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In what follows, K denotes a field.

1 Univariate polynomials and resultants

Exercise 1.1 Given polynomials f1, . . . , fr ∈ K[x], prove that there is a polynomial GCD(f1, . . . , fr) ∈
K[x] such that ⟨f1, . . . , fr⟩ = ⟨f⟩.

−→ Hint: First, prove the statement for r = 2. You can use the Euclidean algorithm. Then, prove
that GCD(f1, f2, f3) = GCD(GCD(f1, f2), f3).

Exercise 1.2 Given a polynomial ring R, e.g. R = C[y], prove that there are two polynomials A,B ∈
R[x] such that Res(f, g, x) = Ag + B f such that degx(A) < degx(g) and degx(B) < degx(f).

−→ Hint: Consider the adjugate of the Sylvester matrix.

Exercise 1.3 Let f :=
∑n

i=0 fi(y)xi, g :=
∑m

i=0 gi(y)xi ∈ K[x, y]. Let py ∈ C such that fn(py) ̸= 0.
Then,

Res(f, g, x) |y=py
= fn(py)k Res(f(x, py), g(x, py), x),

where k = m− degx(g(x, py)).

−→ Hint: Consider the Sylvester matrix of (f, g) and evaluate it at y = py. Compare this matrix to
the Sylvester matrix of (f(x, py), g(x, py)).

Exercise 1.4 (Extension theorem in two variables) Given f, g as before and py ∈ C such that
fn(py) ̸= 0 or gm(py) ̸= 0, then there is px ∈ C such that f(px, py) = g(px, py) = 0.

−→ Hint: Recall that Res(f(x, py), g(x, py), x) = 0 if and only if degx(GCD(f(x, py), g(x, py))) ≥ 1.

Exercise 1.5 Show that, if GCD(fn, gm) ̸= 1, then every root py ∈ C of Res(f, g, x) can be extended to
a solution (px, py) ∈ C2 such that f(px, py) = g(px, py) = 0.

1.1 Homogeneous resultants

Definition 1 Given f :=
∑n

i=0 fi(y)xi ∈ C[x, y], we define its homogenization as the polynomial
fh :=

∑n
i=0 fi(y)xn−i

0 xi
1 ∈ C[x0, x1, y]. Observe that every monomial in fh has degree n with respect

to the block of variables {x0, x1}, so we say it is homogeneous with respect to this blocks of variables.

Exercise 1.6 Prove that, for any λ ∈ C \ {0}, fh(λ, λ x, y) = λn f(x, y). What is fh(0, x, y)?
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Exercise 1.7 Prove that, given f ∈ C[x, y] and (px,0, px,1, py) ∈ C3, for any λ ∈ C \ {0}, we
have that fh(λ px,0, λ px,1, py) = λn fh(px,0, px,1, py). In particular, if fh(px,0, px,1, py) = 0, then
fh(λ px,0, λ px,1, py) = 0, for any non-zero λ.

The previous exercise tell us that we can think the zero set of fh as belonging to P1 × C1.

Exercise 1.8 Consider two bivariate polynomials f :=
∑n

i=0 fi(y)xi, g :=
∑m

i=0 gi(y)xi ∈ C[x, y]. Let
py ∈ C. Prove that Res(f, g, x)|y=py

= 0 if and only if there is a non-zero pair (px,0, px,1) ∈ C2 \{(0, 0)}
such that fh(px,0, px,1, py) = gh(px,0, px,1, py) = 0.

−→ Hint: Split you analysis in two cases, one when x0 ̸= 0 and other when x0 = 0. Use the extension
theorem (exercise 1.4).

Definition 2 (Resultant of binary form) Consider the polynomial ring R = Z[f̄0, . . . , f̄n, ḡ0, . . . , ḡm],
where f̄0, . . . , f̄n, ḡ0, . . . , ḡm are new variables. Define f̄ :=

∑n
i=0 f̄ix

n−i
0 xi

1 ∈ R[x0, x1] and ḡ :=∑m
i=0 ḡix

m−i
0 xi

1 ∈ R[x0, x1] and consider the Sylvester matrix Sylv associated to f̄ |x0=1 and ḡ |x0=1

in R(n+m)×(n+m). The resultant Resn,m ∈ R of two binary forms of degrees n and m is the determinant
of the matrix Sylv ∈ R(n+m)×(n+m).

