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In the early 2000 I had the opportunity to teach differential elimination methods at Paris
VI University (today Sorbonne University) in some Master course. The beginning of the
course — up to differential ideals — is taught quite easily. But difficulties actually occur as
soon as one writes a first equation: what do you mean by a solution of a differential equation
whose left hand side is a general differential polynomial ? The approach followed by Ritt
(a solution is a prime differential ideal which contains the equation) is very elegant but it is
also terribly abstract for students. This time, I have decided to start with a more tedious
but much more intuitive approach: we look for formal power series solutions. This approach
actually perfectly suits tropical differential contexts.

The reference book is the one of Kolchin [17]. In particular, I have tried to use as much
as possible Kolchin’s notations. However, this book is notoriously difficult to read and the
structure of this document is much inspired by the book of Ritt [24], which I recommend for
casual readers.
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1 Differential Polynomials

1.1 Differential Rings

The following basic notions are introduced in [17, chap. I, sect. 1].
An operator δ on a ring is called a derivation operator if δ(a+ b) = δa+ δb and δ(a b) =

(δa) b+ a δb for all elements a, b of the ring.
A differential ring R is defined as a ring with finitely many derivation operators which

commute pairwise i.e. such that δ1δ2a = δ2δ1a for all derivation operators δ1, δ2 and all
a ∈ R.

A differential field is a differential ring which is a field. If the number m of derivation
operators is equal to 1 then the differential ring is said to be ordinary. If it is greater than 1,
the differential ring is said to be partial.

The operator δ which maps every element of a ring to zero is a derivation so that every
ring can be viewed as a trivial differential ring. If the ring is the field Q of the rational
numbers, this derivation is the only possible one since

δ(0) = δ(0 + 0) = 2 δ(0) = 0 ,
δ(1) = δ(1× 1) = 2 δ(1) = 0 ,

hence the derivative of any rational number must be zero. More generally, it can be proved
that the derivative of any complex number must be zero. Since a constant is defined as an
element the derivative of which is zero, we see that C is a field of constants.

The equations we handle will have coefficients in a differential field F of characteristic
zero i.e. a field which contains Q as a subfield (such fields are sometimes called Ritt fields).
Readers who feel uncomfortable with this general setting may however most often assume F
is the field of the complex numbers. In some cases, differential equations explicitly depend
on “independent variables”. We then assume that there exist symbols x1, . . . , xm related to
the derivation operators δ1, . . . , δm by the relations: δixi = 1 and δixj = 0 for all 1 ≤ i, j ≤ m
such that i 6= j. There are two ways to incorporate them in the differential algebra setting:
they can be viewed as elements of the base field F — which is then not a field of constants;
they can also be viewed as differential indeterminates, constrained by the above relations.
In both cases, we may interpret δi as the partial derivative ∂/∂xi — or d/dx in the ordinary
case.

1.2 Differential Polynomials

From the differential algebra point of view, differential indeterminates are symbols such as
y, z over which derivation operators may apply, giving an infinite set of derivatives. In the or-
dinary case, interpreting δ as d/dx, one may view differential indeterminates as representing
unknown functions y(x) and z(x) and their derivatives

y, z, ẏ, ż, ÿ, z̈, . . . , y(r), z(r), . . .

as representing the functions obtained by differentiation.

3



In the partial case, interpreting the derivation operators as δi = ∂/∂xi for 1 ≤ i ≤ m,
one may view differential indeterminates as representing unknown functions y(x1, . . . , xm)
and z(x1, . . . , xm) and their derivatives as representing the functions obtained by partial
differentiations.

In the general case it is convenient, following [17, chap. I, sect. 1] to introduce the
commutative semigroup (written multiplicatively) Θ generated by the derivation operators.
Each derivative operator θ ∈ Θ has the form

θ = δe11 · · · δemm

where e1, . . . , em ∈ N (the set of the nonnegative integers). Then the corresponding derivative
of the differential indeterminate (say) y will be denoted

θy or yxe11 ···x
em
m
.

It represents the function
∂e1+···+emy

∂xe11 · · · ∂xemm
(x1, . . . , xm) .

The nonnegative integer e1 + · · ·+ em is said to be the order of the derivative operator θ. A
derivative operator θ is said to be proper if its order is strictly positive.

If F is a differential field and Y = {y1, . . . , yn} is a set of n differential indeterminates then
the polynomials in the derivatives in ΘY , with coefficients in F — the elements of F [ΘY ]
— are called differential polynomials. All together, they form a differential polynomial ring
denoted

F{y1, . . . , yn} .

1.3 Differential Ideals

Let R denote the differential polynomial ring F{y1, . . . , yn} withm > 0 derivation operators.
The following definitions are borrowed from [24, chap. I, 7] in the ordinary case. They readily
apply to the general case, as pointed out in [24, chap. IX].

A nonempty subset A of R is said to be a differential ideal of R if:

1. it is an ideal of R and

2. it is stable under the action of the derivations i.e. if it is such that p ∈ A ⇒ θp ∈ A
for all derivation operator θ ∈ Θ.

A differential ideal contains an infinite number of differential polynomials unless it consists
of the single differential polynomial 0. The intersection of any finite or infinite number of
differential ideals is a differential ideal.

A differential ideal A is said to be perfect if it is equal to its radical i.e. if (∃d ∈ N, pd ∈
A)⇒ p ∈ A. The intersection of any finite or infinite number of perfect differential ideals is
a perfect differential ideal.
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A differential ideal A is said to be prime if it is prime in the usual sense i.e. if it is such
that p q ∈ A⇒ (p ∈ A or q ∈ A). Every prime differential ideal is perfect.

Let Σ be any subset of R.
One denotes [Σ] the differential ideal of R generated by Σ. It is defined as the intersection

of all differential ideals of R containing Σ. It is the set of all finite linear combinations, with
arbitrary elements of R for coefficients, of elements of Σ and their derivatives of any order.

One denotes {Σ} the perfect differential ideal of R generated by Σ. It is defined as the
intersection of all perfect differential ideals of R containing Σ.

It is clear that [Σ] ⊂ {Σ}. More precisely, we have the following

Proposition 1 Let Σ be any subset of R. Then {Σ} =
√

[Σ]. With words, {Σ} is the set
of all differential polynomials p ∈ R for which there exists some r ∈ N such that pr ∈ [Σ].

The only part of the proof which is not immediate is given by the following Lemma,
which essentially is [24, chap. I, 9, Lemma].

Lemma 1 Let Σ be any subset and p be any element of R. If there exists some positive
integer r such that pr ∈ [Σ] then ṗ2 r−1 ∈ [Σ], where the dot indicates any derivation operator
of R.

Proof Assume pr ∈ [Σ]. Differentiating pr and dividing by r we have pr−1 ṗ ∈ [Σ]. We thus
have proved the Lemma in the case r = 1. For the general case r ≥ 2, observe that we have
proved (1) below for k = 1:

pr−k ṗ2 k−1 ∈ [Σ] (1)

We need to establish that (1) holds for k = r. Assume thus (1) holds with r ≥ 2 and
r > k ≥ 1. Differentiating (1) we get

(r − k) pr−k−1 ṗ2 k + (2 k − 1) pr−k ṗ2 k−2 p̈ ∈ [Σ] (2)

Multiply (2) by ṗ. Subtract (1) multiplied by (2 k − 1) p̈. Divide the result by r − k. One
gets

pr−k−1 ṗ2 k+1 ∈ [Σ] (3)

Repeating the above computation (more rigorously, putting it some proof by induction on
r − k), we see that the Lemma holds in general. �

1.4 Rankings

Let Y = {y1, . . . , yn} be a set of differential indeterminates. A ranking [17, chap. I, sect.
8] is a total order on the infinite set ΘY which satisfies the two following axioms, for all
derivatives v, w ∈ ΘY and every derivative operator θ ∈ Θ:
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1. v ≤ θv and

2. v < w ⇒ θv < θw.

Let R = F{y1, . . . , yn} be a differential polynomial ring. Fix some ranking and consider
some differential polynomial p ∈ R \F .

The leading derivative (the leader in Kolchin’s terminology) of p is the highest derivative v
such that deg(p, v) > 0.

Let v be the leading derivative of p and d = deg(p, v).
The rank of p is defined as the monomial vd.
The ranking induces a total ordering on ranks as follows. A rank vd is said to be less

than a rank we if v < w with respect to the ranking or v = w and d < e. It is convenient
to extend the above definitions by introducing some artificial rank, common to all nonzero
elements of F and considering that it is strictly less than the rank of any element of R \F .
If p, q are two nonzero differential polynomials, we will write p < q to express the fact that
the rank of p is strictly less than the one of q. Proposition 7 implies that any such ordering
on ranks is a well-ordering.

The initial of p is the leading coefficient of p, viewed as a univariate polynomial in v. In
general, the initial of p is a differential polynomial of R.

The separant of p is the differential polynomial ∂p/∂v.
The second axiom of rankings implies that any proper derivative θp of p has rank θv; its

initial is the separant of p.
Let q ∈ R and p ∈ R \F be two differential polynomials. Let p have rank vd.
The differential polynomial q is said to be partially reduced with respect to p if it does

not depend on any proper derivative of v i.e. if, for every proper derivative operator θ, we
have deg(q, θv) = 0.

The differential polynomial q is said to be (fully) reduced with respect to p if it is partially
reduced with respect to p and deg(q, v) < d.

As an example, consider the ordinary differential polynomial ring F{y} and the following
example of a differential polynomial p ∈ F{y} and its first derivatives:

p = ẏ2 + y3 ,

ṗ = 2 ẏ ÿ + 3 y2 ẏ ,

p̈ = 2 ẏ y(3) + 2 ÿ2 + 3 y2 ÿ + 6 y ẏ2 .

The axioms of rankings imply that ẏ is the leading derivative of p (whatever the ranking)
hence that ÿ and y(3) are the leading derivatives of ṗ and p̈. The rank of p is ẏ2. Its initial
is 1 and its separant is 2 ẏ.

1.5 Ritt’s Reduction Algorithms

Let f, g be two polynomials of S [x], where S is a ring and deg(g, x) > 0, one denotes
prem(f, g, x) the pseudoremainder of f by g (it is the polynomial r(x) mentioned in [31,
chap. I, 17, Theorem 9, page 30]).
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Let now A ⊂ R \F be a finite set of differential polynomials and f ∈ R be a differential
polynomial. Assume that a ranking is fixed so that every element of A admits a leading
derivative.

The partial remainder of f by A, denoted partialrem(f, A) is defined inductively as
follows:

1. if f is partially reduced with respect to all elements of A then partialrem(f, A) = f ;

2. if f is not partially reduced with respect to all elements of A then there must exist
some p ∈ A with leading derivative v and some proper derivative operator θ such that
deg(f, θv) > 0. Among all such triples (p, v, θ), choose one such that θv is maximal
with respect to the ranking. Then

partialrem(f, A) = partialrem(prem(f, θp, θv), A) .

In the ordinary differential polynomial ring F{y, z}, take f = ÿ + z and A made of
a single differential polynomial p = ẏ2 + z. Assume the leading derivative of p is ẏ. The
differential polynomial f is not partially reduced with respect to p. Differentiating, we get
ṗ = 2 ẏ ÿ+ ż. The pseudodivision of f by ṗ computes the following relation. The differential
polynomial g is the partial remainder of f by p.

2 ẏ︸︷︷︸
h

(ÿ + z)︸ ︷︷ ︸
f

= 1︸︷︷︸
q

× (2 ẏ ÿ + ż)︸ ︷︷ ︸
ṗ

+ (2 z ẏ − ż)︸ ︷︷ ︸
g

. (4)

Proposition 2 Let A ⊂ R \ F be a finite set of differential polynomials, f ∈ R be a
differential polynomial and g = partialrem(f, A). Then g is partially reduced with respect
to A and there exists a power product h of the separants of A such that

h f = g mod [A] . (5)

The full remainder of f by A, denoted fullrem(f, A), is defined as follows. Denote
A = {p1, . . . , pr}, assuming p1 < · · · < pr.

1. if f is reduced with respect to all elements of A then fullrem(f, A) = f ;

2. if f is not partially reduced with respect to all elements of A then

fullrem(f, A) = fullrem(partialrem(f, A), A)

3. if f is partially reduced but not reduced with respect to all elements of A there must
exist some index i ∈ [1, r] such that deg(f, vi) ≥ deg(pi, vi) where vi denotes the leading
derivative of pi. Among all such indices i, fix the maximal one. Then

fullrem(f, A) = fullrem(prem(f, pi, vi), A) .
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The rules above perform the partial reduction stage before the non differential one. However,
it is also possible to interlace the two stages and process, at each step, the ranks which
prevent f to be reduced by decreasing order — according to the ranking.

In the partial differential polynomial ring F{y, z} endowed with derivations with respect
to x and t, take f = 2 y yt zxt+2 y2

t zx−4 yx and A = p1, p2, p3 with p1 = y2
t−4 y, p2 = yx−zx y

and p3 = zt. Assume the leading derivatives are yt, yx and zt. The reduction of f is achieved
by three pseudodivisions. The full remainder is g3. The power product h = h1 h2 h3 = 1.

1︸︷︷︸
h1

× (2 y yt zxt + 2 y2
t zx − 4 yx)︸ ︷︷ ︸

f

= 2 y yt︸ ︷︷ ︸
q1

zxt︸︷︷︸
δxp3

+ 2 y2
t zx − 4 yx︸ ︷︷ ︸

g1

,

1︸︷︷︸
h2

× (2 y2
t zx − 4 yx)︸ ︷︷ ︸

g1

= 2 zx︸︷︷︸
q2

(y2
t − 4 y)︸ ︷︷ ︸
p1

+ 8 y zx − 4 yx︸ ︷︷ ︸
g2

, (6)

1︸︷︷︸
h3

× (8 y zx − 4 yx)︸ ︷︷ ︸
g2

= −4︸︷︷︸
q3

× (yx − zx y)︸ ︷︷ ︸
p2

+ 4 y zx︸ ︷︷ ︸
g3

.

