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1. Differential elimination methods

In the course on differential algebra, we have seen the computation of regular differential
chains for (not necessarily prime) differential ideals. Let us give a brief summary of the
latter and introduce inequalities instead of using saturation.

Let us denote by F a differential field, possibly involving the independent variables
x = (x1, . . . , xm) such as it is the case for F = C(x), and let F{u1, . . . , un} =: F{u} be
the differential polynomial ring involving the differential operators ∂

∂xi
. Let U ⊆ F{u} be

a differential ideal. Then there are prime differential ideals Pi such that

U = P1 ∩ . . . ∩Pρ.

It is an unsolved problem to find a minimal prime decomposition, i.e., find Pi such that
none of them is included in another prime component.

For any given set Σ ⊂ F{u}, there exist finitely many regular differential chainsA1, . . . , Aρ ⊂
F{u} such that

{Σ} = [A1] : H
∞
A1

∩ · · · ∩ [Aρ] : H
∞
Aρ

where H∞
Ai

contains the initials and separants of Ai and [Ai] denotes the differential ideal
generated by Ai.

In the following, we will call a perfect differential ideal U = [A] : H∞
A , given by a

single regular differential chain A, a characterizable ideal. Every perfect differential ideal
is characterizable. Let us note that the saturation with HA can be encoded by inequalities
HA ̸= 0 added to the equalities in A. These inequalities are thus always reduced w.r.t.
the equalities. The so-called Thomas decomposition, whose construction is very similar
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to the Rosenfeld-Gröbner algorithm besides replacing the triangularity of the system with
passiveness [11], decomposes the solution space as

Sol(U) =
⋃̇

i∈{1,...,ρ}
Sol(Ai),

where Ai are the regular differential chains in the Thomas decomposition consisting of
equalities and inequalities. Here the solution set, denoted by Sol, could be formal power
series (with a fixed expansion point), generic zeros, meromorphic functions etc. We will
use the set of generic zeros, which are defined for the prime components of U, or formal
power series centered at zero.

Example 1. The system {p = u2x1,x1
+ ux1 + ux2,x2 + ux2} simplifies to the Thomas de-

composition (w.r.t. ux1 >> ux2)

A1 = {u2x1,x1
+ ux1 + ux2,x2 + ux2 = 0, ux1 + ux2,x2 + ux2 ̸= 0},

A2 = {ux1,x1 = 0, ux1,x2,x2 + ux1,x2 = 0, ux1 + ux2,x2 + ux2 = 0}.

Exercise 2. Compute a regular (differential) chain of the parametric quadratic equation
a u2 + b u+ c = 0 by considering the system

{p = a u2 + b u+ c, a′, b′, c′} ⊂ C{a, b, c, u}.

Give the answer in terms of saturation or inequalities.

Theorem 3 (Nullstellensatz; cf. Theorem 4 in DA). Let U ⊊ F{u} be a radical differential
ideal. Then Sol(U) ̸= ∅. Moreover, if p ∈ F{u} and p(u(x)) = 0 for every u(x) ∈ Sol(U),
then p ∈ U.

Example 4. There is no Nullstellensatz for formal power series solutions with a fixed
expansion point. In order to see this, consider {p = xu′ − 1} which has the generic zero
u(x) = c+ log(x) which cannot be expanded as formal power series around zero.

2. Zero-testing

In this section, let us mainly focus on the ordinary case of one differential indeterminate
and denote F = C(x). Let u(x) ∈ C[[x]] be a formal power series. Then we call u(x)
differentially algebraic if there is p ∈ F{u} \ F such that p(u(x)) = 0. The corresponding
p is called the annihilator of u(x) and we may assume w.l.o.g. that Sp(u(x)) ̸= 0. If
p can be chosen in F [u] \ F , i.e. does not involve any derivatives, then u(x) is called
algebraic. Let us note that it is not necessary that u(x) is assumed to be a formal power
series (with non-negative integer exponents). In fact, already algebraic formal power series
might involve fractional exponents (sometimes also called formal Puiseux series). For
differentially algebraic series, typically logarithms and exponentials in x appear.

