TROPICAL DIFFERENTIAL ALGEBRAIC GEOMETRY EXERCISES SHEET.

CRISTHIAN E. GARAY-LÓPEZ

Conventions. Every algebraic structure will be commutative and associative. K will denote a field. Also $0 \in \mathbb{N}$.

If $f \in R\left[x_{1}, \ldots, x_{n}\right]$, say $f=\sum_{I} a_{I} x^{I}$, we will denote by $e v_{f}$ the (evaluation) polynomial function $R^{n} \rightarrow R$ sending $p=\left(p_{1}, \ldots, p_{n}\right)$ to $\sum_{I} a_{I} p^{I}$.

1. Algebra

Exercise 1.1. Let $\mathcal{P}(X)$ be the power set of a non-empty set. Show that the only homomorphism of commutative monoids $(\mathcal{P}(X), \cup, \emptyset) \longrightarrow(G,+, 0)$ with G a group, is the zero homomorphism.

Exercise 1.2. Let S be an idempotent semiring. Show that if $\sum_{i=1}^{n} a_{i}=0$ holds in S, then $a_{i}=0$ for all i.

Exercise 1.3. Let $\mathbb{B}=\{0<1\}$ be the Boolean semiring.
(1) Show that $(\mathbb{B} \llbracket t, u \rrbracket,+, \times, 0,1)$ endowed with the usual operations of product and sum of formal power series is an idempotent semiring.
(2) Show that $\frac{\partial}{\partial t}, \frac{\partial}{\partial u}: \mathbb{B} \llbracket t, u \rrbracket \longrightarrow \mathbb{B} \llbracket t, u \rrbracket$ are semiring derivations, this is, they are linear operators that satisfy the product rule. Show that they commute under composition.

2. Tropical differential algebra

Let S be either a field of characteristic zero, or the Boolean semiring. Let \mathbb{N}^{m} be the free monoid generated by the set of pairwise-commuting derivations $\left\{\frac{\partial}{\partial t_{i}}: i=1, \ldots, n\right\}$ under composition of functions.

Recall that $S_{m, n}=S \llbracket t_{1}, \ldots, t_{m} \rrbracket\left\{x_{1}, \ldots, x_{n}\right\}$ and $\Theta: \mathbb{N}^{m} \times S_{m, n} \rightarrow S_{m, n}$ is the action that allows us to diferentiate differential polynomials and to define the twisted evaluation map $e v_{P, \Theta}$: $S \llbracket t_{1}, \ldots, t_{m} \rrbracket^{n} \rightarrow S \llbracket t_{1}, \ldots, t_{m} \rrbracket$ for $P \in S_{m, n}$.

Exercise $2.1\left(^{*}\right)$. Let $P \in \mathbb{B}_{2,1}=\mathbb{B} \llbracket t, u \rrbracket\{x\}$. Find the conditions upon which $\varphi \in \mathbb{B} \llbracket t$, u』satisfies $e v_{P, \Theta}(\varphi)=P(\varphi)=0$.
Exercise $2.2\left(^{*}\right)$. Let Supp : $K_{2,1} \rightarrow \mathbb{B}_{2,1}$ be the tropicalization map $\sum_{i} a_{i} M_{i} \mapsto \sum_{i} \operatorname{Supp}\left(a_{i}\right) M_{i}$. Show that this is a non-Archimedean seminorm.

3. Computations

Exercise 3.1. Let $P \in \mathbb{B} \llbracket t \rrbracket\{x\}$ be the differential polynomial $P=x+x_{1}$. Show that

$$
\operatorname{Sol}(P)=\{0\} \cup\{1+t+\xi: \xi \in \mathbb{B} \llbracket t \rrbracket\} .
$$

Exercise 3.2. Let $P \in \mathbb{C}_{2,1}=\mathbb{C} \llbracket t, u \rrbracket\{x\}$ be the differential polynomial $P=t x_{(1,0)}+u x_{(0,1)}+\left(t^{2}+u^{3}\right)$. Compute $\operatorname{Sol}(P) \subset \mathbb{C} \llbracket t, u \rrbracket$.
Hint. Suppose that $\varphi=\sum_{i, j} a_{i, j} t^{i} u^{j} \in \operatorname{Sol}(P)$.
Exercise 3.3. Let $P \in \mathbb{B}_{2,1}=\mathbb{B} \llbracket t, u \rrbracket\{x\}$ be the differential polynomial $P=t x_{(1,0)}+u x_{(0,1)}+\left(t^{2}+u^{3}\right)$.
(1) Show that $\varphi=t^{2}+u^{3}+t u \in \mathbb{B} \llbracket t, u \rrbracket$ belongs to $\operatorname{Sol}(P)$.
(2) Moreover, show that

$$
\operatorname{Sol}(P)=\left\{\varphi=t^{2}+u^{3}+\xi: \xi \in \mathbb{B} \llbracket t, u \rrbracket, \quad(1,0),(0,1),(0,2) \notin \operatorname{Supp}(\xi)\right\} .
$$