Proposition 3 Let A ⊂ R \ F be a finite set of differential polynomials, f ∈ R be a
differential polynomial and g = fullrem(f, A). Then g is reduced with respect to A and there
exists a power product h of the initials and the separants of A such that

h f = g mod [A] . (7)

1.6 Formal Power Series Solutions — Principle

We illustrate the principle over the example of a non non autonomous differential polynomial
i.e. a differential polynomial which explicitly depends on the independent variable x. We
are looking for a formal power series centered at x = α

¯̄y = y0 + y1 (x− α) + y2
(x− α)2

2
+ +y3

(x− α)3

6
+ · · · (8)

solution of the order n = 1 differential polynomial

p(x, y) = ẏ2 + 8x y − y . (9)

Step 1: differentiate p

ẏ2 + 8x y − y = 0 ,

2 ẏ ÿ + 8x ẏ − ẏ + 8 y = 0 ,

2 ẏ y(3) + 2 ÿ2 + 8x ÿ − ÿ + 16 ẏ = 0 ,
...

Step 2: rename y(i) as yi
y2

1 + 8x y0 − y0 = 0 ,

2 y1 y2 + 8x y1 − y1 + 8 y0 = 0 ,

2 y1 y3 + 2 y2
2 + 8x y2 − y2 + 16 y1 = 0 ,

...
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Step 3: evaluate the polynomials at x = α and denote them pi (Denef and Lipshitz would
denote them p(i)(α, y0, y1, y2, . . .) in [12]):

p0 y2
1 + 8α− y0 = 0 ,

p1 2 y1 y2 + 8α y1 − y1 + 8 y0 = 0 ,
p2 2 y1 y3 + 2 y2

2 + 8α y2 − y2 + 16 y1 = 0 ,
...

(10)

Step 4: “solve” and substitute the solution in (8). A possible solution (assuming α = 0) is

(y0, y1, y2, y3, . . .) = (1, 1,−7

2
,−22, . . .) . (11)

The corresponding formal power series solution, centered at the origin, then starts as follows:

¯̄y = 1 + x− 7

4
x2 + · · ·

This principle relies on the following proposition (“nothing but a simple computational rule”
according to [27, page 160]) that we state over our example but which holds for a general
differential polynomial p:

Proposition 4 Let ¯̄y be the generic formal power series defined in (8) and pi the polynomials
defined in (10). Then

p(x, ¯̄y) = p0 + p1 (x− α) + p2
(x− α)2

2
+ p3

(x− α)3

6
+ · · · (12)

Proof By induction. The Proposition holds for p ∈ F and p a differential indeterminate.
If it holds for two differential polynomials p and q, it holds for their sum, product and
derivatives. �

Indeed, the formal power series p(x, ¯̄y) is identically zero if and only if (y0, y1, y2, . . . )
annihilates the infinite system p0 = p1 = p2 = · · · = 0. Moreover, if ¯̄y annihilates p, it
annihilates every derivative of p. Therefore, the formal power series ¯̄y that we have built
in this section annihilates the whole differential ideal [p] of the differential polynomial ring
F [x]{y} (the independent variable x should not be considered as a base field element because
the above process evaluates it). It even annihilates the perfect differential ideal {p} since a
power of a formal power series is zero if and only if the series itself is zero.

In summary, the formal power series ¯̄y built in this section is a zero of the differential
ideal {p}. Here also, this statement holds for a general differential polynomial p.

1.7 Computation of the Series Coefficients — Easy Case

The easy case happens when the expansion point and the “initial values” y0 and y1 (the
coefficients of ¯̄y which occur in the polynomial p0 of (10)) do not cancel the leading coefficients
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of the infinite system (10) i.e. the initial and the separant of the polynomial p. In this case,
the coefficients of the formal power series (8) can easily be obtained using Ritt’s reduction
algorithm: for any non negative integer e, performing Ritt’s partial or full reduction method
over y(e), one gets a relation h y(e) = r (mod [p]) where h is a power product of initials and
separants of p and r is a differential polynomial partially reduced w.r.t. p. Then the value
of ye is obtained by evaluating r/h at the initial values and the expansion point. Over our
example we get

2 ẏ︸︷︷︸
h

ÿ = (1− 8x) ẏ − 8 y︸ ︷︷ ︸
r

(mod [p]) ,

2 ẏ3︸︷︷︸
h

y(3) = 4 y ((24x− 3) ẏ − 8 y)︸ ︷︷ ︸
r

(mod [p]) .

In both cases, evaluating r/h at (α, y0, y1) = (0, 1, 1) yields the values of y2 and y3 given
in (11).

Anticipating on a further section, let us mention that the value of ye can also be obtained
by computing the normal form of y(e) modulo the regular differential chain p and evaluating
it at the initial values and the expansion point. Over our example, we get

ÿ =
8 ẏ − 64x2 + 16x− 1

2 (8x− 1)
(mod [p]) ,

y(3) =
−2 (8 ẏ + 192x2 − 48x+ 3)

(8x− 1)2
(mod [p]) .

In both cases, evaluating the normal forms at (α, y0, y1) = (0, 1, 1) yields also the values of y2

and y3 given in (11). Observe also that the expansion point α = 1
8
forces y1 = 0 since p0

must vanish.

1.8 Reduction to the Autonomous Case

Classical differential algebra books [24, 17] do not mention “non autonomous” differential
polynomials i.e. differential polynomials whose coefficients depend on the independent vari-
ables. Here we show how formal power series centered at some x = α can be obtained from
formal power series centered at the origin, on “autonomous” differential polynomials at the
price of an extra differential indeterminate. We illustrate the process over our example (9).

The “independent” variable x is encoded by an extra differential indeterminate. For
legibility, the symbol x is kept for the differential indeterminate. The symbol used for the
derivation is renamed as ξ which means that formal power series are sought in F [[ξ]] and
that the derivation operator should be interpreted as d/dξ. The differential equation p = 0
is thus equivalent to the following “autonomous” differential polynomial system of F{y, x}

ẏ2 + 8x y + 1 = 0 , (13)
ẋ− 1 = 0 . (14)
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Since we are looking for a formal power series centered at α i.e. such that x(0) = α, we fix
the “initial condition” of the second equation to α (the expansion point has been encoded as
an initial condition). Applying the process described in section 1.6 to (14) at ξ = 0 yields

¯̄x = α + ξ . (15)

Applying the process described in section 1.6 to (13) at ξ = 0 then yields

¯̄y = p0 + p1 ξ + p2
ξ2

2
+ · · · (16)

Substitute now x− α to ξ in the above formal power series (thanks to (15)) and the formal
power series (12) is recovered.

1.9 A Note for the Partial Differential Case

The content of sections 1.6 to 1.8 readily generalize to the case of m derivation operators,
replacing formula (8) by the more general one

¯̄y =
∑

(e1,...,em)∈Nm

1

e1 ! · · · em !
yi,(e1,...,em) (x1 − α1)e1 · · · (xm − αm)em , 1 ≤ i ≤ n .

1.10 Formal Power Series Solutions — Setting up Difficult Cases

Difficult cases arise when expansion points and/or initial values cancel initials and separants.
For simplicity, we assume that the expansion point is zero. In such situations, the number
of needed initial values cannot always be clearly read from the order of the differential
polynomial to be solved. In general, this number actually depends on the values of the
initial values! A way to overcome this difficulty consists in providing arbitrarily many initial
values y0, y1, y2, . . . and encode them by means of a formal power series

ȳ = y0 + y1 x+ y2
x2

2
+ · · ·

Of course, these initial values must be compatible with the differential polynomial to be
solved: they must satisfy system (10) up to some order β.

In summary, we consider an order n differential polynomial p(x, y, ẏ, . . . , y(n)) of F [x]{y}
(Denef and Lipshitz consider more generally a differential polynomial over F [[x]]) and an
initial values encoding formal power series ȳ. We are looking for two non negative integers β
and δ such that, if

p(x, ȳ, ȳ′, . . . , ȳ(n)) = 0 mod xβ

then there exists a unique formal power series ¯̄y such that

¯̄y = ȳ mod xδ ,

p(x, ¯̄y, ¯̄y′, . . . , ¯̄y(n)) = 0 .

11



1.11 Hurwitz Lemma

The next Lemma is due to Hurwitz [15]. See also [12, Lemma 2.2].

Lemma 2 Let k ∈ N. Then

p(2 k+2) = y(n+2 k+2) fn + y(n+2 k+1) fn+1 + y(n+2 k) fn+2

+ · · ·+ y(n+k+2) fn+k + fn+k+1 , (17)

where the fj are differential polynomials of order at most j for j = n, n + 1, . . . , n + k + 1
and fn is the separant of p. The differential polynomials fn+1, fn+2, . . . depend on k but the
separant fn does not. Let now q ∈ N. Then, if we differentiate (17) q times we get

p(2 k+2+q) = y(n+2 k+2+q) fn + y(n+2 k+2+q−1) [fn+1 + q f ′n]

+ · · ·+ y(n+2 k+2+q−r)
[
fn+r + q f ′n+r−1 + · · ·+

(
q

r

)
f (r)
n

]
+ · · ·+ y(n+2 k+2+q−k)

[
fn+k + q f ′n+k−1 + · · ·+

(
q

k

)
f (k)
n

]
+ hn+k+q+1 ,(18)

where hn+k+q+1 has order at most n+ k + q + 1.

Proof We have p′ = y(n+1) fn + gn where gn is a differential polynomial of order at most n.
Formula (17) is easily proved by induction on k. Formula (18) by differentiating (17) q times
and using Leibniz rule. �

The remaining part of this section is due to Denef and Lipshitz. See [12, Lemma 2.3].

Definition 1 (definition of k)
Assume ȳ ∈ F [[x]] does not annihilate the separant fn of p. Then one defines k as the

valuation of fn(x, ȳ, . . . , ȳ(n)) i.e. as the non negative integer k such that

fn(x, ȳ, ȳ′, . . . , ȳ(n)) = c0 x
k + c1 x

k+1 + · · · (c0 6= 0)

Assume that the formal power series fn(x, ȳ, . . . , ȳ(n)) is nonzero. Then f (k)
n (0, y0, y1, . . .),

which is an element of F equal to c0 is also nonzero (the polynomial f (k)
n (0, y0, y1, . . .) is an

analogue of the polynomials pi of (10)). Therefore the following integer r is well-defined:

Definition 2 (definition of r)
Let ȳ and k as in definition 1. One defines r (0 ≤ r ≤ k) as the smallest integer such

that [
fn+r + q f ′n+r−1 + · · ·+

(
q

r

)
f (r)
n

]
(0, y0, y1, . . .) 6= 0 . (19)

The left hand side of (19) is a nonzero polynomial of F [q]. It is denoted A(q).
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Proposition 5 Let ȳ, k and r as in definitions 1 and 2. Let γ ∈ N be bigger than any non
negative integer root of A(q). Let β = 2 k + 2 + γ + r and δ = n+ 2 k + 2 + γ. Then, if

p(x, ȳ, ȳ′, . . . , ȳ(n)) = 0 mod xβ

then there exists a unique formal power series ¯̄y such that

¯̄y = ȳ mod xδ ,

p(x, ¯̄y, ¯̄y′, . . . , ¯̄y(n)) = 0 .

Proof See the proof of [12, Lemma 2.3] for the details, which are technical. The key
argument is that the values of the coefficients yi of ¯̄y, for i ≥ δ (which need not be equal to
the coefficients yi of ȳ) are defined by the following formula [12, Formula (6)], which comes
from (18):

p(2 k+2+q)(0, y0, y1, . . .) = yn+2 k+2+q−r A(0, y0, y1, . . . , q) + hn+2 k+1+q−r(0, y0, y1, . . .) .

Observe that n + 2 k + 2 + q − r ≥ δ whenever q ≥ γ − r. The differential polyno-
mial hn+2 k+1+q−r has order at most n+ 2 k+ 1 + q− r. Since A(0, y0, y1, . . . , q) is nonzero for
any non negative integer q ≥ γ ≥ γ− r, the value of yn+2 k+2+q−r (for n+ 2 k+ 2 + q− r ≥ δ)
is uniquely defined by equating p(2 k+2+q)(0, y0, y1, . . .) to zero. �

Let us come back to example (9) and seek a formal power series solution for (α, y0, y1) =
(0, 0, 0) and y2 6= 0. Observe that the inequality constraint is necessary to fix k. Then we
find k = r = 1 and A(q) = 2 q y2 + 8 y2 − 1. Looking at p2 in system (10), we see that y2

must be equal to 0 or 1
2
. Let us pick y2 = 1

2
since we have assumed y2 6= 0. We see that A(q)

has no non negative integer root so that we can pick γ = 0. Then we get β = δ = 5. Solving
p0 = p1 = · · · = p4 we find a unique solution (y3, y4) = (−6,−8). According to Proposition 5,
these five values can be prolongated to a unique formal power series ¯̄y solution of (9).

1.12 On Denef and Lipshitz Theorem 3.1

Denef and Lipshitz [12, Theorem 3.1] claim that there exists an algorithm which decides
whether a system of polynomial ordinary differential equations admits formal power series
solutions centered at any given expansion point α.