Proposition 5. The set of differentially algebraic formal power series form a ring closed
under composition, division and differentiation, if they are defined.

Proposition 6 (Proposition 2 in [12]). A formal power series u(x) ∈ C[[x]] is differentially
algebraic if and only if F{u(x)} has finite transcendence degree over F .

For uniquely representing a differentially algebraic formal power series, we have to specify
which of the roots of a the annihilator is chosen.

Example 7. The fomal series u(x) = 1+log(x) is not algebraic but differentially algebraic
with the annihilator p = xu′ − 1. For q = exp(u) − 1 we see that q(u(x)) ̸= 0 but the
conjugate root v(x) = log(x) fulfills q(v(x)) = 0.
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An often occuring case is when there are just exponentials or logarithms in u(x) involved.
Then the necessity of (algebraic) independence can often be shown by using the following
result.

Theorem 8 (Theorem 1 in [1]). Let u(x) ∈ C[[x]] have Q-linearly independent components.
Then the transcendence degree of Q(u(x), exp(u1(x)), . . . , exp(un(x))) (over Q) is greater
or equal to n+ rank(J (u(x))), where J denotes the Jacobian-matrix w.r.t. x, if and only
if u1(x)− u1(0), . . . , un(x)− un(0) are Q-linearly independent.

Example 9. Let u(x1, x2) = (x1 − x2, x1x2). Then u1(x) − u1(0), u2(x) − u2(0) are Q-
linearly independent. The Jacobian-matrix

J (u(x)) =

(
1 −1
x2 x1

)
has rank 2 such that Q(x1 − x2, x1x2, exp(x1 − x2), exp(x1x2)) has transcendence degree 4.
Thus, there is no algebraic relation among x1 − x2, x1x2, exp(x1 − x2) and exp(x1x2).

Exercise 10. Show that the logarithm log(1−x) is transcendental over the rational numbers
attached by exponentials of polynomials, i.e., over Q(x, exp(x), exp(x2), . . . , exp(xn)) for
every n ∈ N.
Is the logarithm log(1− x) differentially transcendental over Q(x)?

Zero-testing is particularly important for us when considering a regular differential chain
involving inequalities. In other words, there might be given an algebraic expression q ∈
F{u} and a differentially algebraic formal power series u(x) and we want to test whether
q(u(x)) = 0. There are several different approaches for this and we focus here on two of
them.

Structural relations. In some simple cases it is possible to relate all differentially algebraic
formal power series under consideration. In this case, we just have to check whether the
zero-test q is either among these relations or not. By using differential elimination for
instance, we can find structural relations as follows. Let A be a differential regular chain
and let q ∈ F{u}. If prem(q, A) = 0, then q vanishes at every zero of A.

Example 11. Let A = {p1 = u21 − x3, p2 = u52 − x3u1} and q = 8u′31 − 27u1. Then

prem(q, A) = 0 and every zero of A, namely u(x) = (±x3/2,±ζ · x9/10) where ζ5 = 1, is a
solution of q = 0.

Exercise 12. Show that the converse is not true by using the regular differential chain A
from Example 11 and finding q ∈ F{u} with prem(q,A) ̸= 0 such that there is u(x) ∈ C[[x]]
with A(u(x)) = q(u(x)) = 0.

2.1. Root separation bound. We now want to choose a given root and find particular
relations instead of structural relations which might be too general.

Let u(x) ∈ C[[x]] be differentially algebraic with annihilator p ∈ F{u}. There exists a
number ρ ∈ N such that for any v(x) ∈ C[[x]], u(x) ̸= v(x), with p(v(x)) = 0, it holds that
ordx(u(x)− v(x)) > ρ. The smallest such number ρ will be called the root separation of p
at u(x). It corresponds to the number of initial conditions that should be known in order
to determine u(x) in a unique way as a root of p.

