TROPICAL DIFFERENTIAL ALGEBRAIC GEOMETRY EXERCISES SHEET.

CRISTHIAN E. GARAY-LÓPEZ

Conventions. Every algebraic structure will be commutative and associative. K will denote a field. Also $0 \in \mathbb{N}$.

If $f \in R[x_1, \ldots, x_n]$, say $f = \sum_I a_I x^I$, we will denote by ev_f the (evaluation) polynomial function $R^n \to R$ sending $p = (p_1, \ldots, p_n)$ to $\sum_I a_I p^I$.

1. Algebra

Exercise 1.1. Let $\mathcal{P}(X)$ be the power set of a non-empty set. Show that the only homomorphism of commutative monoids $(\mathcal{P}(X), \cup, \emptyset) \longrightarrow (G, +, 0)$ with G a group, is the zero homomorphism.

Exercise 1.2. Let S be an idempotent semiring. Show that if $\sum_{i=1}^{n} a_i = 0$ holds in S, then $a_i = 0$ for all i.

Exercise 1.3. Let $\mathbb{B} = \{0 < 1\}$ be the Boolean semiring.

- (1) Show that $(\mathbb{B}[t, u], +, \times, 0, 1)$ endowed with the usual operations of product and sum of formal power series is an idempotent semiring.
- (2) Show that $\frac{\partial}{\partial t}, \frac{\partial}{\partial u} : \mathbb{B}\llbracket t, u \rrbracket \longrightarrow \mathbb{B}\llbracket t, u \rrbracket$ are semiring derivations, this is, they are linear operators that satisfy the product rule. Show that they commute under composition.

2. TROPICAL DIFFERENTIAL ALGEBRA

Let S be either a field of characteristic zero, or the Boolean semiring. Let \mathbb{N}^m be the free monoid generated by the set of pairwise-commuting derivations $\{\frac{\partial}{\partial t_i} : i = 1, ..., n\}$ under composition of functions.

Recall that $S_{m,n} = S[t_1, \ldots, t_m] \{x_1, \ldots, x_n\}$ and $\Theta : \mathbb{N}^m \times S_{m,n} \to S_{m,n}$ is the action that allows us to differentiate differential polynomials and to define the twisted evaluation map $ev_{P,\Theta}$: $S[t_1,\ldots,t_m]^n \to S[t_1,\ldots,t_m]$ for $P \in S_{m,n}$.

Exercise 2.1 (*). Let $P \in \mathbb{B}_{2,1} = \mathbb{B}[t, u] \{x\}$. Find the conditions upon which $\varphi \in \mathbb{B}[t, u]$ satisfies $ev_{P\Theta}(\varphi) = P(\varphi) = 0.$

Exercise 2.2 (*). Let $Supp : K_{2,1} \to \mathbb{B}_{2,1}$ be the tropicalization map $\sum_i a_i M_i \mapsto \sum_i Supp(a_i) M_i$. Show that this is a non-Archimedean seminorm.

3. Computations

Exercise 3.1. Let $P \in \mathbb{B}[t][x]$ be the differential polynomial $P = x + x_1$. Show that

$$Sol(P) = \{0\} \cup \{1 + t + \xi : \xi \in \mathbb{B}[t]\}.$$

Exercise 3.2. Let $P \in \mathbb{C}_{2,1} = \mathbb{C}\llbracket t, u \rrbracket \lbrace x \rbrace$ be the differential polynomial $P = tx_{(1,0)} + ux_{(0,1)} + (t^2 + u^3)$. Compute $Sol(P) \subset \mathbb{C}\llbracket t, u \rrbracket$. Hint. Suppose that $\varphi = \sum_{i,j} a_{i,j} t^i u^j \in Sol(P)$.

Exercise 3.3. Let $P \in \mathbb{B}_{2,1} = \mathbb{B}[t, u] \{x\}$ be the differential polynomial $P = tx_{(1,0)} + ux_{(0,1)} + (t^2 + u^3)$. (1) Show that $\varphi = t^2 + u^3 + tu \in \mathbb{B}\llbracket t, u \rrbracket$ belongs to Sol(P).