Given F ∈ R and f, g ∈ C[x0, x1] binary forms of degrees n and m, we define

F (f, g) := F|{f̄i=fi}i≤n,{ḡj=gj}j≤m
.

Exercise 1.9 Given two binary forms f :=
∑n

i=0 fix
n−i
0 xi

1 ∈ C[x0, x1] and g :=
∑m

i=0 gix
m−i
0 xi

1 ∈
C[x0, x1], show that there is (p0, p1) ∈ C2 \ {(0, 0)} such that f(p0, p1) = g(p0, p1) = 0 if and only if
the matrix Resn,m(f, g) = 0.

−→ Hint: Use a similar argument as in Exercise 1.8

Warning: To solve the following exercise, you might need to use some tools from algebraic geometry
that goes beyond this course, as properties of projective varieties and fibers of polynomial maps.

Exercise 1.10 Let n,m ≥ 1. Consider the incidence variety

Ω = {((f0, . . . , fn), (g0, . . . , gm), (p0, p1)) ∈ Pn × Pm × P1 :

n∑
i=0

fip
n−i
0 pi =

m∑
i=0

gip
m−i
0 pi = 0}.

Let π : Pn × Pm × P1 → Pn × Pm be the projection into the first two components.

• Show that π(Ω) is a hyperplane in Pn × Pm.

• Show that this hyperplane is defined by a principal ideal given by ⟨Resn,m⟩.

• Prove that Resn,m is irreducible.

−→ Hint: See [Stu02, Thm. 4.4]

Indeed, we can generalize this ideas to systems of s+1 homogeneous polynomial equations in C[x0, . . . , xs].
The interested reader can find a great introduction to the subject in [Stu02, Chp. 4] and [CLO05,
Chp. 3]. These ideas were generalised to sparse polynomial systems; see [CLO05, Chp. 7] for an
didactical introduction to the subject, or [GKZ94] for a complete, but highly technical, treatment.

2 Ideals and varieties

In this section, let R := C[x1, . . . , xn].
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Exercise 2.1 Using the Noetherian property of R, that is, that every ideal in R is finitely generated,
show that R satisfies the ascending chain condition, that is, if we have a sequence of ideals

I1 ⊆ I2 ⊆ I3 ⊆ . . .

then there is k0 such that, for every k > k0, Ik0
= Ik.

−→ Hint: Prove that
∞⋃
i=1

Ii is an ideal and consider a finite set of generators of this ideal.

Exercise 2.2 Let I and J be ideals in R. Show the following:

• V (I + J) = V (I) ∩ V (J).

• V (I ∩ J) = V (I) ∪ V (J).

•
√
I ∩
√
J =
√
I ∩ J .

• V (I) = V (
√
I).

Exercise 2.3 Let V and W be subvariaties of Cn. Show the following:

• I(V ∩W ) =
√

I(V ) + I(W )

• I(V ∪W ) = I(V ) ∩ I(W )

Exercise 2.4 (Rabinowitsch trick) Use the weak version of Hilbert’s Nullstellenstatz, i.e., if V (I)
then 1 ∈ I, to prove its strong version, i.e., if (∀p ∈ V (I))g(p) = 0 then g ∈

√
I.

−→ Hint: Using the radical membership algorithm introduced in the lecture, prove that, if g vanishes
at every point in V (f1, . . . , fr), there are q0, q1, . . . , qr ∈ R[t] such that 1 = q0 (g t−1)+

∑
i qi fi. What

happens is you replace (symbolically) t by 1
g and clear denominators?

3 Gröbner bases

In this section, let R := C[x1, . . . , xn].

Definition 3 (Graded reverse lexicographical order) We define the graded reverse lexicograph-
ical order >grevlex as a monomial ordering such that, given xα, xβ ∈ R, xα >grevlex xβ if

• deg(xα) > deg(xβ), or

• deg(xα) = deg(xβ) and there is k ≤ n such that,

– αi = βi, for every i > k and

– αk < βk.

Example 1 The monomial x2
1 x

2
2 x

2
3 >grevlex x2

1 x
3
2 because the degree of the right hand side is bigger

than the one in the left hand side, but x2
1 x

2
2 x

2
3 <grevlex x2

1 x
3
2 x3 because the degree with respect to x3

in the right hand side is smaller than the one in the left hand side.