Proposition 13 (Proposition 4 in [12]). There exists a bound ρp,u(x) on the root separation
of p at u(x) in terms of the coefficients, exponents and order of p.

Together with the result that for a given u ∈ C[[x]] and q ∈ C[x]{u} with ordx(q(u(x))) >
2ρq,u(x) and Sq(u(x)) ̸= 0, there exists a unique root v(x) ∈ C[[x]] of q with ordx(u(x) −
v(x)) > ρq,u(x), we obtain the following zero test.
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Algorithm 1 ZeroTest(q)

Input: u(x) ∈ C[[x]] with annihilator p ∈ F{u} and q ∈ F{u}
Output: true if q(u(x)) = 0 and false otherwise
1: If q ∈ C[x], return q = 0
2: If ZeroTest(Iq) then return ZeroTest(prem(q, Iq))
3: If ZeroTest(Sq) then return ZeroTest(prem(q, Sq))
4: If prem(q, p) ̸= 0 then return ZeroTest(prem(q, p))
5: Return ordx(q(u(x))) > 2ρq,u(x)

Exercise 14. Apply Algorithm 2.1 to u =
√
1 + x and

(1) q = 2uu′ − 1;
(2) q = 2uu′ − 1 + x10/1010;
(3) q = (2uu′ − 1)u′′2 − xu+ 1.

The above theoretical results and Algorithm 2.1 can be generalized to several given
u1, . . . , un by using differential elimination methods and an iterative root seperation bound.
Generalizations to q1, . . . , qm and the multivariate setting exist as well.

Zero-testing of power series involving parameters can be reduced to the case of several
unknown functions. The problem of trying to directly apply Algorithm 2.1 is that the zero-
bound ρ is in general not uniform in the parameters as it can be shown for the following
equation.

Exercise 15. Try to find a root-separation bound for p = xu′ − cu where c ∈ C is a
parameter.

2.2. Heuristic zero-testing. Zero-testing is a very asymmetric problem in the sense that
in order to show that q(u) ̸= 0 one just needs to find an order with a non-zero coefficient.
Exact zero tests are rather slow, so it is often preferable to use heuristic zero tests instead.
In particular, if a computation involves several zero-tests, one might first perform all zero-
tests heuristically and only if it passes, the exact zero-tests are used.

The most obvious heuristic zero test for a univariate differentially algebraic series is to
compute all coefficients up to a fixed order which is relatively efficient by using Newton’s
method or relaxed power series evaluation (see e.g. [2]).

In the multivariate case it is computationally preferable to reduce to zero-testing in the
univariate case. This works in most cases by considering for given u(x) ∈ F [[x]] the series
u(λ · x) for parameters λ ∈ Fm.

Exercise 16. Let u(x1, x2) = x1 + x2 − x1x2 and consider

(1) q = ux1ux2 + u− 1;
(2) q = u2x1

+ u− 1.

Check with the above method whether q(u(x)) = 0.

3. Counting solutions of differential equations

In this section, we want to give a measure on the solution set of differential systems.
First we start with purely algebraic systems.

A polynomial function ω : N → N is called a numerical polynomial. On the set of
numerical polynomials there is defined the total order ω1 ≤ ω2 iff ω1(ℓ) ≤ ω2(ℓ) for all
sufficiently large ℓ ∈ N.

Let U ⊂ F [u] be an (algebraic) prime ideal. Then the (algebraic) dimension of U is
defined as the transcendence degree of F(u)/U over F . This is computed by the elements
“under the staircase” of a Gröbner basis of U w.r.t. any chosen admissible ordering.
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Let us denote by Uℓ the elements of U or degree less or equal to ℓ ∈ N. Then the Hilbert
function is defined as

ΩU : N → N, ℓ 7→ dim(F(u)ℓ/Uℓ).