Roughly speaking, the idea consists in using Proposition 5 over an initial values encoding
formal power series ȳ with parametric coefficients and use tools such as universal quantifier
elimination and cylindrical algebraic decomposition in order to discuss cases.

The situation then becomes much more complicated. Uniqueness of formal power series is
no more guaranteed. Actually, a result of Singer [28, Problem (3)] proves that the existence
problem of nonzero formal power series solutions is undecidable, thanks to the negative
answer to Hilbert’s Tenth Problem [20]. Even existence cannot be guaranteed for every
formal power series ȳ satisfying the constraints produced by the algorithm. The existence
for some formal power series ȳ is guaranteed by [12, Lemma 2.9].

However, there seems to be at last minor flaws in the proof and it seems that this
algorithm has never been implemented.

13



1.13 An Undecidability Result in the Partial Case

Denef and Lipshitz prove [12, Theorem 4.11] that the problem “given a system of linear
PDE and an expansion point, determine if there exists a formal power series solution” is
undecidable whenever the number m of derivations is large enough (say m ≥ 9), thanks
again to the negative answer to Hilbert’s Tenth Problem [20].

Observe that the generalization of the polynomial A(q) to the partial differential case
m > 1 is a multivariate polynomial A(q1, . . . , qm) for which we would have to find non
negative integer solutions. Thus even for m = 2, the approach of section 1.11 cannot be
applied. Here are a few details.

Let f ∈ F [z] be a polynomial in the usual sense. To fix ideas, take

f(z) = z2 − 2 . (20)

Let p ∈ F{y} be the differential polynomial defined as follows, using f to form some
differential operator and applying it to the differential indeterminate y

p = f

(
x

d

dx

)
y . (21)

Over our example, one obtains

p =

((
x

d

dx

)2

− 2

)
y , = x

d

dx

(
x

d

dx
y

)
− 2 y , = x2 ÿ + x ẏ − 2 y .

Fact 1. Fix the expansion point at the origin. Then

p(ȳ) =
∑
i≥0

yi f(i)xi . (22)

Fact 2. The following identities hold:

1

1− x
=

∑
i≥0

xi , and more generally,

1

1− x1

· · · 1

1− xm
=

∑
(i1,...,im)∈Nm

xi11 · · ·ximm .

Combining the two above facts, we see that the differential polynomial equation

p =
1

1− x
, which is equivalent to

(1− x) p− 1 = 0

has a formal power series solution (which is convergent if it exists), centered at the origin, if
and only if yi = 1/f(i) for each i ∈ N. In particular, the formal power series solution exists
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if and only if the polynomial f has no positive integer root. This construct generalizes to
the partial case. Take any f ∈ F [z1, . . . , zm] and form the differential polynomials

p = f

(
x1

∂

∂x1

, . . . , xm
∂

∂xm

)
y ,

q = (1− x1) · · · (1− xm) p− 1 .

Then q has a formal power series (which is convergent if it exists), centered at the origin, if
and only if the polynomial equation f = 0 has no positive integer solution. By [20], there
does not exist any algorithm for determining whether this is the case of not, provided that m
is large enough.

2 Differential Ideals — A Theorem of Zeros

2.1 Rankings are Well Orderings

A sequence of derivative operators

θ1, θ2, θ3, . . . (23)

is called a Dickson sequence if none of the θi divides any of its successors i.e. if, for all k >
i ≥ 1, there does not exist any derivative operator ϕ such that θk = ϕθi. See Figure 1.

Figure 1: Graphical illustration of the beginning of a Dickson sequence in two derivations
θ1, θ2, θ3 = δ3

xδt, δxδ
4
t , δ

2
xδ

2
t . Each time a derivative operator is introduced, the set of possible

following operators, corresponding to the non shaded area, shrinks. It is clear that all possible
prolongations are finite, though it is possible to build sequences of arbitrary length.

Proposition 6 (Dickson’s Lemma) Every Dickson sequence is finite.
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Proof By induction on the number m of derivation operators. The Proposition is clear
if m = 1 since every strictly decreasing sequence of nonnegative integers is finite. Assume
m > 1 and that the Lemma holds for every Dickson sequence built with less thanm derivation
operators. Denote θi = δei1 ϕi for all i ≥ 1 where the derivative operators ϕi are free of the
derivation operator δ1. Every infinite sequence of nonnegative integers contains an infinite
increasing subsequence. Thus if some Dickson sequence (23) were infinite, it would contain an
infinite subsequence (θi) whose orders ei would be increasing. The corresponding subsequence
(ϕi) would then be an infinite Dickson sequence. This contradiction with the induction
hypothesis concludes the proof of the Lemma. �

Let us recall the definition of rankings. Let Y = {y1, . . . , yn} be a set of differential
indeterminates. A ranking [17, chap. I, sect. 8] is a total order on the infinite set ΘY which
satisfies the two following axioms, for all derivatives v, w ∈ ΘY and every derivative operator
θ ∈ Θ:

1. v ≤ θv and

2. v < w ⇒ θv < θw.

Proposition 7 Every ranking is a well-ordering (i.e. every strictly decreasing sequence of
derivatives is finite).

Proof If a strictly decreasing sequence of derivatives were infinite, it would contain an
infinite subsequence (θiy) of derivatives of the same differential indeterminate y. The first
axiom of rankings implies that the corresponding subsequence of derivative operators (θi) is
a Dickson sequence. By Dickson’s Lemma, such a sequence cannot be infinite. �

2.2 Autoreduced sets are Finite

A set of differential polynomials A ⊂ R \ F is said to be autoreduced if its elements are
pairwise reduced with respect to each other i.e. if, for every pair (p, q) of distinct elements
of A, we have q reduced with respect to p.

Proposition 8 Every autoreduced set is finite.

Proof Let A be an autoreduced set. If A were infinite, it would contain an infinite subset of
differential polynomials whose leading derivatives θiy would be derivatives of the same dif-
ferential indeterminate y. Enumerating the corresponding derivative operators θi according
to any order, one gets a Dickson sequence. By Dickson’s Lemma, such a sequence cannot be
infinite. Thus A is finite. �
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2.3 Characteristic Sets as Minimal Autoreduced Sets

Let A be an autoreduced set and p ∈ R\F be a differential polynomial reduced with respect
to A (i.e. with respect to all elements of A). Then B = A ∪ {p} is not autoreduced but,
if one removes from B any differential polynomial which is not reduced with respect to p,
one gets another autoreduced set A′. This process can actually be viewed as an extremely
simplified version of some “completion process”. It plays an important role in the theory.
The following definition actually permits us to say that A′ is lower than A.

Let A = {p1, . . . , pr} and A′ = {p′1, . . . , p′r′} be two autoreduced sets such that p1 < · · · <
pr and p′1 < · · · < p′r′ (differential polynomials are ordered by increasing rank). The set A′
is said to be lower than the set A if

1. there exists some index j ∈ [1,min(r, r′)] such that p′j < pj and the two subsets
{p1, . . . , pj−1} and {p′1, . . . , p′j−1} have the same set of ranks ; or

2. no such j exists and r < r′ (longer sets are lower).

Observe that the above relation is transitive [24, chap. I, 4] and defines a total ordering on
autoreduced sets of ranks. The proof of the following proposition comes from [17, chap. I,
sect. 10, Prop. 3].

Proposition 9 Every nonempty set of autoreduced sets contains a minimal element.

Proof Let A be a nonempty set of autoreduced sets. Define an infinite sequence

A = A0 ⊃ A1 ⊃ A2 ⊃ · · ·

by defining Ai (i > 0) as the set of all the autoreduced sets belonging to Ai−1, which involve
at least i elements, and whose ith element has lowest possible rank, vdii . If all the subsets Ai

were nonempty then the set of all (vi) would form an infinite autoreduced set: a condraction
to Proposition 8. Thus there exists some i ≥ 0 such that Ai is nonempty and Aj = ∅ for
j > i. Any element of Ai is a minimal element of A . �

The next Proposition actually is nothing but a restatement of Proposition 9.

Proposition 10 Every strictly decreasing sequence of autoreduced sets is finite.

Proof By Proposition 8. �

If Σ is any subset of R then Σ contains autoreduced subsets, since the empty set is an
autoreduced set.

Definition 3 Let Σ be any subset of R. A characteristic set of Σ is any minimal autoreduced
subset of Σ.

The next proposition is emphasized in [24, chap. I, 5].
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Proposition 11 Let Σ be any subset of R, A be a characteristic set of Σ and p ∈ R \F
be a differential polynomial reduced with respect to A.

Denote Σ + p the set obtained by adjoining p to Σ.
The characteristic sets of Σ + p are lower than A.

Corollary 1 Let Σ be any subset of R and A be a characteristic set of Σ. Then Σ does not
contain any differential polynomial of R \F , reduced with respect to A.

2.4 Characteristic Sets of Prime Differential Ideals

Consider a prime differential ideal P different from R. Assume a ranking is fixed and a
characteristic set A of P is known.

Proposition 12 Let f be any differential polynomial of R. Then fullrem(f, A) = 0 if and
only if f ∈ P.

Proof Denote g = fullrem(f, A). The implication ⇐ from right to left. Assume f ∈ P.
Since A ⊂ P we have g ∈ P by the relation (7) of Proposition 3. The differential polynomial g
cannot belong to R \F by Corollary 1, since it is reduced with respect to all elements of A.
It cannot be a nonzero element of F because P 6= R. Thus g = 0.

The implication ⇒ from left to right. Assume g = 0. Then the product h f ∈ P. By
Corollary 1, the initials and separants of A do not belong to P since they are reduced with
respect to all elements of A. Since h is a power product of these initials and separants and P
is prime, we have f ∈ P. �

2.5 Differential Ideals Defined by Characteristic Sets

The following notations are defined in [17, chap. sect. 0, 1; and chap. I, sect. 9]. In
Kolchin’s book, the notation [A] : H∞A seems to occur for the first time in [17, chap. IV,
sect. , Lemma 2].

If S is a subset and A is an ideal of R then A : S∞ is the ideal of the elements p ∈ R
such that, for some power product h of elements of S, we have h p ∈ A (if A is a differential
ideal, so is A : S∞). An alternative definition is provided by means of a localization [18,
chap. II, 3]: if M denotes the multiplicative family generated by S and M−1A denotes the
ideal generated by A in the localized ring M−1R, then A : S∞ = M−1A ∩R.

Denote now HA the set of the initials and separants of A. Proposition 12 implies that,
if A is a characteristic set of a prime differential ideal P then

P = [A] : H∞A .
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2.6 The Ritt-Raudenbush Basis Theorem

It is the key to Theorem 4. The differential polynomial ring is R = F{y1, . . . , yn}. The two
next propositions are slight adaptations of [24, chap. I, 10].

Proposition 13 Let f, g be two differential polynomials and A be a perfect differential ideal
of R such that f g ∈ A. Then, for all derivative operators θ, ϕ, the product (θf) (ϕg) ∈ A.

Proof The proof is by induction on the sum of the orders of the derivative operators θ
and ϕ. The basis of the induction (case of two operators of order zero) holds by assumption.
Assume that the Proposition holds for all derivative operators θ, ϕ such that the sum of
their orders is equal to some positive integer and consider any derivation operator δ. Then,
differentiating (θf) (ϕg), we have (δθf) (ϕg) + (θf) (δϕg) ∈ A Multiply by θf and use the
fact that (θf) (ϕg) ∈ A (induction hypothesis). Then (θf)2 (δϕg) ∈ A and, since A is perfect,
(θf) (δϕg) ∈ A. The fact that (δθf) (ϕg) ∈ A is proved similarly. �

Proposition 14 Let f, g be two differential polynomials and Σ be a set of differential poly-
nomials of R. Then {Σ + f g} = {Σ + f} ∩ {Σ + g}.

Proof The inclusion ⊂ is clear. Let us prove the converse one. Let h ∈ {Σ + f} ∩ {Σ + g}.
Then there exist differential polynomials p, q ∈ [Σ], f ∈ [f ], g ∈ [g] and, by Proposition 1, a
positive integer t such that ht = p+f and ht = q+g. Multiply these two equalities termwise.
Then there exists a differential polynomial r ∈ [Σ] such that h2t = r+ f g. Since f ∈ [f ] and
g ∈ [g], there exist finitely many differential polynomials mθ,ϕ such that

f g =
∑
θ,ϕ∈Θ

mθ,ϕ (θf) (ϕg) .

The product f g ∈ {Σ+f g}. Thus, by Proposition 13, every product (θf) (ϕg) ∈ {Σ+f g}.
Thus we have h ∈ {Σ + f g}. �

The remaining part of this section comes from [24, chap. I, 12-16]. Let Σ be an infinite
subset of R. A subset Φ of Σ is said to be a basis of Σ if Φ is finite and Σ ⊂ {Φ}.

Lemma 3 Let Σ be an infinite subset of R. If Σ contains a nonzero element of F then Σ
has a basis.

Proof Let a be any nonzero element of Σ ∩F . Then the set {a} is a basis of Σ. �

It is sometimes useful to have at our disposal a version of the Ritt-Raudenbush Basis
Theorem for F [[x1, . . . , xm]]{y1, . . . , yn} i.e. differential polynomial rings over rings of formal
power series or, more simply, for F [x1, . . . , xm]{y1, . . . , yn}. Such generalized versions of the
Theorem actually hold. They can be proved using the same proof as below by slightly
generalizing Lemma 3 to cover the case of a base ring element a, a derivative of which is
invertible. See [5] for more details.
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Theorem 1 (Ritt-Raudenbush Basis Theorem) Every infinite subset of R has a basis.

Proof We assume that there exist infinite subsets of R with no basis and seek a contra-
diction. Let Σ be such a subset and assume moreover that, among all infinite sets with no
basis, Σ is such that its characteristic sets are minimal.