- (2) Moreover, show that

$$Sol(P) = \{ \varphi = t^2 + u^3 + \xi : \xi \in \mathbb{B}[t, u], \quad (1, 0), (0, 1), (0, 2) \notin Supp(\xi) \}.$$

Exercise 3.4. Consider the complex differential polynomial $P = tx_{(1,0)} + ux_{(0,1)} + (t^2 + u^3)$.

- (1) Show that if $\varphi \in Sol(P) \subset \mathbb{C}[t, u]$, then $Supp(\varphi) \in Sol(Supp(P))$. See Exercise 3.2,
- (2) Consider the tropical differential polynomial Q = Supp(P) (see Exercise 2.2). We know (Ex. 3.3 that $\psi = t^2 + tu + u^3$ is in Sol(Q). Show that ψ can not be lifted to a complex solution.

Exercise 3.5. Let $P \in \mathbb{C}_{1,1}$ be the polynomial $P = x - x_1$, and let [P] be its differential ideal.

- (1) Use the Fundamental Theorem to compute Sol(Supp([P]))
- (2) Compute the fiber $Supp^{-1}(\varphi)$ for every $\varphi \in Sol(sp([P]))$.

Exercise 3.6. Can you compute Sol(Supp([P])) for $x + x_1 = P \in \mathbb{C}_{1,1}$?

4. Vertex polynomials

For $m \ge 1$, we denote by $\mathbb{VB}[t_1, \ldots, t_m]$ the set of vertex polynomials. Given $A, B \in \mathbb{VB}[t_1, \ldots, t_m]$, $m \ge 1$ we define:

(1)
$$A \oplus B := V(A+B), \quad A \odot B := V(AB).$$

where A + B and AB are computed in $\mathbb{B}[t_1, \ldots, t_m]$. See Exercise 1.3.

Exercise 4.1 (Case m = 1). Show that $(\mathbb{VB}[t], \oplus, \odot) \cong (\mathbb{N} \cup \{\infty\}, \min, +)$, where min is considered with respect to the usual order in $\mathbb{N} \cup \{\infty\}$.

Hint: Show $(\mathbb{VB}[t], \oplus, \odot) = (\mathbb{Z}_{\leq 0} \cup \{-\infty\}, max, +)$

In general we have

(2)
$$A \oplus B \subset V(A) \cup V(B), \quad A \odot B \subset V(A) + V(B),$$

but the contention may be proper.

Exercise 4.2. Consider $a = t^2u^3 + t^3u + t^5 = \{(2,3), (3,1), (5,0)\}$ and $b = u^4 + tu^3 + t^4u^2 = \{(0,4), (1,3), (4,2)\}$ in $a, b \in \mathbb{B}[t, u]$.

- (1) Show that a and b are vertex polynomials,
- (2) compute $a \oplus b$ and $a \odot b$, and show that the inclusion (2) is proper.

5. Open problems for vertex polynomials (*)

The concept of vertex polynomials for m > 1 is much more complicated. We will now propose some open problems related to this concept.

Exercise 5.1 (Computation of vertex polynomials). *Explicit computation / characterization of vertex polynomials of Newton polyhedra of clouds of points. Or computation of vertex sets of integral polyhedra of blocking type.*

Exercise 5.2 (Certificate for vertex polynomials). Is there a way to certify if a polynomial $a \in \mathbb{B}[t_1, \ldots, t_m]$ is a vertex polynomial?

Exercise 5.3 (Effective computation of algebraic operations on vertex polynomials). Is there a way of computing the operations (1)?

Exercise 5.4 (Certificate of tropical vanishing condition). Is there a way to certify whether or not a sum $s = a_1 \oplus \cdots \oplus a_m$ in $\mathbb{VB}[t_1, \ldots, t_m]$ vanishes tropically?

References

- Ethan Cotterill, Cristhian Garay-López, Johana Luviano, Exploring tropical differential equations. To appear in Advances in Geometry. https://arxiv.org/abs/2012.14067
- [2] Cristhian Garay-López, Introducción a las ecuaciones diferenciales tropicales. Mixba'al, Revista Metropolitana de Matemáticas. Vol.13, No.1, pp. 11-28. www.doi.org/10.24275/uami/dcbi/mix/v13n1/cgaray