It is well-known that there exists a unique numerical polynomial ωU, the so-called Hilbert
polynomial, such that ΩU(ℓ) = ωU(ℓ) for sufficiently large ℓ ∈ N. Moreover, the degree of
ωU coincides with dim(U).

Example 17. The algebraic ideal U = ⟨u31, u1u2⟩ ⊂ Q[u1, u2], which is already given by the
Gröbner basis (w.r.t. any order) {u31, u1u2}, has the Hilbert function

ΩU(0) = 1,ΩU(1) = 3,ΩU(ℓ) = ℓ+ 3 for ℓ ≥ 2.

Thus, the Hilbert polynomial is ωU(ℓ) = ℓ+ 3 and dim(U) = 1.

We are going to replicate the approach and results of the algebraic case to the differential
case.

3.1. Differential dimension. In the proof of Proposition 16 (DA), we have seen how a
generic zero of a prime differential ideal P can be constructed. Recall that we make the
ansatz

ui(x1, . . . , xm) =
∑

θ=δe1 ···δem∈Θ
ci,θ(x1 − ζ1)

e1 · · · (xm − ζm)em

for an unspecified center point ζ and unknown coefficients ci,θ to which we assign iteratively
values in F . Note that this construction is independent of the representation of P and can
be performed also for non-prime differential ideals. The number of free coefficients ci,θ can
be seen as a measure for the dimension of the solution set. In the following, we will give
formal definitions for this observation.

Let U ⊆ F{u} be a differential ideal. We denote by U≤ℓ the elements of U of order less
or equal to ℓ. Then we define the map, by using the algebraic or Krull dimension and
considering u, u′, . . . as independent variables,

ΩU : N → N, ℓ 7→ dim(F{u}≤ℓ/U≤ℓ).

We call ΩU the differential dimension function of U.

Proposition 18. Let U be a characterizable differential ideal with corresponding regular
differential chain A with set of leading derivatives lead(A). Then, for every ℓ ∈ N ∪ {∞},

Θ{u}≤ℓ \Θ lead(A)≤ℓ = dim(F{u}≤ℓ/U≤ℓ).

Theorem 19 (Theorem 1.1 in [9]). Let U ⊆ F{u1, . . . , un} be a characterizable differential
ideal.

(1) There exists a numerical polynomial ωU ∈ Q[ℓ], called differential dimension poly-
nomial, with ΩU(ℓ) = ωU(ℓ) for sufficiently large ℓ ∈ N.

(2) 0 ≤ ωU(ℓ) ≤ n ·
(
ℓ+m
m

)
. In particular, deg(ωU) ≤ n and we can write ωU(ℓ) =∑m

i=1 ai ·
(
ℓ+i
i

)
for some ai ∈ Z.

(3) The coefficient am is the differential dimension and equal to the cardinality of the
differential transcendence basis of F{u1, . . . , un}/U.

(4) Let U ⊆ V ⊂ F{u} be another characterizable differential ideal (w.r.t. the same
ranking). Then ωU ≤ ωV. Moreover, U = V if and only if
• ωU = ωV;
• the set of leaders of the corresponding regular chains coincide; and
• the equations have the same degrees in their leaders.



TOPICS IN DIFFERENTIAL ALGEBRA 6

For differential ideals generated by algebraic polynomials, the differential dimension is
equal to the algebraic dimension. In the case of ordinary differential equations (m = 1),
ωU(ℓ) is affine-linear, i.e. of the form a1 ℓ+a0, and the differential dimension a1 is non-zero
if and only if no solution component ui can be chosen freely. This is the case if and only
if for every ui there is a derivative θiui appearing as leader in the corresponding regular
differential chain.

Let us now actually compute the differential dimension polynomial.

Proposition 20. The differential dimension polynomial and the differential dimension of
a characterizable differential ideal are independent of the the chosen orderly ranking and
regular differential chain.