Let A be a characteristic set of Σ.
“Perform” Ritt’s full reduction algorithm, with respect to A, over all q ∈ Σ \ A. For

each q ∈ Σ\A, there exists a power product hq of initials and separants of A and a differential
polynomial gq, reduced with respect to A such that

hq q = gq mod [A] . (24)

Introduce the two following sets (the plus sign standing for “union”):

Λ = {hq q | q ∈ Σ \ A}+ A ,

Ω = {gq | q ∈ Σ \ A}+ A .

The set Ω must have a basis. Indeed, if it contains any nonzero element of F it has a basis
by Lemma 3. Otherwise, since the differential polynomials gq are reduced with respect to A,
its characteristic sets are lower than A by Proposition 11 thus it cannot lack a basis by the
minimality assumption on Σ.

Thus there exist finitely many differential polynomials q1, . . . , qt ∈ Σ \ A such that the
set Φ = {gq1 , . . . , gqt}+A is a basis of Ω (observe that is is always possible to enlarge a basis
with finitely many further differential polynomials).

Claim: the set Ψ = {hq1 q1, . . . , hqt qt}+ A is a basis of Λ.
Each hqi qi − gqi (1 ≤ i ≤ t), belongs to the perfect differential ideals {Φ} and {Ψ} by

Proposition 3 and the fact that A is a subset of both Φ and Ψ.
Thus, since each gqi ∈ Φ (1 ≤ i ≤ t), we see that each hqi qi ∈ {Φ} (1 ≤ i ≤ t)

and Ψ ⊂ {Φ}. Conversely, since each hqi qi ∈ Ψ, we see that each gqi ∈ {Ψ} and Φ ⊂ {Ψ}.
Thus both perfect differential ideals {Φ} and {Ψ} are equal.

Since Φ is a basis of Ω we have Ω ⊂ {Φ}. Since the full remainder gq of each q ∈ Σ
belongs to Ω, we see that the corresponding product hq q of each q ∈ Σ belongs to {Ω},
which is included in {Φ} = {Ψ}. Thus Λ ⊂ {Ψ} and the claim is proved.

Let f1, . . . , fs denote the initials and separants of A. By Lemma 4, there exists an
index 1 ≤ i ≤ s such that the set Σ + fi has no basis. The differential polynomial fi /∈ F by
Lemma 3. Thus the set Σ + fi has a characteristic set lower than A by Proposition 11. This
contradiction with the minimality assumption on Σ completes the proof of the Theorem. �

The next Lemma is involved in the proof of the Ritt-Raudenbush Basis Theorem. The
differential polynomials fi actually are the initials and separants of some characteristic set
of Σ.

Lemma 4 Let Σ be an infinite subset of R and f1, . . . , fs be differential polynomials of R.
Let

Λ = {hq q | q ∈ Σ and hq is some power product of f1, . . . , fs} .

20



If Σ has no basis and Λ has a basis then at least one of the sets Σ + fi, for 1 ≤ i ≤ s, has
no basis.

Proof We assume that all sets Σ + fi (1 ≤ i ≤ s) have a basis and seek a contradiction.
Let Ψ = {hq1 q1, . . . , hqt qt} be a basis of Λ. Since a basis can always be enlarged as long

as it remains finite, there exists some finite set Φ ⊂ Σ such that: 1) Φ+fi is a basis of Σ+fi
(1 ≤ i ≤ s) and; 2) q1, . . . , qt ∈ Φ. Let g denote the product f1 · · · fs.

By Proposition 14, the perfect differential ideal {Σ + g} is the intersection of the perfect
differential ideals {Σ + fi} (1 ≤ i ≤ s) ; similarly, the perfect differential ideal {Φ + g} is the
intersection of the perfect differential ideals {Φ + fi}. Since each Φ + fi is a basis of Σ + fi
we have

{Σ + g} =
s⋂
i=1

{Σ + fi} ⊂
s⋂
i=1

{Φ + fi} = {Φ + g} .

Thus Φ + g is a basis of Σ + g.
Thus, for each differential polynomial p ∈ Σ, there exists a relation

pd = r +m1 θ1g + · · ·+me θeg

where d ≥ 1, e ≥ 0, the mi are differential polynomials of R and r ∈ [Φ]. Multiplying by p
we get

pd+1 = r p+m1 p θ1g + · · ·+me p θeg (25)

Since q1, . . . , qt ∈ Φ we have Ψ ⊂ {Φ}. Since, moreover, p ∈ Σ and g is the product of
the fi, we have p g ∈ {Λ} ⊂ {Ψ} ⊂ {Φ}. Thus, by Proposition 14, we have p θig ∈ {Φ} for
1 ≤ i ≤ e. Since r ∈ [Φ] we have r p ∈ {Φ}. Thus, using (25), we have p ∈ {Φ}, which
means that Φ is a basis of Σ: the sought contradiction. �

Corollary 2 Let A be a perfect differential ideal of R. Then there exists a finite Φ ⊂ A
such that A = {Φ}.

Theorem 2 Every perfect differential ideal A is a finite intersection of prime differential
ideals.

Proof We assume that there exists some perfect differential ideal A with no such pre-
sentation and seek a contradiction. The perfect differential ideal A thus cannot be prime.
Let f, g be two differential polynomials such that the product f g ∈ A but f, g /∈ A. By
Proposition 13 we have A = {A+ f}∩{A+ g}. At least one of these two perfect differential
ideals — say A1 = {A + f} — is not a finite intersection of prime differential ideals; and
we have A ( A1. Repeating this argument, we see that there exists an infinite sequence of
perfect differential ideals

A ( A1 ( A2 ( · · · (26)
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Let Ω be the union of all these ideals. By the Ritt-Raudenbush Basis Theorem, there exists
a finite set Φ ⊂ Ω such that Ω ⊂ {Φ}. The set Φ must be a subset of some At in (26). Thus
At+1 ⊂ {Φ} ⊂ At. This contradiction with the fact that the inclusions of (26) are strict
completes the proof of the Theorem. �

Let A be a perfect differential ideal of R. A representation

A = P1 ∩ · · · ∩P% (27)

of A as an intersection of prime differential ideals Pi is said to be minimal if, for all indices
1 ≤ i, j ≤ % such that i 6= j we have Pi 6⊂ Pj. Anticipating on Theorem 3, these prime
differential ideals are uniquely defined. Ritt calls them the essential prime divisors of A [24,
chap. I, 17]. We prefer to call them the essential components of A.

Theorem 3 There exists a unique minimal representation of a perfect differential ideal A
as a finite intersection of prime differential ideals.

Proof The existence comes from Theorem 2.
For the uniqueness, fix some representation (27). It suffices to prove that if P is a prime

differential ideal such that A ⊂ P then there exists some index 1 ≤ i ≤ % such that Pi ⊂ P.
If this were not the case then each Pi would contain some differential polynomial fi such
that fi /∈ P (1 ≤ i ≤ %). Since P is prime, the product f = f1 · · · f% would not belong
to P either. However, it would belong to A. This contradiction with the hypothesis A ⊂ P
completes the proof of the Theorem. �

The following example comes from [24, chap. II, 8].

{ẏ2 − 4 y} = [ẏ2 − 4 y , ÿ − 2] ∩ [y] .

The differential polynomial ẏ2 − 4 y is irreducible but its first derivative actually factors as
2 ẏ (ÿ − 2). The perfect differential ideal on the left hand side of (28) is not prime. It has
two essential components, given on the right hand side of (28). The solution of the first
component is the family of parabolas (x+ c)2 where c is an arbitrary constant. The solution
of the second component is the zero function. The singleton ẏ2 − 4 y is a characteristic set
of the prime differential ideal [ẏ2 − 4 y , ÿ − 2].

A variant comes from [24, chap II, 19]. The perfect differential ideal generated by ẏ2−4 y3

is actually prime. Its solution is the family of functions (x + c)−2 where c is an arbitrary
constant. The zero function also is a solution but (quoting Ritt) “we see, letting |c| increase,
that a differential polynomial which vanishes for every (x + c)−2 vanishes for y = 0. Thus
y = 0 is in the general solution”. The prime differential ideal [y] is not an essential component
of {ẏ2 − 4 y3}. See also [17, chap. IV, sect. 15, Remark 1].
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2.7 Zeros of a Prime Differential Ideal

This section is much inspired by papers of Seidenberg. See the proof of [26, Theorem 6].
The differential polynomial ring is R = F{y1, . . . , yn} endowed with m derivations. We

may with no loss of generality assume that all differential polynomials are autonomous (see
section 1.8). Since we are going to solve polynomial systems and look for solutions in F ,
there are constraints on F . The content of this section is valid if F is a universal field
extension of the field Q of the rational numbers (i.e. if F is algebraically closed and has
an infinite transcendence degree over Q) [31, chap. VI, 5bis]. To fix ideas, we may consider
that F is the field C of the complex numbers.

Consider a prime differential ideal P different from R. Assume a ranking is fixed and
a characteristic set A of P is known. Denote p1, . . . , pr the elements of A and assume that
p1 < · · · < pr.

Denote X the finite set of the derivatives A depends on and V ⊂ X the set of leading
derivatives of A. Then ΘY \ΘV denotes the possibly infinite set of the elements of ΘY which
are not the derivative of any element of V . Let Θ∗ denote the set of all proper derivative
operators. Then Θ∗V denotes the set of all derivatives which are proper derivatives of some
element of V . The three sets V , ΘY \ΘV and Θ∗V are pairwise disjoint. Their union is ΘY .

As an example, consider the non autonomous differential polynomial x ẏ2 + y − 1 of
F [x]{y}. By reduction to the autonomous case (section 1.8), transform it into an equivalent
autonomous characteristic set A = {ẏ1−1, y1 ẏ

2
2 +y2−1} of the prime differential ideal P =

[A] : H∞A of F{y1, y2}. Then X = {ẏ1, y1, ẏ2, y2} and V = {ẏ1, ẏ2} and ΘY \ΘV is the set
of all the derivatives of y1 and y2 of order at least two,

Process. The following process builds a tuple of n formal power series si(x1, . . . , xm) de-
fined by

si(x1, . . . , xm) =
∑

θ=δ
e1
1 ···δ

em
m ∈Θ

yi,θ x
e1
1 · · ·xemm (28)

by assigning values yi,θ ∈ F to all derivatives θyi ∈ ΘY . This process is nothing but a
generalization of the approach sketched in section 1.6.

1. Solve the following system as a nondifferential polynomial system of F [X], where h
denotes the product of the initials and separants of A

p1 = · · · = pr = 0 , h 6= 0 .

2. Assign any value from F to the derivatives of ΘY \ΘV which were not already assigned
values at Step 1.

3. Let v be any element of Θ∗V . By Ritt’s partial reduction process, compute a power
product h of separants of A and a differential polynomial g such that

h v = g mod [A] . (29)
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Then assign to v the value of g/h.

Remarks.

• the polynomial system to be solved at Step 1 is triangular in the sense that each
equation pi = 0 introduces at least one indeterminate;

• if the field F is the field of the complex numbers, which is algebraically closed, the
polynomial system to be solved has solutions;

• over our example, the inequation is y1 6= 0, which forbids the initial value y1,1 = 0 hence
forbids the origin as expansion point when considering the non autonomous differential
polynomial we started with;

• at Step 3, the differential polynomials h and g depend on derivatives which were as-
signed values at Steps 1 and 2.

Proposition 15 The tuple of formal power series (28) provides a zero of the prime differ-
ential ideal P.

Proof We prove that the coefficients y`,θ computed by the process annihilate every f ∈ P.
The proof is by induction on the leading derivative v = θy` of the differential polynomials

f ∈ P, ordered by the ranking. This transfinite induction [30, chap. 9, 4] is allowed by
Proposition 7.

Basis. Thanks to Proposition 12, the elements f ∈ P with lowest leading derivative
satisfy h f = q p1 where h is a power of the initial of p1 (the lowest element of A) and q is
some differential polynomial. Since p1 is annihilated by the coefficients y`,θ and h is not, the
differential polynomial f must vanish.

General case. Let v be the leading derivative of some f ∈ P. Assume (induction hy-
pothesis) that every element of P with leading derivative less than v is annihilated by the
coefficients y`,θ. We may assume, without loss of generality, that the initial of f does not
belong to P. Thus, thanks to Proposition 12, we must have v ∈ ΘV .

Subcase 1. Assume v ∈ V . Perform Ritt’s full reduction algorithm over f . Then there
exists a power product h of initials and separants of A such that h f ∈ [A] by Propositions 3
and 12. Observe now that, in this reduction process, the first pseudodivision is performed
with respect to the differential polynomial pi ∈ A with leading derivative v. The following
pseudodivisions are performed with respect to differential polynomials of ΘA with leading
derivatives strictly less than v; and the differential polynomial h does not depend either
on any derivative greater than or equal to v. Removing all the elements of ΘA which are
annihilated according to the induction hypothesis, we see that there exists a differential
polynomial q such that h f = q pi. Since pi is annihilated by the coefficients y`,θ and h is
not, the differential polynomial f must vanish.
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Subcase 2. Assume v ∈ Θ∗V and that there is a single differential polynomial pi ∈ A,
with leading derivative vi such that, for some θ ∈ Θ∗, we have v = θvi.

Consider Ritt’s partial reduction (29) which yielded the value of v. In this reduction
process, the first pseudodivision is performed with respect to θpi and since the differential
polynomial to be reduced is a mere derivative, the first pseudoquotient is 1. Then, argument-
ing as in Subcase 1 and removing all the elements of ΘA which are annihilated according to
the induction hypothesis, we see that h v = g+ θpi. Since the value assigned to v is g/h, we
see that the coefficients y`,θ annihilate θpi.