Exercise 3.4. Consider the complex differential polynomial $P=t x_{(1,0)}+u x_{(0,1)}+\left(t^{2}+u^{3}\right)$.
(1) Show that if $\varphi \in \operatorname{Sol}(P) \subset \mathbb{C} \llbracket t$, u】, then $\operatorname{Supp}(\varphi) \in \operatorname{Sol}(\operatorname{Supp}(P))$. See Exercise 3.2,
(2) Consider the tropical differential polynomial $Q=S u p p(P)$ (see Exercise 2.2). We know (Ex. 3.3 that $\psi=t^{2}+t u+u^{3}$ is in $\operatorname{Sol}(Q)$. Show that ψ can not be lifted to a complex solution.

Exercise 3.5. Let $P \in \mathbb{C}_{1,1}$ be the polynomial $P=x-x_{1}$, and let $[P]$ be its differential ideal.
(1) Use the Fundamental Theorem to compute Sol $(\operatorname{Supp}([P]))$
(2) Compute the fiber $\operatorname{Supp}^{-1}(\varphi)$ for every $\varphi \in \operatorname{Sol}(\operatorname{sp}([P]))$.

Exercise 3.6. Can you compute $\operatorname{Sol}(\operatorname{Supp}([P]))$ for $x+x_{1}=P \in \mathbb{C}_{1,1}$?

4. Vertex polynomials

For $m \geq 1$, we denote by $\mathbb{V} \mathbb{B}\left[t_{1}, \ldots, t_{m}\right]$ the set of vertex polynomials. Given $A, B \in \mathbb{V} \mathbb{B}\left[t_{1}, \ldots, t_{m}\right]$, $m \geq 1$ we define:

$$
\begin{equation*}
A \oplus B:=V(A+B), \quad A \odot B:=V(A B) \tag{1}
\end{equation*}
$$

where $A+B$ and $A B$ are computed in $\mathbb{B} \llbracket t_{1}, \ldots, t_{m} \rrbracket$. See Exercise 1.3 .
Exercise 4.1 (Case $m=1$). Show that $(\mathbb{V} \mathbb{B}[t], \oplus, \odot) \cong(\mathbb{N} \cup\{\infty\}$, min, +), where min is considered with respect to the usual order in $\mathbb{N} \cup\{\infty\}$.
Hint: Show $(\mathbb{V B}[t], \oplus, \odot)=\left(\mathbb{Z}_{\leq 0} \cup\{-\infty\}\right.$, max,+$)$
In general we have

$$
\begin{equation*}
A \oplus B \subset V(A) \cup V(B), \quad A \odot B \subset V(A)+V(B) \tag{2}
\end{equation*}
$$

but the contention may be proper.
Exercise 4.2. Consider $a=t^{2} u^{3}+t^{3} u+t^{5}=\{(2,3),(3,1),(5,0)\}$ and $b=u^{4}+t u^{3}+t^{4} u^{2}=$ $\{(0,4),(1,3),(4,2)\}$ in $a, b \in \mathbb{B} \llbracket t, u \rrbracket$.
(1) Show that a and b are vertex polynomials,
(2) compute $a \oplus b$ and $a \odot b$, and show that the inclusion (2) is proper.

5. Open problems for vertex polynomials (*)

The concept of vertex polynomials for $m>1$ is much more complicated. We will now propose some open problems related to this concept.

Exercise 5.1 (Computation of vertex polynomials). Explicit computation / characterization of vertex polynomials of Newton polyhedra of clouds of points. Or computation of vertex sets of integral polyhedra of blocking type.

Exercise 5.2 (Certificate for vertex polynomials). Is there a way to certify if a polynomial $a \in$ $\mathbb{B} \llbracket t_{1}, \ldots, t_{m} \rrbracket$ is a vertex polynomial?
Exercise 5.3 (Effective computation of algebraic operations on vertex polynomials). Is there a way of computing the operations (1)?
Exercise 5.4 (Certificate of tropical vanishing condition). Is there a way to certify whether or not a sum $s=a_{1} \oplus \cdots \oplus a_{m}$ in $\mathbb{V} \mathbb{B}\left[t_{1}, \ldots, t_{m}\right]$ vanishes tropically?

References

[1] Ethan Cotterill, Cristhian Garay-López, Johana Luviano, Exploring tropical differential equations. To appear in Advances in Geometry. https://arxiv.org/abs/2012.14067
[2] Cristhian Garay-López, Introducción a las ecuaciones diferenciales tropicales. Mixba'al, Revista Metropolitana de Matemáticas. Vol.13, No.1, pp. 11-28. www.doi.org/10.24275/uami/dcbi/mix/v13n1/cgaray