Exercise 3.1 Prove that <grevlex is a monomial ordering.

Exercise 3.2 Present an example that illustrates that the graded reverse lexicographical order <grevlex

and the graded lexicographical order <glex are different.

Exercise 3.3 Show that in the ring of univariate polynomials C[x], there is a unique monomial or-
dering. How does this order looks like?

−→ Hint: Revise the definition of monomial ordering.
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Exercise 3.4 Given f, g ∈ R, show that, if g ∈ ⟨f⟩, then LM>(f)|LM>(g), for any monomial order-
ing >. Conclude that g ∈ ⟨f⟩ if and only if Rem(g, f,<) = 0, for any monomial ordering.

Exercise 3.5 Given f1, . . . , fr, g ∈ R and a monomial ordering >, prove that

g −Rem(g, [f1, . . . , fr], >) ∈ ⟨f1, . . . , fr⟩.

Conclude that, if Rem(g, [f1, . . . , fr], >) = 0, then g ∈ ⟨f1, . . . , fr⟩. Prove that the opposite implication
does not hold for arbitrary f1, . . . , fr, g ∈ R.

Exercise 3.6 Prove that, for any monomial ordering >, every ideal I has a finite Gröbner basis.

−→ Hint: Remember that the ring R satisfies the ascending chain condition, see exercise 2.1. Use
this property on a chain of ideals generated increasingly by adding leading monomials of polynomials
in I.

3.1 Gröbner bases of special systems

Exercise 3.7 (Gröbner bases of univariate polynomials) Given polynomials f1, . . . , fr ∈ C[x],
prove that {GCD(f1, . . . , fr)} is a Gröbner bases of ⟨f1, . . . , fr⟩, for any monomial ordering.

Exercise 3.8 (Gröbner bases of empty systems) Let G be a Gröbner basis of I with respect to a
monomial ordering <. Show that V (I) = ∅ if and only if there is c ∈ C such that c ∈ G.

Definition 4 A monomial ideal is an ideal generated by monomials. Given an ideal I and a monomial
ordering >, we define the monomial ideal of I as LM>(I) := ⟨LM<(f) : f ∈ I⟩.

Exercise 3.9 (Gröbner bases of monomial ideals) Prove that G is a Gröbner basis of I with
respect to > if and only if

⟨LM>(g) : g ∈ G⟩ = LM>(I).

Exercise 3.10 Prove that if I is a monomial ideal and f ∈ I, then Supp(f) ⊂ I, that is, every
monomial appearing in f belongs to I.

Exercise 3.11 Prove that if I is a monomial ideal, then any generating set of I is a Gröbner basis of
I with respect to any monomial ordering.

Exercise 3.12 (Gröbner bases of linear systems) Given linear polynomials f1, . . . , fr and a mono-
mial ordering > such that x1 > x2 > · · · > xn, what is the Gröbner basis of ⟨f1, . . . , fr⟩?

−→ Hint: Consider the linear polynomials in ⟨f1, . . . , fr⟩. What are the leading monomials of these
linear polynomials?

3.2 Uniqueness of Gröbner bases

Definition 5 We say that a Gröbner basis G with respect to < of I is minimal if we can not remove
an element f ∈ G in such a way that G \ {f} is still a Gröbner basis of I with respect to <.

We say G is reduced if, for every f ∈ G, the leading coefficient of f is one, i.e. LC>(f) = 1, and
there is no element f̄ ∈ G \ f such that LM(f̄) divides a monomial in Supp(f).

Exercise 3.13 Prove that, for a given monomial ordering, each ideal has a unique minimal reduced
Gröbner basis.
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3.3 Computing Gröbner bases - Buchberger algorithm

Definition 6 Given an ideal I, a monomial ordering >, and a finite subset {f1, . . . , fr} ⊂ I, we say
that g ∈ I has a standard representation if there are h1, . . . , hr ∈ C[x1, . . . , xn] such that we can write
g =

∑
hi fi and LM>(g) ≥ LM>(hi fi), for every i.

Exercise 3.14 Prove that if Rem(g, [f1, . . . , fr], >) = 0, then there is a standard representation for
g. Construct an example where the opposite does not hold.