Perform now Ritt’s full reduction algorithm over f . Then there exists a power product h
of initials and separants of A such that h f ∈ [A] by Proposition 3. Argumenting as in
Subcase 1 and removing all the elements of ΘA which are annihilated according to the
induction hypothesis, we see that there exists a differential polynomial q such that h f = q θpi.
Since θpi is annihilated by the coefficients y`,θ and h is not, the differential polynomial f
must vanish.

Subcase 3. Assume v ∈ Θ∗V and that there exist many different (say two) differential
polynomials pi, pj ∈ A, with leading derivatives vi, vj such that, for some θi, θj ∈ Θ∗, we
have v = θivi = θjvj.

One of these two differential polynomials (say pi) was used to assign a value to v. As
proved in Subcase 2, the differential polynomial θipi is annihilated by the coefficients y`,θ.

Denote si and sj the separants of pi and pj. The cross derivative sj θipi − si θjpj belongs
to P and either is zero or has a leading derivative strictly less than v. Thus it is annihilated
by the coefficients y`,θ, according to the induction hypothesis. Since θipi is annihilated and
the separants are not, the differential polynomial θjpj must vanish also.

Perform now Ritt’s full reduction algorithm over f . Argumenting as in Subcase 2, we see
that f must vanish at the coefficients y`,θ also. �

In the proof of the next Proposition, some field D is introduced. This field seems to be
a field of definition, which is a notion introduced in [17, chap. III, sect. 3].

Proposition 16 Let f be a differential polynomial and P be a prime differential ideal of R.
If f /∈ P then P has a zero which does not annihilate f .

Proof The idea of the proof consists in proving that P has a generic (or general) zero (y`,θ)
i.e. a zero which only annihilates the elements of P. A zero (y`,θ) is generic if F (y`,θ) is
isomorphic to the field of fractions of R/P. See [30, chap. 16].

In the field of fractions of R/P, the derivatives in ΘY \ΘV are transcendental over F .
This is an easy corollary to Proposition 12. Moreover, the process described at the beginning
of this section for building a zero of P shows that, for every derivative v ∈ ΘV , the set
(ΘY \ ΘV ) + v is algebraically dependent over F in R/P. Thus ΘY \ ΘV provides a
transcendence basis of the field of fractions of R/P over F .

In order to obtain a zero (y`,θ) of P which does not annihilate f , it is thus sufficient to
assign to the derivatives in ΘY \ΘV , values which are transcendental over F .

The issue (solved below) is that the coordinates of (y`,θ) belong to F thus cannot be
transcendental over F .
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Perform Ritt’s full reduction algorithm over f using some characteristic set A ofP. Then,
by Proposition 3, there exists a power product h of initials and separants of A and differential
polynomials g,mi,θ such that

h f = g +
∑

1 ≤ i ≤ r,
θ ∈ Θ

mi,θ θpi .

Since Ritt’s reduction algorithm is “rational”, the above formula holds in any differential
polynomial ring D{y1, . . . , yn} such that D contains the rational numbers plus the finitely
many coefficients of f and the elements of the characteristic set A. We can thus choose for D
a finite extension of the field of the rational numbers, over which the field F has an infinite
degree of transcendency.

Thus, assigning values in F which are transcendental over D to the derivatives in
ΘY \ ΘV , we obtain a generic zero (y`,θ) of the prime differential ideal P ∩ D{y1, . . . , yn}.
Since f, g /∈ P, they do not belong to P ∩D{y1, . . . , yn} either so that they are not annihi-
lated by (y`,θ). In the differential polynomial ring R, the zero (y`,θ) is no more generic but
it still does not annihilate f , which is the result we are looking for. �

2.8 A Differential Theorem of Zeros

Let F be a universal extension of the field of the rational numbers. To fix ideas, one may
let F be the field C of the complex numbers. Let R = F{y1, . . . , yn} endowed with m
derivations.

Theorem 4 (Differential Theorem of Zeros)
Let p1 = · · · = pr = 0 be a system of polynomial differential equations and f be a

differential polynomial of R. Let A = {p1, . . . , pr} be the perfect differential ideal of R
generated by the left hand sides of the equations.

If f ∈ A then f annihilates over every solution of the system of equations.
Conversely, if every solution of the system of equations annihilates f then f ∈ A.

Proof The first statement is clear and is valid for any field F . For the second statement,
we assume f /∈ A and prove that the system of equations has a solution which does not
annihilate f . By Theorem 3, there exists a prime differential ideal P such that A ⊂ P
and f /∈ P. By Proposition 16, the prime differential ideal P has a zero which does not
annihilate f . This zero is a solution of the system of equations. �

The Theorem implies that a system has no solution if and only if 1 ∈ A where A denotes
the perfect differential ideal that generated by the system. As we shall see in Theorem 12,
there exists an algorithm which decides if 1 ∈ A and, more generally, membership to A.

The proof of the Theorem relies on the existence of a formal power series of some prime
differential ideal P avoiding the differential polynomial f (Proposition 16). Observe that
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there are constraints on the possible initial values of that formal power series — hence
constraints on the possible expansion points of the formal power series, if p1, . . . , pr are
obtained by reduction to the autonomous case of some non autonomous system. Thus, in
the non autonomous case, the Theorem still holds provided that the formal power series
under consideration belong to F [[x1−α1, . . . , xm−αm]] where (α1, . . . , αm) is an expansion
point left unspecified.

Recall that, if the expansion point is fixed then the existence problem of formal power
series solutions is undecidable (section 1.13).

3 Regular Differential Chains
This section aims at explaining the ideas of regular differential chains and the related decom-
position algorithms. A key theorem — absent from Ritt and Kolchin books — is Theorem 6.
The key issue to be solved is: given a triangular set A defining some ideal a, how to decide
whether a polynomial is a zerodivisor modulo a ? The progression of the following sections
is much inspired from [10].

3.1 The Lasker-Noether Theorem

Let R = F [x1, . . . , xr, t1, . . . , tm] be a polynomial ring over a field of characteristic zero.
The ring R is Noetherian (because the number of variables is finite). See [31, chap. IV].

An ideal p ⊂ R is prime if, for all a, b ∈ R we have a b ∈ p⇒ [a ∈ p or b ∈ p].
An ideal q ⊂ R is primary if, for all a, b ∈ R we have a b ∈ q⇒ [a ∈ q or ∃ e ∈ N, be ∈ q].

Every prime ideal is primary.
If q is a primary ideal then its radical is a prime ideal p, called the associated prime ideal

of q.
Every intersection of primary ideals qi can be made minimal by applying two theoretical

processes:

• removal of the qi which contain some other qj;

• gluing in a single primary ideal subsets of primary ideals whose intersection is itself
primary.

Theorem 5 (Lasker-Noether Theorem)
Every ideal a of R is a finite minimal intersection of primary ideals:

a = q1 ∩ · · · ∩ qr . (30)

Such a minimal primary decomposition of a is not necessarily unique but, if

a = q′1 ∩ · · · ∩ q′r′
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is another minimal primary decomposition of a then, the number of components is the same
(i.e. r = r′) and the set of the associated prime ideals p1, . . . , pr of the two decompositions
is uniquely defined (the pi are called the associated prime ideals of a).

If qi and qj are two primary components of a minimal primary decomposition of a then
qi 6⊂ qj but it may happen that pi ⊂ pj.

An associated prime ideal of a is said to be isolated if it does not contain any other
associated prime ideal of a.

An associated prime ideal of a which is not isolated is said to be embedded (or imbedded).

The radical of an ideal a is the intersection of the associated prime ideals of a. Since
embedded associated prime ideals are redundant in this intersection, we see that the radical
of an ideal a is the intersection of its isolated associated prime ideals.

As an example, consider the ideal

a = (p1, p2) = (x1 (x1 + t1), t1 x1 x2)

of R = F [t1, x1, x2]. A minimal primary decomposition is

a = q1 ∩ q2 ∩ q3 ,
= (x1) ∩ (t1, x

2
1) ∩ (x2, x1 + t1) .

The associated prime ideals of a are p1 = (x1) which is isolated, p2 = (t1, x1) which is
embedded since it contains p1 and p3 = (x2, x1 + t1) which is isolated. Then

√
a = p1 ∩ p3 = (x1 (x1 + t1), x1 x2) .

An element f of a ring S is said to be a zerodivisor if there exists some nonzero g ∈ S
such that f g = 0. An element which is not a zerodivisor is said to be regular. Thus a
polynomial f ∈ R is a zerodivisor modulo an ideal a if there exists some g ∈ R such that
g /∈ a and f g ∈ a.

The set of the zerodivisors modulo a (or in R/a) is the union of associated prime ideals
of a (isolated and embedded). Over our example, t1 ∈ p2 is a zerodivisor modulo a.

Let h ∈ R be any polynomial. Then the saturation of a by h, denoted a : h∞, is the
intersection of the primary components qi of a whose associated prime ideal pi does not
contain h. Thus h is a zerodivisor modulo a if and only if a 6= a : h∞ ; and h is regular (i.e.
not a zerodivisor) modulo a : h∞.

3.2 Ideals Defined by Triangular Sets

Let A = {p1, . . . , pr} be a set of polynomials of the ring R = F [x1, . . . , xr, t1, . . . , tm] such
that deg(pi, xi) > 0 and deg(pi, xi+j) = 0 for 1 ≤ j ≤ r − i. Such a set A is said to be
triangular. The variable xi is the leading variable of pi (it is the analogue of the leading
derivative in the context of differential algebra). The initial and the separant of pi are the
leading coefficient of pi with respect to xi and the polynomial ∂pi/∂xi. The product of the
initials is IA = i1 · · · ir.
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Definition 4 (ideal defined by a triangular set)
The ideal defined by the triangular set A is the ideal a = (A) : I∞A .

Over our example, we have IA = t1 x1 and

(A) : I∞A = q3

In the sequel, we will also consider the ideals (A) : S∞A and (A) : H∞A where SA is the
product of the separants of A and HA is the product of the initials and the separants of A.

We will also often need to consider the polynomial ring R ′ = F [x1, . . . , xr−1, t1, . . . , tm]
(so that R = R ′[xr]), the triangular set A′ = {p1, . . . , pr−1} and the ideal a′ = (A′) : I∞A′

defined by A′ in R ′.

Theorem 6 (unmixedness property of ideals defined by triangular sets)
Let A = {p1, . . . , pr} be a triangular set of R = F [x1, . . . , xr, t1, . . . , tm] and a denote

either (A) : I∞A or (A) : S∞A . Then for every associated prime ideal p of a we have dim p = m
and p ∩F [t1, . . . , tm] = (0).

In particular all the associated prime ideals of (A) : I∞A and (A) : S∞A have the same
dimension and are isolated. Moreover, the nonzero elements of F [t1, . . . , tm] are regular
modulo each of these ideals. Similar statements hold also for (A) : H∞A .

Theorem 7 (Lazard’s Lemma)
Let A be a triangular set of R. The ideal (A) : S∞A is radical.

Since (A) : S∞A is radical, this ideal is an intersection of prime ideals. Thus (A) : H∞A ,
which is the intersection of the prime ideals which contain (A) : S∞A but do not contain any
initial of A must be radical also.

Definition 5 Let A be a possibly empty triangular set and f be a polynomial. The pseu-
doremainder of f by A, denoted prem(f, A) is defined as follows:

• if A = ∅ then prem(f, A) = f ;

• if A = {p1, . . . , pr} then prem(f, A) = prem(prem(f, pr, xr), A \ {pr}).

Definition 6 Let A be a possibly empty triangular set and f be a polynomial. The resultant
of f by A, denoted res(f, A) is defined as follows:

• if A = ∅ then res(f, A) = f ;

• if A = {p1, . . . , pr} then res(f, A) = res(res(f, pr, xr), A \ {pr}).
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3.3 Regular Chains

Definition 7 (regular chains)
In the polynomial ring F [x1, . . . , xr, t1, . . . , tm], let a be the ideal defined by a triangular

set A = {p1, . . . , pr} and a′ be the ideal defined by A′ = {p1, . . . , pr−1}.
Then A is a regular chain if r = 1 or r > 1, A′ is a regular chain and the initial ir of pr

is regular modulo a′.

Theorem 8 (equivalence theorem for regular chains)
Let A = {p1, . . . , pr} be a triangular set of R = F [x1, . . . , xr, t1, . . . , tm]. Denote i` the

initial of p` and a = (A) : I∞A . The following conditions are equivalent:

1. A is a regular chain ;

2. for each 2 ≤ ` ≤ r we have res(i`, A) 6= 0 ;

3. for each f ∈ R we have f ∈ a if and only if prem(f, A) = 0 ;

4. for each f ∈ R we have f regular modulo a if and only if res(f, A) 6= 0.

Over our example, the set A is triangular. It is however not a regular chain since the
resultant of t1 x1 (the initial of p2) and p1 = x1 (x1 + t1) with respect to x1 is zero (since both
polynomials have a common factor with positive degree in x1). Therefore res(t1 x1, A) = 0
and A is not a regular chain by Theorem 8 (implication 1⇒ 2). Thanks to the implication
1⇒ 4, the following definition is algorithmic.

Definition 8 (squarefree regular chain)
A regular chain A is said to be squarefree if the separant of each element of A is regular

modulo the ideal (A) : I∞A .

If A is squarefree then the separants of A do not belong to any associated prime ideal
of (A) : I∞A . Thus (A) : I∞A is equal to (A) : H∞A , which is radical by Lazard’s Lemma. In
summary:

Proposition 17 Let A be a squarefree regular chain.
Then (A) : I∞A is radical and is equal to (A) : HA

∞.

