Exercise Sheet

 for the $\mathbf{2 3} / \mathbf{0 6} / \mathbf{2 0 2 3}$Exercise 1 Apply the Zero-Testing algorithm to $u(x)=\sqrt{1+x}$ and q for checking whether $q(u(x))=0$.
a) $q=2 u u^{\prime}-1$;
b) $q=2 u u^{\prime}-1+x^{10} / 10^{10}$;
c) $\quad q=\left(2 u u^{\prime}-1\right) u^{\prime \prime 2}-x u+1$.

Exercise 2 Try to find a root-separation bound for $p=x u^{\prime}-c u$ where $c \in \mathbb{C}$ is a parameter.
Exercise 3 Compute the differential dimension polynomial of the differential ideals given by
a) $p=u^{2}-1$;
b) $p=u^{2} u^{\prime}-u$;
c) $p=u^{\prime 2}-u$.

Can we find the formal power series solutions, i.e., the differential counting polynomial?
Exercise 4 Compute the differential counting polynomial of the incompressible Navier-Stokes equations given by

$$
\begin{aligned}
& p_{1}=u_{t}+u u_{x_{1}}+v u_{x_{2}}+w u_{x_{3}}+p_{x_{1}}-u_{x_{1}, x_{1}}-u_{x_{2}, x_{2}}-u_{x_{3}, x_{3}}=0, \\
& p_{2}=v_{t}+u v_{x_{1}}+v v_{x_{2}}+w v_{x_{3}}+p_{x_{2}}-v_{x_{1}, x_{1}}-v_{x_{2}, x_{2}}-v_{x_{3}, x_{3}}=0 \\
& p_{3}=w_{t}+u w_{x_{1}}+v w_{x_{2}}+w w_{x_{3}}+p_{x_{3}}-w_{x_{1}, x_{1}}-w_{x_{2}, x_{2}}-w_{x_{3}, x_{3}}=0, \\
& p_{4}=u_{x_{1}}+v_{x_{2}}+w_{x_{3}}=0 .
\end{aligned}
$$

where the Poisson pressure equation

$$
p_{5}=2 u_{x_{2}} v_{x_{1}}+2 u_{x_{3}} w_{x_{1}}+2 v_{x_{3}} w_{x_{2}}+u_{x_{1}}^{2}+v_{x_{2}}^{2}+w_{x_{3}}^{2}+p_{x_{1}, x_{1}}+p_{x_{2}, x_{2}}+p_{x_{3}, x_{3}}=0
$$

is added to the system in order to obtain a regular differential chain (w.r.t. an orderly ranking where $u>v>w>p$ and $\left.u_{x_{1}}>u_{x_{2}}>u_{x_{3}}>u_{t}\right)$.

Exercise 5 Compute the input-output equation of the realization

$$
\left\{\begin{array}{l}
t_{1}^{\prime}=t_{1} / t_{2} \\
t_{2}^{\prime}=t_{1} \\
u=2 t_{2}
\end{array}\right.
$$

Exercise 6 Check whether the following input-output equations are realizable.
a) $p=u^{2}+u^{2}-1$;
b) $p=u^{\prime}+y u^{2}-2 y^{3} u-2 y y^{\prime}+y^{5}$;
c) $p=\left(u^{\prime}-y u\right)^{3}+y u^{2}$;
d) $p=2 u^{2} u^{\prime 2}+u^{2}+2 u^{\prime 2}$.

For finding rational parametrizations of $\mathbb{V}(p)$ you might use the Maple command algcurves:-parametrization.

Exercise 7 Find the dynamical systems corresponding to the rational parametrization \mathcal{P} of $\mathbb{V}(p)$ and decide with this whether $p=0$ has a rational generic solution.
a) $p=u^{2} u^{\prime}+u^{2}+2 u^{2}+8 u+8, \mathcal{P}=\left(\frac{t^{2}-8}{2 t},-\frac{t^{2}+8}{t^{2}}\right)$;
b) $\quad p=27 u^{4}+u^{\prime 3}, \mathcal{P}=\left(-t^{3} / 27,-t^{4} / 27\right)$;
c) $p=u^{2} u^{\prime}+u^{2}-u^{2}+2 u^{\prime}-1, \mathcal{P}=\left(\frac{-t^{2}+2}{t}, t^{2}-1\right)$;

In the negative case, can we find a local solution?
Exercise 8 Compute a local solution of $p=u^{3} u^{\prime}-u^{\prime 3}+2 u$ with the initial value $u(0)=0$.
A local parametrization is given by $\mathcal{P}=\left(t^{3} / 2, t+t^{8} / 24+t^{22} / 41472+\mathcal{O}\left(t^{29}\right)\right)$ and can be found by the Maple command algcurves:-puiseux.

Exercise 9 Consider the differential equation $p=-8 u u^{\prime 3}+27 u^{2}+4 u^{\prime 2}-4=0$. Compute a local solution with $u(0)=0$ and check whether it is algebraic.

Exercise 10 Consider the differential equation $p=x u^{\prime}-u / 2-x=0$. Compute a local solution with $u(0)=0$ and check whether it is algebraic.