−→Hint: Consider the polynomials (q1, . . . , qr) constructed via the division algorithm when [f1, . . . , fr]
is not a Gröbner basis.

Exercise 3.15 Prove that if, for every g ∈ I we can find a standard representation using {f1, . . . , fr},
then {f1, . . . , fr} is a Gröbner basis of I with respect to >.

Definition 7 Given f, g ∈ C[x1, . . . , xn] and a monomial order >, we define its S-polynomial as

S>(f, g) =
LT (g)

GCD(LM(f), LM(g))
f − LT (f)

LM(f), LM(g)
g

Where GCD(xα, xβ) =
∏

i x
min(αi,βi)
i .

Exercise 3.16 Prove that, if xα LM>(f) − xβ LM>(g) = 0, then there is a monomial xγ such that
LT (g)·xγ

GCD(LM(f),LM(g)) = xα and LT (f)·xγ

GCD(LM(f),LM(g)) = xβ.

Exercise 3.17 Prove that, if h = cα xα f + cβ x
β g is such that LM(h) < LM(xα f) and LM(xα f) =

LM(xβ g), then S>(f, g) divides h.

Exercise 3.18 Prove that if h =
∑r

i=1 cαi
xαifi such that, for every pair (i, j), LM(xαi fi) = LM(xαj fj)

and LM(xαi fi) > LM(h), then we can find monomials xβi,j and constants cβi,j
such that h =∑

i,j cβi,j
xβi,j S>(fi, fj) and, for each pair (i, j), LM(xβi,j S>(fi, fj)) < LM(xαi fi)

Exercise 3.19 Consider h =
∑

i gi fi and let xδ be the maximal possible monomial with respect to
> among the summands LM(gi fi). Prove that, if LM(h) < xδ, there are polynomials {ḡi}i, {ḡi,j}i,j
such that LM>(ḡifi) < xδ, for every i, LM>(ḡi,jS>(fi, fj)) < xδ, for every pair i, j, and

h =
∑
i

ḡi fi +
∑
i,j

ḡi,j S>(fi, fj).

−→ Hint: Split the polynomials gi as LT (gi)+(g−LT (gi)) and observe that LM((g−LT (gi)) fi) < xδ.

Exercise 3.20 (Buchberger criterion) Let f1, . . . , fr be such that we can find a standard represen-
tation of S>(fi, fj), for each i, j. Then, {f1, . . . , fr} is a Gröbner basis of ⟨f1, . . . , fr⟩.

−→ Hint: Given g ∈ ⟨f1, . . . , fr⟩, consider polynomials h1, . . . , hr such that g =
∑

i hi fj and the
maximal LM<(hi fi) with respect to >, say xδ, is minimal among all the ways of writing g as a
polynomial combination of f1, . . . , fr. Show that in this case the representation has to be standard.

Exercise 3.21 Prove termination and correctness of Buchberger algorithm.

−→ Hint: Remember that C[x1, . . . , xn] satisfies the ascending chain condition; see exercise 2.1.

Exercise 3.22 Consider Buchberger algorithm in the following two cases:

• Univariate polynomials, that is, f1, . . . , fr ∈ C[x].
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Algorithm 1 BuchbergerAlgorithm

Require: Polynomials f1, . . . , fr and a monomial ordering >.
Ensure: A Gröbner basis G of ⟨f1, . . . , fr⟩ with respect to <.

G← [f1, . . . , fr]
PAIRS← {(fi, fj) : 1 ≤ i < j ≤ r}
while PAIRS ̸= ∅ do

(f, g)← Choose pair in PAIRS.
PAIRS← PAIRS \ {(f, g)}.
r ← Rem(S>(f, g), G,>)
if r ̸= 0 then

PAIRS← PAIRS ∪ {(f, r) : f ∈ G}.
Add r in the tail of G.

end if
end while
return G.

• Linear forms, that is, f1, . . . , fr ∈ C[x1, . . . , xn] and each fi is linear.

Which classical algorithms allow us to compute Gröbner bases in these cases?

We say that a reduction to zero occurs in Buchberger algorithm whenever r = 0. In practice, most
of the computations are wasted on computing reductions to zero. For this reason, several approaches
were developed to avoid them. In what follows, we will prove a criterion by Buchberger to avoid some
of these reductions to zero. The interested reader can find an extensive list of criterions in [EF17].