For every v ∈ lead(A) we can associate a cone Cv in Θ{u1, . . . , un}\Θ lead(A) such that⋃̇
v∈lead(A)

Cv = Θ{u1, . . . , un} \Θ lead(A).

The set C = {Cv | v ∈ lead(A)} is called a Janet decomposition of A.

Theorem 21. Let U ⊆ F{u1, . . . , un} be a characterizable differential ideal with corre-
sponding regular differential chain A (w.r.t. an orderly ranking) and let C be a Janet
decomposition of A. Then

ωU(ℓ) = n ·
(
ℓ+m

m

)
−

∑
v∈lead(A)

(
dim(Cv) + ℓ− ord(v)

dim(Cv)

)
.

Example 22. In item (4) in Theorem 19, the second point in the reverse direction can be
neglected (it follows from the first point), but the third one can not. In order to see this,
let A1 = {u1} and A2 = {u21 − u1}. Then the differential ideals U = {A2} ⊊ V = {A1} are
characterizable with regular differential chains A2 and A1, respectively. The corresponding
differential dimension polynomials, however, are both constantly zero.

Example 23. The Burger’s equation p = ux1,x1 −ux2 −2uux1 defines a regular differential
chain (w.r.t. any ranking). By using Theorem 21, we obtain ω{p}(ℓ) = 2ℓ+ 1.

It is important to use an orderly ranking for the computation of A. Otherwise the
differential polynomial might not be the same for every choice of the regular differential
chain. For instance, in case of the Burger’s equation, if ux2 > ux1,x1 , then we would obtain
ω{p} = ℓ+ 1.

Exercise 24. Try a software-system of your choice to compute solutions of the Burger’s
equation. Does the output cover all solutions?

3.2. Differential counting polynomial. We now want to precisely count the formal
power series solutions of differential equations by using the algebraic counting polynomial
for the set of Taylor polynomials of degree ℓ for each ℓ ∈ N. The sequence of these algebraic
counting polynomials is called the differential counting function, and we seek to give them
by a closed formula in ℓ, the differential counting polynomial.

As we have seen in the course (DA), computing formal power series solutions of (systems
of) algebraic differential equations can be transformed to the problem of solving infinite
polynomial systems, possibly involving polynomial inequalities. Thus, we first want to
understand the (finite) algebraic case.

The algebraic counting polynomial can be directly read-off a Thomas decomposition by
considering the degrees of the leaders.



TOPICS IN DIFFERENTIAL ALGEBRA 7

Example 25. The algebraic ideal given by

p = u3 + (3v + 1)u2 + (3u2 + 2u)v + u3

has the Thomas decomposition (w.r.t. u > v)

A1 = {u3 + (3u+ 1)v2 + (3v2 + 2v)u+ v3 = 0, 27v3 − 4v ̸= 0},
A2 = {6u2 + (−27v2 + 12v + 6)u− 3v2 + 2v = 0, 27v3 − 4v = 0}.

System A1 implies that for every v-value in F , except the 3 solutions of 27v3 − 4v = 0,
there are 3 solutions (in F) of p = 0. For each exceptional solution, by considering A2, we
find 2 solutions. Hence, the algebraic counting polynomial is (∞− 3) · 3 + 3 · 2 = 3∞− 3.

No inequalities. The number of zeros of a given characterizable differential ideal U with a
regular differential chain A involving no inequalities is measured, similarly to the algebraic
case, as

CU : N → Z[∞], ℓ 7→
∏
i

deglead(A)(pi) · ∞ωU(ℓ)

where ∞ is a formal indeterminate of the polynomial ring Z[∞] which might be interpreted
as the cardinality of F .

Example. The Burger’s equation p = ux1,x1 − ux2 − 2uux1 has the differential counting

polynomial C{p}(ℓ) = ∞2ℓ+1.

