for $n=4,5,6$.
(b) Conjecture a formula. Try to prove it (*).
(c) Calculate the number of connected components of $W \cap(\mathbb{R} \backslash\{0\})^{5}$, compare with the previous answer. (*)
(d) Is X an algebraic variety? (*)
(3) Let W^{\prime} be the rowspan of

$$
\left(\begin{array}{lllll}
2 & 1 & 1 & 1 & 1 \\
4 & 2 & 3 & 2 & 1
\end{array}\right)
$$

Calculate generators for the ideal $I\left(W^{\prime}\right)$.
(4) Let $\Sigma \subset \mathbb{R}^{4}$ be the tropical variety of points $p=\left(p_{1}, p_{2}, p_{3}, p_{4}\right)$ such that for any triple of distinct indices i, j, k the minimum is achieved twice in

$$
\min \left(p_{i}, p_{j}, p_{k}\right)
$$

Let $\tilde{\Sigma}=\Sigma \cap\left\{x_{1}+x_{2}+x_{3}+x_{4}=0\right\}$.
(a) Calculate the dimension of $\tilde{\Sigma}$.
(b) Calculate the number of 1-cells of $\tilde{\Sigma}$.
(c) Add together the primitive vectors of the 1 -cells of $\tilde{\Sigma}$ and verify the balancing condition.
(d) Generalize from \mathbb{R}^{4} to \mathbb{R}^{n}.
(5) Let $I=\left\langle 2 x_{4}-x_{1}, x_{3}-2 x_{4}+x_{5}, x_{2}-x_{4}\right\rangle$ be an ideal in $\mathbb{C}\left[x_{1}, x_{2}, x_{3}, x_{4}\right]$.
(a) Find parameters $\alpha, \beta \in \mathbb{C}$ such that $\alpha x_{1}+$ $\beta x_{2} \in I$.
(b) Show that $x_{1}+x_{3} \notin I$.
(c) In fact, show there is a unique pair $\gamma, \delta \in \mathbb{C}$ such that $\gamma x_{1}+\delta x_{3} \in I$.