3.4 Regular Differential Chains — Ordinary Case

In this section, R = F{y1, . . . , yn} is an ordinary differential polynomial ring. A ranking is
supposed to be fixed and we apply the results of the former sections to triangular sets A =
{p1, . . . , pr} of differential polynomials which are pairwise partially reduced (such sets are
said to be partially autoreduced). The leading derivatives of the elements of A play the role
of the leading variables x1, . . . , xr of the former sections. The other derivatives present in A
play the role of the variables t1, . . . , tm.
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Definition 9 (regular differential chains — ordinary case)
In the ordinary differential polynomial ring F{y1, . . . , yn}, a partially autoreduced trian-

gular set A is a regular differential chain if it is a squarefree regular chain.

3.5 Regular Differential Chains — Partial Case

In this section, R = F{y1, . . . , yn} is a partial differential polynomial ring. A ranking
is supposed to be fixed and, as in the ordinary case, we consider a partially autoreduced
triangular set of differential polynomials A = {p1, . . . , pr}.

Since the number of derivation operators is strictly greater than 1 it may happen that
the leading derivatives θiy and θjy of two elements pi and pj of A are derivatives of the same
differential indeterminate y. Such a pair of differential polynomials is called a critical pair
of A. Denote θij the least common multiple of θi and θj so that θijy is the least common
derivative of the two leading derivatives θiy and θjy. Then, denoting si and sj the separants
of pi and pj, the ∆-polynomial ∆ij = ∆(pi, pj) is defined as

∆(pi, pj) = sj
θij
θi
pi − si

θij
θj
pj . (31)

It is either an element of F or a differential polynomial with leading derivative strictly less
than θijy. Indeed, in (31), the leading derivatives of the differential polynomials (θij/θi)pi and
(θij/θj)pj are both equal to θijy but a cancellation occurs (by design of the ∆–polynomial)
so that deg(∆ij, θijy) = 0.

Denote Aij ⊂ ΘA the set of the derivatives of the elements of A with leading derivatives
strictly less than θijy. The critical pair (pi, pj) of A is said to be solved if the ∆-polynomial
∆ij belongs to the nondifferential ideal defined by Aij i.e. if ∆ij ∈ (Aij) : H∞Aij

. Remarks:

1. if we denote Rij the ring of all differential polynomials of R with leading derivatives
strictly less than θijy. We have (Aij) : H∞Aij

⊂ A ∩Rij but the equality does not hold
in general ; in particular, if the critical pair is not solved, the inclusion is strict ;

2. if fullrem(∆ij, A) = 0 then the critical pair is solved ;

3. for a given finite set A, there are only finitely many critical pairs.

Definition 10 (coherence)
A partially autoreduced triangular set A of differential polynomials is said to be coherent

if all its critical pairs are solved.

Since a partially autoreduced triangular set has no critical pair in the ordinary differential
case, the following definition holds in both the ordinary and the partial differential context.

Remarks 2 and 3 above show that the coherence property is algorithmic but this algo-
rithmic character does not appear in Kolchin’s book. Indeed [17, chap. IV, sect. 8, cond.
C3], which generalizes Rosenfeld’s coherence, deals with the critical pairs associated to all
multiples of the differential operators θi and θj, not only with their least common multiple.
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Definition 11 (regular differential chain — general case)
In the differential polynomial ring F{y1, . . . , yn}, a partially autoreduced triangular set A

is a regular differential chain if it is a coherent squarefree regular chain.

3.6 Properties of Regular Differential Chains

To a regular differential chain A we can associate the ring R1 ⊂ R of the differential
polynomials partially reduced with respect to A, the differential ideal A = [A] : H∞A of R
and the non differential ideal a = (A) : H∞A of R1.

Theorem 9 (Rosenfeld’s Lemma)
Let A be a regular differential chain of R. Then

A ∩R1 = a .

The original version of Rosenfeld’s Lemma [25] is formulated for a set A which is autore-
duced and coherent. The concept of regular differential chain did not exist at that time.
The following Theorem is a consequence of Rosenfeld’s Lemma and Lazard’s Lemma.

Theorem 10 Let A be a regular differential chain. Then A is radical. Moreover, there
is a one-to-one correspondence between the essential components P1, . . . ,P% of A and the
associated prime ideals p1, . . . , p% of a given by

Pi ∩R1 = pi (i = 1, . . . , %) .

Theorem 11 (equivalence theorem for regular differential chains)
Let A be a coherent, partially autoreduced triangular set and f be a differential polynomial

of R. Then the following properties are equivalent:

1. A is a regular differential chain,

2. for each 2 ≤ ` ≤ r we have res(i`, A) 6= 0 and each 1 ≤ ` ≤ r we have res(s`, A) 6= 0,

3. f ∈ A if and only if fullrem(f, A) = 0,

4. f is regular modulo A if and only if res(partialrem(f, A), A) 6= 0.

3.7 Testing the Inclusion of Differential Ideals

Let A and B be two regular differential chains, defining differential ideals A and B in R. If
A 6⊂ B then A 6⊂ B. If A ⊂ B and all elements of HA are regular in R/B then A ⊂ B.
However, if A ⊂ B and there exists some h ∈ HA which is either zero or a zero divisor in
R/B then we cannot conclude.

The problem comes from the fact that A is not a basis of A. In the nondifferential case,
the inclusion problem can be decided since, thanks to Gröbner bases and the Rabinowitsch
trick, it is possible to compute a basis of (A) : H∞A .
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3.8 Formal Power Series Solutions — Principle

We have described in section 2.7 a process for computing a formal power series solution of
a prime differential ideal presented by a characteristic set. The very same process permits
to compute formal power series solutions of any differential ideal [A] : H∞A presented by a
regular differential chain.

3.9 Algorithmic Decomposition of a Perfect Differential Ideal

There exist algorithms such as the RosenfeldGröbner algorithm (see [6, 7]) which gather
as input a finite set Σ of differential polynomials and a ranking and yield finitely many
regular differential chains A1, . . . , A% which provide a decomposition of the perfect differential
ideal {Σ} as an intersection of the perfect differential ideals defined by the regular differential
chains:

{Σ} = [A1] : H∞A1
∩ · · · ∩ [A%] : H∞A%

. (32)

If 1 ∈ {Σ} then the intersection is empty (i.e. % = 0). Decomposition (32) may be
redundant but no algorithm is known to make it irredundant (see section 3.7). However, it is
possible to decompose each differential ideal [Ai] : H∞Ai

as an intersection of prime differential
ideals (thanks to Theorem 10). Decomposition (32) provides also a decomposition of the
solution set of {Σ} as the union of the solution sets of the differential ideals [Ai] : H∞Ai

.

Theorem 12 Decomposition (32) permits to decide membership to the perfect differential
ideal {Σ} hence to decide whether Σ admits formal power series solutions. However, it does
not permit to decide regularity modulo {Σ}.

Proof A differential polynomial f belongs to {Σ} if and only if it belongs to each differential
ideal [Ai] : H∞Ai

for 1 ≤ i ≤ %. Membership testing to these differential ideals is algorithmic
by Theorem 11.

If % = 0 then 1 ∈ {Σ} and Σ has no formal power series solution. If % > 0 then all
regular differential chains Ai have formal power series solutions (section 3.8) and each of
these formal power series is a solution of {Σ} (see Theorem 4).

Though it is possible to decide regularity modulo a differential ideal defined by a regular
differential chain (Theorem 11), decomposition 32 is not sufficient for deciding regularity
modulo {Σ} because it may contain redundant components (see section 3.7). �

Last observe that membership testing to differential ideals was proved to be undecidable
in general [13]. Membership testing to differential ideals of the form [Σ] with Σ finite is
undecidable also whenever the number of derivations is greater than or equal to 2 [29].
Membership testing to ordinary differential ideals of the form [Σ] with Σ finite is still open.
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Description of the algorithm. The following text is much inspired from the descriptions
of the RosenfeldGroebner algorithm given in [7, 2].

This algorithm proceeds in two main steps. In the first step, it computes finitely many
regular differential systems of the form A = 0, S 6= 0 where A is a coherent, partially
autoreduced triangular set of differential polynomials and S is a set of differential polynomials
partially reduced with respect to A containing the initials and the separants of A.

A regular differential system A = 0, S 6= 0 defines the differential ideal [A] : S∞ which
is the ideal of the differential polynomials which vanish over all the solutions of the system.
Theorems 9 and 10 hold for the differential ideal [A] : S∞ though A is not yet necessarily a
regular differential chain. The main difference is that it may happen that 1 ∈ [A] : S∞ i.e.
that A = 0, S 6= 0 has no solution but this can be decided by determining if 1 ∈ (A) : S∞,
thanks to Rosenfeld’s Lemma.

The perfect differential ideal {Σ} is the intersection of the perfect differential ideals
defined by the regular differential systems produced at the first step.

In the second step, the algorithm transforms each regular differential system A = 0, S 6= 0
into finitely many regular differential chains (none if the regular differential system has no
solution). The intersection of the perfect differential ideals defined by the regular differential
chains is equal to the perfect differential ideal [A] : S∞.

Let us sketch the algorithm, called regCharacteristic, for the second step [8]. Its principle
consists in testing whether A is a squarefree regular chain by testing the regularity of the
initials and separants of A, processing the elements of A from bottom up and implementing
the regularity test of Theorem 11. This being done, A is proved to be a regular differential
chain and the regularity of all the elements of S can be verified. Every regular element
of S which is proved regular is discarded. Of course, it may happen that some differential
polynomial is proved to be a zero divisor at some stage. In that case, a factorization of some
pi ∈ A is discovered. This exhibited factorization permits to split the current system into
two branches. If one of the factors of pi divides an element of S then the corresponding
branch is discarded. The regularity test can be achieved by means of resultant computations
(Theorem 11) however this test “as is” does not provide the factorization. A possibility
consists in using a recursive variant of the extended Euclidean algorithm (or of algorithms
for computing subresultants) such as the one provided in [3, Appendix].

An ordinary differential example. The differential polynomial ring is F{y, z}. See
Figure 2.

(Σ1) ÿ + z = 0, ẏ2 + z = 0.

The ranking is such that every derivative of y is greater than any derivative of z (the differen-
tial indeterminate y is eliminated). The leading derivatives of the two differential polynomials
are ÿ and ẏ. The first differential polynomial is not partially reduced with respect to the
first one. The partial remainder computation is carried out in (4), page 7. This computation
amounts to differentiate the second equation, giving

2 ẏ ÿ + ż = 0
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then replace ÿ by −ż/(2 ẏ) in the first one, giving

− ż

2 ẏ
+ z = 0.

Then replace the first equation by the numerator of the reduced equation, which is the partial
remainder g, provided that the separant 2 ẏ, which is the differential polynomial h of (4),
is different from zero. The solutions of (Σ1) which annihilate the separant are considered
separately. We obtain a splitting3 of (Σ1) into

(Σ2) ÿ + z = 0, ẏ2 + z = 0, ẏ = 0

and
(Σ3) 2 z ẏ − ż = 0, ẏ2 + z = 0, ẏ 6= 0.

Consider (Σ2). Simplify the second equation using the third one. One gets z = 0. This
system thus simplifies as a regular differential system

(Σ4) ẏ = 0, z = 0

whose solutions are y(x) = c and z(x) = 0 where c is an arbitrary constant. This system is a
regular differential chain. Consider now (Σ3). The two first equations have the same leading
derivative: it is not triangular. To get a triangular set, apply Ritt’s reduction algorithm
which informally amounts to proceed as follows: replace ẏ by ż/(2 z) in the second equation,
giving (

ż

2 z

)2

+ z = 0.

Replace the second equation by the numerator of the reduced equation, provided that z 6= 0
and consider separately the solutions of (Σ3) which annihilate z. One obtains a splitting
of (Σ3) into two systems

(Σ5) 2 z ẏ − ż = 0, ẏ2 + z = 0, z = 0, ẏ 6= 0

and
(Σ6) 2 z ẏ − ż = 0, ż2 + 4 z3 = 0, ẏ 6= 0, z 6= 0.

Consider (Σ5). The equation z = 0 reduces to zero the first one, by Ritt’s reduction algo-
rithm. It also permits to simplify the second equation. We then get a system

(Σ7) ẏ2 = 0, z = 0, ẏ 6= 0

which is a regular differential system. The regCharacteristic algorithm may then be applied
over it. By a gcd computation between the equation ẏ2 = 0 and the inequation ẏ 6= 0, it
concludes that this system has no solution. Let us discard it and come back to (Σ6). It is

3It is actually not the same type of splitting as in regCharacteristic because it does not correspond to a
factorization.
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not yet a regular differential system because the separant 2 ż of the second equation does
not belong to the inequation set. This is solved by splitting (Σ6) into two systems which
separate the solutions of (Σ6) which satisfy ż = 0 from the ones which satisfy ż 6= 0. One
gets two systems

(Σ8) 2 z ẏ − ż = 0, ż2 + 4 z3 = 0, ż = 0, ẏ 6= 0, z 6= 0.

(Σ9) 2 z ẏ − ż = 0, ż2 + 4 z3 = 0, ż 6= 0, ẏ 6= 0, z 6= 0.

Argumenting as for (Σ7), we see that (Σ8) has no solution. The system (Σ9) (Σ9) is a regular
differential system. Its set of equations actually form a regular differential chain. We may
then discard the inequation ẏ 6= 0 which is not an initial or a separant of the chain. The
solutions of (Σ9) actually are y(x) = c1− ln(x+ c2) and z(x) = −1/(x+ c2)2 where c1 and c2

are arbitrary constants.
In summary, every solution of (Σ1) is either a solution of (Σ4) or of (Σ9). Conversely, the

solutions of (Σ4) and (Σ9) are solutions of (Σ1). Therefore,

{ÿ + z, ẏ2 + z} = [ẏ, z] ∩ [2 z ẏ − ż, ż2 + 4 z3] : (z ż)∞ .