Example 26. The incompressible Navier-Stokes equations are given by the differential
system Σ consisting of

p1 = ut + uux1 + vux2 + wux3 + px1 − ux1,x1 − ux2,x2 − ux3,x3 = 0,

p2 = vt + uvx1 + vvx2 + wvx3 + px2 − vx1,x1 − vx2,x2 − vx3,x3 = 0,

p3 = wt + uwx1 + vwx2 + wwx3 + px3 − wx1,x1 − wx2,x2 − wx3,x3 = 0,

p4 = ux1 + vx2 + wx3 = 0.

A regular differential chain of Σ (w.r.t. an orderly ranking where u > v > w > p and
ux1 > ux2 > ux3 > ut) is found by adding the so-called Poisson pressure equation

p5 = 2ux2vx1 + 2ux3wx1 + 2vx3wx2 + u2x1
+ v2x2

+ w2
x3

+ px1,x1 + px2,x2 + px3,x3 = 0

and does not contain any inequalities. The differential dimension polynomial is ω{Σ}(ℓ) =

7ℓ3/6 + 11ℓ2/2 + 25ℓ/3 + 4. Thus, the differential counting polynomial is

C{Σ}(ℓ) = ∞7ℓ3/6+11ℓ2/2+25ℓ/3+4.

General systems. For a given radical differential ideal U and its regular differential chains
A1, . . . , Aρ, the differential counting polynomial, if it exists, is the sum of their differential
counting polynomials subtracted by polynomials smaller or equal to the differential count-
ing polynomials corresponding to the inequalities. The addition is valid because of the
disjointness of solutions. The subtraction depends on how many solutions of the equalities
are removed.

To compute the differential counting polynomial, we compute the formal power series
solutions (around an arbitrary center point ζ). In principle, the number of possibilities for
the next coefficient of a formal power series solution could be anything from zero to infinity
and a detailed analysis is necessary.

Example 27. Compute the differential counting polynomial of the differential ideals given
by
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(1) p = u′2 − 1.
Although p can be factored as a polynomial, {p = 0} is already a regular differential
chain without an inequality. Thus, by Theorem 21, ω{p}(ℓ) = 1 and C{p}(ℓ) = 2∞.

(2) p = u2u′ − u.
We see that {uu′− 1 = 0, u ̸= 0}, {u = 0} is a system of regular differential chains.
For the second system we count 1 solution. For the first system, we obtain the
algebraic system

S := {u0u1 − 1 = 0, u0u2 + u21 = 0, u0u3 + 2u1u2 = 0, . . . ;u0 ̸= 0}
and no system with u0 = 0 because this directly leads to a contradiction. S has for
every u0 ∈ F a unique solution. Thus, we count ∞− 1 and obtain for {p = 0} the
differential counting polynomial C{p}(ℓ) = 1+∞−1 = ∞. Indeed, we have u(x) = 0

and v(x) = ±
√

2(x+ c) as solutions and v(x) can be expanded (counterinuitively)
as a single formal power series.

Note that the system (2) does not fulfill the assumption that it is characterizable nor that no
inequality is involved, but when naively applying the formula from Theorem 21, the result
is still correct. This will not be the case in the following example.

Exercise 28. Compute the differential counting polynomial of p = u′2 − u.

Exercise 29. Try to find the differential counting polynomial of a differential system given
by a single equation of the form p = a(u)u′ + b(u) with a, b ∈ F [u].

Differential counting polynomial with fixed center. We now want to count the number of
formal power series solutions with an a-priori fixed center point ζ. Similarly as before, the
differential counting function of a differential ideal U is defined as the number of possible
Taylor-coefficients of truncated formal power series solutions (centered around ζ) and is
eventually represented by a polynomial function Cζ,U(ℓ) for large enough ℓ. Within this
section we choose w.l.o.g. ζ = 0.