Exercise 3.23 Consider {f1, . . . , fr}. Consider a pair (, ij) such that GCD(LM(f1),LM(f2)) = 1.
Then, we can skip the pair (i, j) from Buchberger algorithm.

−→ Hint: Show that there is a standard representation of S<(fi, fj) only involving fi, fj . For that,
show that, if xα < LM(fj) or xβ < LM(fi), then xα fi − xβ fj is a standard representation.

3.4 How hard is to compute Gröbner bases?

The following classical example is due to Masser & Philippon and Lazard & Mora.

Exercise 3.24 Fix d ∈ N and consider the ideal I := {f1, . . . , fn} ⊂ C[x1, . . . , xn] defined by the
polynomials 

f1 = xd
1

f2 = x1 − xd
2

...
fn−1 = xn−2 − xd

n−1

fn = 1− xn−1 x
d−1
n

• Show that V (I) = ∅.

• Consider g1, . . . , gn such that 1 =
∑

i gi fi. Prove that deg(g1) ≥ dn−1 (d− 1).

−→ Hint: Consider the previous identity over the parametric curve defined by

t 7→
(
td

n−1 (d−1), td
n−2 (d−1), . . . , td−1,

1

t

)
.

Bound the degree of g1 by studying the degree of t.
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Whenever V (I) has a finite number of solutions (or it is empty), roughly speaking, the maximal degree
of an element a the Gröbner basis is at most single exponential in the number of variables [Kol88, Jel05].
In the general case, this upper bound is double exponential [MM82].

4 Examples in Singular

Go to https://www.singular.uni-kl.de, download, and install the open-source CAS1 Singular
[DGPS22].

Exercise 4.1 Compute the Gröbner bases of the following ideal with respect to the degree reverse
lexicographical and the lexicographical monomial ordering. Which computation was faster? Which
Gröbner basis has less elements?

ring r = 0,(a,b,c,d),dp; // We initialize a ring of charact. zero

// with variables (a,b,c,d) and

// the monomial ordering grevlex

ideal i = a+b2+c+d,ab2+a2d+bc+cd,a2bc+ab2d+acd+bcd,abc10d-1; // we define the ideal i.

// Singular’s syntax:

// b2c = b^2*c.

groebner(i); // we compute the GB wrt grevlex

ring s = 0,(a,b,c,d),lp; // We initialize another ring of char. 0

// variables (a,b,c,d) and a lexicographical monomial ordering.

ideal i = imap(r,i); // We recast the ideal i into this ring

groebner(i); // we compute the GB wrt lex

5 Polynomial systems with a finite number of solutions

Definition 8 We say that an ideal I is zero dimensional when VCn(I) is finite.

5.1 Properties of zero dimensional systems

Exercise 5.1 Prove that if the system is zero dimensional, for every i ∈ {1, . . . , n}, there is gi(xi) ∈
C[xi] such that gi ∈ I.

−→ Hint: Use the fact that, for each i, the possible values for the i-th coordinate of each solution is
finite and construct a polynomial that vanishes at these points.

Exercise 5.2 Prove that, if G is a Gröbner basis of a zero dimensional ideal I with respect to any
monomial ordering >, for each i ∈ {1, . . . , n}, there is gi ∈ G such that LM>(gi) ∈ C[xi].

Exercise 5.3 Let I be a zero dimensional ideal. Prove that, if its n-th elimination ideal In−1 :=
I ∩ C[xn] is generated by hn(xn), i.e., In−1 = ⟨hn(xn)⟩, then for every pn ∈ C such that hn(pn) = 0,
there are (p1, . . . , pn−1) ∈ Cn−1 such that (p1, . . . , pn) ∈ VCn(I).

−→ Hint: Use the extension theorem (Exercise 6.3) together with Exercise 5.2

Exercise 5.4 Given h1, . . . , hr ∈ C[x1, . . . , xn], prove that {Rem(hi, G,>)}i are linearly dependent if
and only if there are λ1, . . . , λr ∈ C such that

∑
i λi hi ∈ I.

1Computer Algebra Software
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−→ Hint: Prove that Rem(Rem(hi, G,>) +Rem(hj , G,>), G,>) = Rem(hi + hj , G,>). Remember,
Rem(hi, G,>) = 0 ⇐⇒ hi ∈ I.