Figure 2: The splitting tree of the ordinary differential example

A partial differential example. The differential polynomial ring is F{y, z} endowed
with two derivations δx and δt. See Figure 3.

The three differential polynomials of Σ1 are denoted f1, f2 and f3.

(Σ1) y2
t − 4 y = 0, yx − zx y = 0, zt = 0.

The ranking is

· · · > yxx > yxt > ytt > zxx > zxt > ztt > yx > yt > zx > zt > y > z.
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The leading derivatives are thus yt, yx and zt. The system is partially autoreduced and
triangular. Is it coherent ? The two first equations form a critical pair {f1, f2}. To form the
∆-polynomial, differentiate the first equation by δx

δx f1 = 2 yt yxt − 4 yx.

Differentiate the second equation by δt and multiply it by the separant 2 yt of the first
equation, giving

2 yt δt f2 = 2 yt(yxt − zxt y − zx yt).

Subtract,
∆(f1, f2) = 2 y yt zxt + 2 y2

t zx − 4 yx.

The full reduction of this ∆-polynomial by (Σ1) is detailed in (6), page 8. One gets a fourth
equation f4 = y zx = 0 (the full remainder) which is inserted in the system

(Σ2) y2
t − 4 y = 0, yx − zx y = 0, zt = 0, y zx = 0.

The insertion of f4 implies that the critical pair {f1, f2} is now solved. However, a new
critical pair {f3, f4} is generated. Before forming the new ∆-polynomial, the system is split
on the initial of f4. One then considers separately the solutions of (Σ2) which annihilate y
from the ones which do not. One gets

(Σ3) y2
t − 4 y = 0, yx − zx y = 0, zt = 0, y zx = 0, y = 0

and
(Σ4) y2

t − 4 y = 0, yx = 0, zt = 0, zx = 0, y 6= 0.

The system (Σ3) simplifies to
zt = 0, y = 0

which actually is a regular differential chain. Its solutions are y(x, t) = 0 and z(x, t) = ϕ(x)
where ϕ(x) is an arbitrary function of x.

Consider (Σ4). The critical pair {f1, f2} is solved. The critical pair {f3, f4} is solved also
since ∆(f3, f4) = 0. This system is thus coherent. It is not yet a regular differential system
because the separant yt of f1 does not belong to the inequation set. One then splits (Σ4)
into

(Σ5) y2
t − 4 y = 0, yx = 0, zt = 0, zx = 0, yt = 0, y 6= 0

and
(Σ6) y2

t − 4 y = 0, yx = 0, zt = 0, zx = 0, yt 6= 0, y 6= 0.

System (Σ5) has no solution: the new equation yt = 0 permits to simplify the first one
and obtain y = 0, which is incompatible with the inequation y 6= 0. System (Σ6) is a
regular differential system. Its set of equations even for a regular differential chain. The
regCharacteristic algorithm permits to prove that the inequation y 6= 0, which is not an
initial or a separant of the chain, is regular modulo the differential ideal defined by the
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chain. It is thus discarded. The solutions of (Σ6) are y(x, t) = (t + c1)2 and z(x, t) = c2

where c1 and c2 are arbitrary constants.
In summary, every solution of (Σ1) is a solution of (Σ3) or (Σ6), and conversely. Thus

{y2
t − 4 y, yx − zx y, zt} = [y, zt] ∩ [y2

t − 4 y, yx, zt, zx] : (yt)
∞ .

Figure 3: The splitting tree of the partial differential example

3.10 Classical Properties of The Resultant

This section, borrowed from [10], provides generalizations of basic properties of the usual
resultant of two polynomials. These generalizations aim at covering cases which are usually
not considered, such as one of the two polynomials being zero. The case of two polynomials
of degree less than or equal to zero i.e. two constant polynomials is however excluded. The
results are used in the next section for proving Theorem 8.

Let f and g be two polynomials of R[x], where R is a unitary ring of characteristic zero:

f = am x
m + · · ·+ a1 x+ a0 , g = bn x

n + · · ·+ b1 x+ b0 .

If f or g is zero, then the resultant of f and g is taken to be zero. Assume that f and g
are nonzero and that at least one of them has positive degree. Then, the resultant of f
and g is the determinant of the Sylvester matrix S(f, g) of f and g, which has dimensions
(m+ n)× (m+ n) and rows, from top down xn−1 f, . . . , x f, f, xm−1 g, . . . , x g, g. See [1, 4.2,
page 105].

Lemma 5 Assume f is nonzero and n = 0 (i.e. g = b0). Then res(f, g, x) = gm. In
particular, if m = 1 then res(f, g, x) = g.

Proof The Lemma is clear if g = 0. Otherwise, expand the determinant of the Sylvester
matrix, which is diagonal. �

Lemma 6 Assume R is a domain and let F denote its fraction field. Let f and g be two
polynomials of R[x], not both zero. Then res(f, g, x) = 0 if and only if f and g have a
positive degree common factor in F [x].
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Proof The Lemma is clear if f or g is zero. Otherwise, see [1, 4.2, Proposition 4.15, page
106]. �

Remark: if f and g have a positive degree common factor in F [x] then f is a zerodivisor
modulo (g) in R[x]. Indeed, clearing denominators, we see that there exist nonzero a, b ∈ R
and polynomials f ′, g′, h ∈ R[x] such that a f = h f ′, b g = h g′ and deg(h) > 0. Since R
is a domain, every nonzero element of the ideal (g) has degree greater than or equal to
deg(g) and deg(h) + deg(g′) = deg(g). Thus deg(g′) < deg(g) and a g′ /∈ (g). However,
f a g′ = h f ′ g′ = b f ′ g belongs to (g). Thus f is a zerodivisor modulo (g).

Lemma 7 Let R be a ring. If f and g are nonzero polynomials of R[x] then there exist two
polynomials u, v ∈ R[x] with deg(u) < n and deg(v) < m such that res(f, g, x) = u f + v g.

Proof See [1, 4.2, Proposition 4.18, page 108]. �

The following Lemma generalizes [1, 4.2, Proposition 4.20, page 109] and deserves a proof.

Lemma 8 (specialization property of the resultant)
Let f, g be two polynomials of R[x]. Let φ : R → S be a ring homorphism such that

φ(am) 6= 0. Extend φ to a ring homomorphism R[x] → S [x]. Denote t = deg(φ(g), x).
Then φ(res(f, g, x)) = φ(am)n−t res(φ(f), φ(g), x).

Proof If g is zero, then so is φ(g) and both resultants are zero. Assume g nonzero.
Developing the determinant of S(f, g) w.r.t. its last row, we see that any monomial of the
resultant admits a coefficient of g as a factor. Thus, if φ(g) is zero, i.e. if φ maps all the
coefficients of g to zero, then res(f, g, x) = 0 and the Lemma holds.

Assume g and φ(g) are nonzero. If the ring homomorphism φ, which does not anni-
hilate am, does not annihilate bn either, then φ(S(f, g)) = S(φ(f), φ(g)) and the Lemma
is proved. Assume deg(φ(g)) = t < n. Then the Sylvester matrix S(φ(f), φ(g)) ap-
pears as the (m + t) × (m + t) submatrix of φ(S(f, g)) (Fig. 4) at the bottom-right cor-
ner. Developing the determinant of φ(S(f, g)) w.r.t. its n − t first columns, we see that
φ(res(f, g, x)) = φ(am)n−t res(φ(f), φ(g), x). �

3.11 Proof of the Equivalence Theorem on Regular Chains

In this section, which aims at proving Theorem 8, A = {p1, . . . , pr} is a triangular set
of R = F [x1, . . . , xr, t1, . . . , tm]. The initials of the elements of A are i1, . . . , ir, their product
is IA and the ideal defined by A is a = (A) : I∞A . Similarly, one defines A′ = {p1, . . . , pr−1},
R ′ = F [x1, . . . , xr−1, t1, . . . , tm] so that R = R ′[xr] and a′ = (A′) : I∞A′ is an ideal of R ′.

Let ϕ denote the canonical ring homomorphism R → (R ′/a′)[xr] and consider some
polynomial f ∈ a. Then, by the definition of a, there exist non negative integers α1, . . . , αr
and polynomials q1, . . . , qr ∈ R such that

iα1
1 · · · iαr

r f = q1 p1 + · · ·+ qr pr . (33)
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φ(S(f, g)) =



φ(am) · · · · · · · · · · · · φ(a0) 0 · · · · · · 0

0
. . . . . . . . .

...
...

. . . φ(am) · · · · · · · · · · · · φ(a0) 0 0
...

. . . . . . . . . 0
0 · · · · · · 0 φ(am) · · · · · · · · · · · · φ(a0)
0 0 φ(bt) · · · · · · · · · φ(b0) 0 · · · 0

0
. . . . . . . . . . . .

...
...

. . . . . . . . . 0
0 · · · · · · · · · 0 φ(bt) · · · · · · · · · φ(b0)



}
n− t t

m

Figure 4: The image by φ of the Sylvester matrix S(f, g).

In (R ′/a′)[xr], this formula becomes

ϕ(i1)α1 · · ·ϕ(ir)
αr ϕ(f) = ϕ(qr)ϕ(pr) . (34)

The images ϕ(i1), . . . , ϕ(ir−1) of the r− 1 first initials are regular elements of R ′/a′ since a′

is saturated by them. Assume now that A is a regular chain. Then the image ϕ(ir) of ir
is regular also and we have deg(pr, xr) = deg(ϕ(pr)) and either ϕ(f) = 0 or deg(ϕ(f)) ≥
deg(ϕ(pr)).

The next proposition4 proves 1⇒ 3.

Proposition 18 Let A be a regular chain. Then f ∈ a if and only if prem(f, A) = 0.

Proof The implication ⇐ from the right to the left is clear. Let us prove the converse
inclusion ⇒ by induction on r. Consider some f ∈ a. Basis: if r = 1 then the proposition
is clear by considering the degrees in xr. General case: assume r > 1 and the proposition
holds for A′. Denote ϕ the ring homomorphism R → (R ′/a′)[xr]. Since f ∈ a we have
prem(f, pr, xr) ∈ a. Applying (33) and (34) to this pseudoremainder, we have

ϕ(i1)α1 · · ·ϕ(ir)
αr ϕ(prem(f, pr, xr)) = ϕ(qr)ϕ(pr)

with deg(ϕ(prem(f, pr, xr))) < deg(ϕ(pr)). Thus ϕ(prem(f, pr, xr)) = 0 which means that
prem(f, pr, xr) ∈ a′R i.e. all the coefficients of the pseudoremainder belong to a′. By the
induction hypothesis, prem(prem(f, pr, xr), A

′), which is equal to prem(f, A), is equal to
zero. �

Theorem 6 states that the following theorem actually holds for general triangular sets.
The restricted version we give here relies on much more elementary arguments.

4The authors would like to dedicate this proof to Marc Moreno Maza, for his 60th birthday!
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Proposition 19 (unmixedness property of ideals defined by regular chains)
Let A be a regular chain and p be an associated prime ideal of a. Then dim p = m and

p ∩F [t1, . . . , tm] = (0).

Proof Let f ∈ R be a polynomial and h be a nonzero element of F [t1, . . . , tm]. Then
prem(f, A) 6= 0 if and only if prem(h f,A) 6= 0. Then f ∈ a if and only if h f ∈ a by
Proposition 18. Then h is regular modulo a which means that p∩F [t1, . . . , tm] = (0). Thus
dim p ≥ m. The initials of the elements of A are regular modulo a since a is saturated by
them. Thus x1, . . . , xr are algebraically dependent over t1, . . . , tm modulo p. Thus dim p ≤ m.
Combining both inequality, we conclude dim p = m. �

The above proposition implies in particular that all the associated prime ideals of a are
isolated. It is a key to detect associated prime ideals of a, hence zerodivisors modulo a. The
argument is: if p is a prime ideal containing a and dim p = m then p is an associated prime
ideal of a (for if an associated prime ideal p̄ where located between a and p, it would have
dimension strictly greater than m: a contradiction with Proposition 19).

A “well-known” theorem [17, chap. 0, 16, Prop. 11] states that, if p has dimension m
and f /∈ p then every isolated associated prime ideal of (p, f) has dimension m − 1. Thus
if p′ is a prime ideal of R ′ has dimension m and pr ∈ R ′[xr] does not belong to p′R ′[xr] then
every isolated associated prime ideal of (p′, pr) in R ′[xr] has dimension m (one more variable,
one more polynomial: the dimension remains the same). In general, the ideal (p′, pr) may
very well be the unit ideal (take p′ = (x1) and pr = x1 xr + 1). However, if deg pr > 0 (our
case) and the initial ir of pr does not belong to p′ (the case of regular chains) then (p′, pr)
is a proper ideal. All these arguments, rewritten more accurately, lead to the following
proposition.

Proposition 20 (associated prime ideals of ideals defined by regular chains)
Let A be a regular chain. Then a and a′ are proper ideals. Given any associated prime

ideal p of a, p∩R ′ is an associated prime ideal of a′. Conversely, given any associated prime
ideal p′ of a′, there exists an associated prime ideal p of a such that p ∩R ′ = p′.

Proof The proof is by induction on r.
Basis: the case r = 1. Then a′ = (0) is proper. It has a single associated prime ideal

p′ = (0). The ideal a = (p1) : i∞1 is proper too. Its associated prime ideals, are the prime
ideals generated by the irreducible factors of p1 with positive degree in x1. The proposition
thus holds for r = 1.