Exercise 5.5 If G is a Gröbner bases of I such that for each i ∈ {1, . . . , n}, there is gi ∈ G such that
LM>(gi), then I is zero dimensional.

−→ Hint: For a fixed i, prove that the sequence {Rem(xj
i , G,>)}j is linearly dependent. For this,

recall that Supp({Rem(xj
i , G,>)}j), that is, the monomials appearing in the reminder, can not be

divided by the leading monomials of elements in G.

5.2 The shape of zero dimensional systems

In this section, consider G a Gröbner basis of a zero dimensional ideal I with respect to the lexico-
graphical monomial order >lex. Recall x1 >lex x2 >lex · · · >lex xn.

Exercise 5.6 Show that there is hn(xn) ∈ G ∩ C[xn].

Exercise 5.7 Assume that I is radical, i.e. I =
√
I, and the last coordinate of each solution is

different, that is if p, p̄ ∈ VCn(I) are different, then pn ̸= p̄n. Show that, for every xi, there is a
polynomial hi(xn) such that xi − hi(xn) ∈ I.

−→ Hint: Use Lagrange interpolation.

Exercise 5.8 Prove that, under the previous assumptions, there is a Gröbner basis of I with respect
to >lex of the following shape: 

x1 − h1(xn)
...

xn−1 − h1(xn)
hn(xn)

 (1)

−→ Hint: Consider the monomial ideal generated by the polynomials in Equation 1.

Whenever a Gröbner basis looks like Eq. 1, we say that it is in shape position. Not every ideal can
be written in this way, but radical ones can. The interested reader can find more information in
[BMMT94].

The bit-size of this representation might be double exponential in the number of variables. A way of
sorting out this problem is to use a Rational Univariate Representation (RUR), where we replace each
hi(xn) by a rational function. We refer the interested reader to [Rou99].

5.3 Change of ordering - FGLM algorithm

In this exercise you will prove how, in the zero dimensional case, you can transform one Gröbner basis
with respect to some monomial order into any other one with respect to other order. This algorithm
is called FGLM and was introduced in [FGLM93].

Exercise 5.9 Show that, if G is a Gröbner basis of I with respect to >,

LinearSpanC({xα : (∀f ∈ I)LM>(f) ∤ xα}) = LinearSpanC({Rem(g,G,>) : g ∈ C[x1, . . . , xn]}).
(2)

Exercise 5.10 Prove that the vector space from Equation 2 is a finite dimensional vector space if and
only if I is zero-dimensional.

−→ Hint: See Exercise 5.5
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Algorithm 2 FGLM

Require: Gröbner basis G of zero dimensional ideal I with respect to > and new mon. ordering >̃.
Ensure: Gröbner basis G̃ of I with respect to >̃.
L← {xγ ∈ C[x1, . . . , xn]}. # Every monomial in C[x1, . . . , xn]
B ← ∅.
G̃← ∅.
while L ̸= ∅ do

xα ← minimal element in L with respect to >̃.
if Rem(xα, G,>) ∈ LinearSpanC({Rem(xβ , G,>) : xβ ∈ B}) then

Compute {λβ}xβ∈B ⊂ C such that Rem(xα, G,>) +
∑

xβ∈B λβ Rem(xβ , G,>) = 0.

G̃← G̃ ∪ {xα +
∑

xβ∈B λβ x
β}.

L← L \ {xγ ∈ L : xα divides xγ}.
else
B ← B ∪ {xα}.

end if
end while
return G̃.

Exercise 5.11 Prove that if I is zero dimensional, then FGLM algorithm terminates and computes a
minimal reduced Gröbner basis of I with respect to >̃.

−→ Hint: Use Exercise 5.4

6 Elimination theory

Given an ideal I ⊂ C[x1, . . . , xn], we define its i-th elimination ideal Ii := I ∩ C[xi+1, . . . , xn]. We
define the i-th projection as the map πi : Cn → Cn−i, πi(p1, . . . , pn) = (pn+1, . . . , pn).

Exercise 6.1 Show that given f, g ∈ I, res(f, g, x1) ∈ I1.

Exercise 6.2 (Closure theorem) Prove that, for each i, VCn−i(Ii) = πi(VCn(I)).