General case: r > 1. By induction hypothesis, a′ is proper. Let p′ ⊂ R ′ be any of its
associated prime ideals. Since A is a regular chain, the initial ir of pr does not belong to p′.
Thus the ideal (p′, pr) : I∞A is proper hence: 1) the ideal a si proper too since the inclusion
a ⊂ (p′, pr) : I∞A holds; and 2) the associated prime ideals of (p′, pr) : I∞A have the same
dimension as that of a (Proposition 19) hence are associated prime ideals of a. Conversely,
consider any associated prime ideal p of a. We have a′ ⊂ a ∩R ′ ⊂ p ∩R ′. Since the prime
ideal p∩R ′ has the same dimension as the associated prime ideals of a′, it is one of them. �

The two following propositions prove 1⇒ 4.
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Proposition 21 Let A be a regular chain. If f is a zero divisor modulo a then res(f, A) = 0.

Proof Assume f is a zero divisor modulo a i.e. that f belongs to some associated prime
ideal p of a. Then res(f, A) ∈ p by Lemma 7. Since res(f, A) ∈ F [t1, . . . , tm], it is equal to
zero by Proposition 19. �

Let us illustrate the last paragraph of the following proof with an example. Take
A = {(x2 − x1) (x2 + x1), x1 − 1} and f = x2 − 1. Notice f is a zero divisor modulo a.
Take p = (x2 + x1, x1 − 1). Then p′ = (x1 − 1) and the homomorphism ϕ evaluates x1

at 1. Then gcd(ϕ(pr), ϕ(f)) = gcd((x2 + 1) (x2 − 1), x2 − 1) = g = x2 − 1 and ϕ−1(g) is the
ideal (x2 − x1, x1 − 1). It is equal to its unique associated prime ideal p̄ which has the same
dimension as p and is an associated prime ideal of a.

Proposition 22 Let A be a regular chain. If f is regular modulo a then res(f, A) 6= 0.

Proof Assume f is regular modulo a. Let p be an associated prime ideal of a. Let p′ be the
prime ideal p∩R ′ and ϕ denote the ring homomorphism which maps R to (R ′/p′)[xr]. It is
sufficient to prove that res(f, pr, xr) /∈ p i.e. that ϕ(res(f, pr, xr)) 6= 0 for, by Proposition 20,
the resultant res(f, pr, xr) is then regular modulo a′.

Since A is a regular chain, ir /∈ p′ (which is an associated prime ideal of a′ by Propo-
sition 20 again) hence ϕ(ir) 6= 0 and there exists some α ≥ 0 such that ϕ(res(f, pr, xr)) =
ϕ(ir)

α res(ϕ(f), ϕ(pr)) by Lemma 8. It is thus sufficient to prove that res(ϕ(f), ϕ(pr)) 6= 0.
Let us assume res(ϕ(f), ϕ(pr)) = 0 and seek a contradiction. The ring R ′/p′ is a domain

thus ϕ(f) and ϕ(pr) have a positive degree common factor g in Fr(R ′/p′)[xr] by Lemma 6.
Thus ϕ(f) is a zerodivisor modulo (ϕ(pr)) in (R ′/p′)[xr] (see the remark following Lemma 6).
Thus ϕ(f) belongs to some associated prime ideal of (ϕ(pr)). This prime ideal has the form
ϕ(p̄) where p̄ is a prime ideal of R such that p̄ ∩R ′ = p′. The ideal p̄ contains pr, does not
contain ir hence dim p̄ = dim p and p̄ is an associated prime ideal of a. Since f ∈ p̄, we see
that f is a zero divisor modulo a. This contradiction with the regularity assumption of f
proves the proposition. �

The next proposition is an easy corollary to the former one. It proves 2⇒ 1.

Proposition 23 Let A be a triangular set.
If res(i`, A) 6= 0 for each 2 ≤ ` ≤ r then A is a regular chain.

Proof The proof is by induction on r. Basis: if r = 1 the proposition is clear since any
singleton is a regular chain. General case: assume r > 1 and the proposition holds for A′.
Assume res(i`, A) 6= 0 for each 2 ≤ ` ≤ r. Then by induction hypothesis, A′ is a regular
chain. Since res(ir, A) 6= 0 we have res(ir, A

′) 6= 0 by Lemma 5 hence ir is regular modulo a′

by Proposition 22. Thus A is a regular chain. �

The next proposition proves 3⇒ 1.

Proposition 24 If prem(f, A) = 0 for each f ∈ a then A is a regular chain.
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Proof We assume A′ is a regular chain but A is not and we conclude that there exists some
f ∈ a such that prem(f, A) 6= 0. The initial ir must then be a zero divisor modulo a′. Thus
there exist some f ∈ R and some α > 0 such that prem(f, A′) 6= 0 and prem(iαr f, A

′) = 0, by
Proposition 18 applied to A′. Since deg(ir, xr) = 0 we may assume without loss of generality
that deg(f, xr) = 0. Thus prem(f, A) 6= 0. However f ∈ a. �

Last, observe that 4 ⇒ 2 is straightforward: since a is saturated by the initials of the
elements of A, these initials are regular modulo a and, assuming 4, their resultant w.r.t A is
nonzero. This last implication achieves the proof of Theorem 8.

3.12 Proof of the Unmixedness Theorem and Lazard’s Lemma

This section is borrowed from [10]. It provides proofs for two important Theorems which do
not appear in [17].

In this section, A = {p1, . . . , pr} is a triangular set of R = F [x1, . . . , xr, t1, . . . , tm]. The
initials of the elements of A are i1, . . . , ir and their separants are s1, . . . , sr.

An ideal of R is said to be unmixed if all its associated prime ideals have the same
dimension [31, chap. VII, sect. 7, page 196].

The following Theorem is a restatement of our Theorem 6. It already appeared in [9,
Theorem 1.6]. Its main ingredient is Macaulay’s unmixedness Theorem, whose importance
in the theory of triangular sets was first pointed out by [22, 23]. In the particular case of h
being the product of the initials of A, it is [14, Theorem 4.4].

Theorem 13 (unmixedness property of ideals defined by triangular sets)
Let A be a triangular set, h denote either the product of its initials or the product of its

separants and a = (A) : h∞. Assume a is proper.
Then, the ideal a is unmixed. Moreover, if p is an associated prime ideal of a then

dim p = m and p ∩F [t1, . . . , tm] = (0).

Denote ϕ : R → h−1 R the localization at h. With the terminology of Zariski and
Samuel, h−1 R = RM where M denotes the multiplicative family generated by h. Extended
and contracted ideals [31, chap. IV, sect. 8] are taken with respect to ϕ and the ideal a =
(A) : h∞ is a contracted ideal i.e. a = aec. The extended ideal ae is the ideal generated by
A/1 = {p1/1, . . . , pr/1} in h−1 R.

Let us now introduce the ring R ′ = R[xr+1], the polynomial pr+1 = hxr+1 − 1 and
the ideal a′ = (A, pr+1) of R ′. Let π : R ′ → R ′/(pr+1) denote the quotient of R ′ by the
ideal (pr+1). These two constructs are related by the ring isomorphism: h−1 R ' R ′/(pr+1).
Indeed, every element of h−1 R is a fraction f/hd with f ∈ R and corresponds to the
equivalence class of f xdr+1 modulo (pr+1).

The two ideals ae and π a′ are the same ideal, since they share a generating family: A.

Lemma 9 The ideal a′ is proper.
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Proof Since a = aec is assumed to be proper, so is ae. Since π a′ = ae the ideal a′ is proper
also. �

The next Proposition already appears in [11] or as [16, Theorem 3.1], in the case of a =
(A) : I∞A .

Proposition 25 We have dim a′ = m. If p′ is an isolated prime ideal of a′ then dim p′ = m
and p′ ∩F [t1, . . . , tm] = (0).

Proof The ideal a′ is proper by Lemma 9. Applying [31, chap. VII, sect. 7, Theorem 22,
page 196] (the principal ideal theorem) with5 (R, r, s,A) = (R ′, r +m+ 1, r + 1, a′), we see
that every isolated prime ideal of a′ has dimension ≥ m. Since the dimension of an ideal is
the maximum of the dimensions of its associated prime ideals, we see that dim a′ ≥ m.

We now claim that dim a′ ≤ m. Let p′ be an associated prime ideal of a′ and consider
some polynomial pi ∈ A. Dropping the index i for legibility, let us write

p = ad x
d + ad−1 x

d−1 + · · ·+ a1 x+ a0 .

Because of the triangular nature of A, the coefficients

ad, ad−1, . . . , a0 ∈ F [t1, . . . , tm, x1, . . . , xi−1] .

We have p ∈ p′ and, depending on the definition of h, either

ad /∈ p′ , or d ad x
d−1 + (d− 1) ad−1 x

d−2 + · · ·+ a1 /∈ p′ .

This implies that, in R ′/p′, the polynomial p cannot become a trivial relation: in the first
case, the degree of p cannot decrease while, in the second, it cannot decrease down to zero.
Therefore x = xi must be algebraic over t1, . . . , tm, x1, . . . , xi−1 in R ′/p′. Putting this remark
in an inductive argument, we see that x1, . . . , xr are algebraic over t1, . . . , tm in R ′/p′. Thus
dim p′ ≤ m.

Combining both inequalities, we have dim p′ = m for all isolated prime ideals of a′ hence
dim a′ = m. Considering again the arguments developed in the claim, we immediately see
also that, if p′ is an isolated prime of a′ then p′ ∩F [t1, . . . , tm] = (0). �

Proposition 26 The ideal a′ is unmixed. If p′ is an associated prime ideal of a′ then
dim p′ = m and p′ ∩F [t1, . . . , tm] = (0).

Proof By Proposition 25 and [31, chap. VII, sect. 13, Theorem 26, page 203] (Macaulay’s
unmixedness Theorem) with (R,A, n, h) = (R ′, a′,m+ r + 1, r + 1). �

We are now ready to prove Theorem 13. Recall that a′ is supposed to be proper.
5The left-hand side symbols correspond to the book notations. The right-hand side ones correspond to

our notations.
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Proof Let a′ = ∩%i=1q
′
i be an irredundant primary representation of a′ and p′i =

√
q′i.

Let us apply [31, chap. IV, sect. 5, Remark concerning passage to a residue class ring,
page 213] with (R, a, b) = (R ′, a′, (pr+1)). We see that π a′ = ∩%i=1(π q′i) is an irredundant
primary representation of π a′ and that the π p′i are the associated prime ideals of π a′.

Using Proposition 26 and the fact that the π ring homomorphism removes one indetermi-
nate and one polynomial, one sees that each prime ideal π p′ (dropping the index i), satisfies
dimπ p′ = m and (with a slight abuse of notation) π p′ ∩F [t1, . . . , tm] = (0).

Recall the ring isomorphism between h−1 R and R ′/(pr+1). We have a = aec and ae =
π a′. Let us apply [31, chap. IV, sect. 10, Theorem 17, page 225] with (R, a,M) = (R, a, {hd |
d ≥ 0}). Then a = ∩%i=1(π q′i)

c is an irredundant primary representation of a. A polynomial f
belongs to some (π q′)c (dropping the index i) if, and only if, the fraction f/1 ∈ π q′. Thus
dim(π p′)c = m and (π p′)c ∩F [t1, . . . , tm] = (0).

The ideal a is thus unmixed. Its associated prime ideals all have dimension m and do
not contain any nonzero element of F [t1, . . . , tm]. �

The following Theorem is a restatement of our Theorem 7. It is known as Lazard’s
Lemma. See [6, Lemma 2], [7, Section 2], [9, Theorem 2.1] and [22, 23]. It appears also
as [14, Theorem 7.5]. Variants of this Theorem also appear in earlier works such as [19,
Proposition 5.1] and [21, Theorem III.5].

Theorem 14 (Lazard’s Lemma)
Let A be a triangular set of R. The ideal (A) : S∞A is radical.

Proof Denote a = (A) : S∞A in R and a0 = (A) : S∞A in R0 = F (t1, . . . , tm)[x1, . . . , xr].
To prove that a is radical, it is sufficient to prove that the total ring of fractions of R/a,
denoted Fr(R/a), does not involve any nilpotent element. Since a direct product (or sum)
of fields does not involve any nilpotent element, it is sufficient to prove that Fr(R/a) is
isomorphic to such a ring. Fr(R/a) is equal to (M/a)−1 R/a where M is the multiplicative
family of the elements of R which are regular in R/a. By Theorem 13, the nonzero elements
of F [t1, . . . , tm] belong to M . Therefore, inverting these elements first, we conclude that
Fr(R/a) ' Fr(R0/a0).

It is thus sufficient to prove that R0/a0 is a direct sum of fields. This we do by induction
on r. This ring can be constructed incrementally as Sr defined by:

S0 = F (t1, . . . , tm) , Si = Si−1[xi]/(pi) : s∞i .

The basis r = 0 is trivial.
Assume Sr−1 is a direct sum of fields F1⊕· · ·⊕F%. Then Sr is isomorphic to the direct

sum (1 ≤ j ≤ %) of the rings Fj[xr]/(pr) : s∞r .
Thus, in Fj[xr], the ideal (pr) : s∞r is generated by the product of the irreducible simple

factors of pr. It is thus the intersection of the maximal ideals m` generated by these factors.
According to the Chinese Remainder Theorem [31, chap. III, sect. 13, Theorem 32, page
178], Fj[xr]/(pr) : s∞r is isomorphic to the direct sum of the fields Fj[xr]/m`. Since direct
sums are associative, the ring Sr itself is a direct sum of fields. �
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