−→ Hint: Prove each inclusion independently. Prove that, if f ∈ I(πi(VCn(I))), then f ∈
√
I and it

does not involve any of the variables x1, . . . , xi.

Exercise 6.3 (Extension theorem) Consider I := ⟨f1, . . . , fs⟩ ⊂ C[x1, . . . , xn]. We write each fi
as follows,

fi = ci(x2, . . . , xn)xdi
i + (terms of degree smaller than d1 with respect to x1),

where ci ∈ C[x2, . . . , xn] is non-zero. Consider (p2, . . . , pn) ∈ VCn−1(I1) \ VCn−1(c1, . . . , cs), that is,
there is i such that ci(p2, . . . , pn) ̸= 0. Then, there is p1 ∈ C such that (p1, . . . , pn) ∈ VCn(I).

−→ Hint: With no loss of generality, assume that c1(p2, . . . , pn) ̸= 0. Consider the ideal J ⊂ C[x1]
given by partially evaluating every polynomial in I at (p2, . . . , pn).

• Prove that there is f̄∗(x1) be such that ⟨f̄∗(x1)⟩ = J .

• Show that every solution p1 ∈ C of f̄∗(x1) leads to a solution (p1, . . . , pn) ∈ V (I).

• To show that f̄∗(x1) has solutions, show that GCD(f̄∗, f1(x1, p2, . . . , pn)) ̸= 1

– Show that there is f∗(x1, . . . , xn) ∈ I such that f̄∗(x1) = f∗(x1, p2, . . . , pn).

– Prove that the evaluation of res(f∗, f1, x) at (p2, . . . , pn) ∈ V (I1) is zero.
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– By extending straightforwardly Exercise 1.3, show that res(f̄∗, f1(x1, p2, . . . , pn), x1) is zero.

Definition 9 Given a monomial ordering > for C[x1, . . . , xn], we say that it is an i-elimination order
if any monomial xα ∈ C[x1, . . . , xn] involving at least variables in {x1, . . . , xi} is bigger with respect to
> than any monomial xβ ∈ C[xi+1, . . . , xn].

Exercise 6.4 Let > be an i-elimination order. Prove that if G is a Gröbner basis of an ideal I ⊂
C[x1, . . . , xn] with respect to >, then G ∩ C[xi+1, . . . , xn] is a Gröbner basis of the i-th elimination
ideal Ii.

Exercise 6.5 Present an example of an i-elimination order which is not a lexicographical order.

6.1 Intersection of ideals

Exercise 6.6 Prove that the intersection of two ideals is an ideal.

Exercise 6.7 Let R := C[x1, . . . , xn]. Given two ideals I = ⟨f1, . . . , fs⟩, J = ⟨f̄1, . . . , f̄r⟩ ⊂ R, show
that

I ∩ J = ⟨t f1, . . . , t fs, (1− t) f̄1, . . . , (1− t) f̄r⟩R[t] ∩R.

−→ Hint: Note that, for any h ∈ R, h = t h + (1− t)h. Consider evaluating t at 0 and 1.

6.2 Saturation of ideals

Definition 10 Given two ideals I, J , we define the saturation of I with respect to J as

(I : J∞) := {f ∈ C[x1, . . . , xn] : (∀g ∈ J)(∃k ∈ N)f gk ∈ I}.

Exercise 6.8 Prove that (I : J∞) is an ideal.

Exercise 6.9 Let I = ⟨f1, . . . , fr⟩ be an ideal in R := C[x1, . . . , xn] and consider g ∈ R. Let t be a
new variable. Prove that

I : ⟨g⟩∞ = ⟨f1, . . . , fr, 1− t g⟩R[t] ∩R.

−→ Hint: Extend the argument in the proof of the radical membership algorithm from the second
lesson.

Exercise 6.10 Prove that g ∈
√
I if and only if 1 ∈ (I : ⟨g⟩∞).

Exercise 6.11 Given three ideals I, J1, J2, prove that

(I : (J1 + J2)∞) = (I : J∞
1 ) ∩ (I : J∞

2 ).

Exercise 6.12 Given ideals I, J , prove that V (I : J∞) = (V (I) \ V (J))

−→ Hint: See [CLO15, Thm. 4.4.10].
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