Let us note that if Σ has constant coefficients, then the computation of the formal power
series solutions centered at ζ and formal power series solutions with an unspecified center
point coindes and thus, its differential counting polynomial coincide.

Example 30. Let us consider p = vu′ − u and a ranking u > v. Let us write u(x) =∑
i≥0 cix

i, v(x) =
∑

i≥0 dix
i. For d0 ̸= 0, every di is uniquely determined by the ci ∈ C.

The ci are completely unconstrained leading to the counting of ℓ 7→ (∞ − 1)∞ℓ+1. For
d0 = 0, by simply plugging into p evaluated at x = 0, we see that c0 = 0. By direct
computation we see that (cf. Hurwitz lemma)

p(k) =
k∑

i=0

(
k

i

)
v(i)u(k−i+1) − u(k) = vu(k+1) + (kv′ − 1)u(k) + · · · .

Evaluated at x = 0, we obtain either

S(k) := {pk = 0, c0 = · · · = ck−1 = 0, d0 = 0,
k−1∏
i=1

(idi − 1) ̸= 0}, or

T (k) := {pk+1 = 0, c0 = · · · = ck−1 = 0, d0 = kd1 − 1 = 0}.
The case where in every step k the system S(k) is chosen (“T (∞) = ∪k≥1S(k)”) is where
all coefficients of u(x) are zero. The distinct cases T (k) lead to a disjoint solution set.
Thus, we add

ℓ 7→ (∞− ℓ)∞ℓ−1 +
ℓ∑

j≥1

∞ℓ = (ℓ+ 1)∞ℓ − ℓ∞ℓ−1
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where the first summand corresponds to ∪ℓ
j=1S(j) and the second summand to T (1), . . . , T (ℓ).

Then the differential counting polynomial is

C0,{p}(ℓ) = ∞ℓ+2 −∞ℓ+1 + (ℓ+ 1)∞ℓ − ℓ∞ℓ−1 + 1

for ℓ ≥ 1 and C0,{p}(0) = ∞2 −∞+ 1.

The following example is particularly interesting because it gives a (countable) infinite
number of exceptional values, which might be encoded by subtracting ℵ0 in the differential
counting polynomial.

Exercise 31. Compute the differential counting polynomial C0,{p} of p = xuu′ − xu+ 1.

From [4] we know that there is no general decision algorithm for deciding whether a
system of algebraic differential equations has formal power series solutions. In particular,
this shows that in general it is impossible to count the number of formal power series
solutions and find the differential counting polynomial algorithmically.

4. Representations of differential equations

Algebraic varieties are represented as the zero set of polynomials. In some cases, we can
find an explicit representation of them by rational / radical / etc. parametrizations. For
differential systems, an analogue are so-called realizations. Such as parametrizations allow
the computation of zeros by simply plugging in numbers, realizations help for finding zeros
of the given differential system.

4.1. Realizations. In this section, we consider a class of systems of differential equations
ubiquitous in applications. More precisely, we will consider systems of the form

(1)

{
t′ = f(c, t,y)

u = g(c, t,y)
,

where

• c are unknown parameters;
• t,u,y are function variables, denpending on the independent variable x, referred to as
the state, output, and input variables, respectively;

• f ,g are vectors of polynomials in C(c)[t,y].
In the following we will often neglect the dependency onto the parameters c. The first
equation t′ = f(c, t,y) is called a dynamical system. System (1) can be interpreted as
follows. The input variables y are the functions determined by the experimenter (e.g., an
external force). Together with the parameter values and the initial conditions for the state
variables t, they completely define the dynamics of the t-variables. The output variables
u are the quantities observed in the experiment. The typical questions asked about such
systems include:

• When is an explicit representation of a given differential system possible?
• Is it possible to determine the values of the parameters (identifiability) or reconstruct
the values of the state variables (observability)?

• Is it always possible to achieve the desired behaviour of the system by chosing appropriate
input functions (controllability)?

To put (1) into the context of differential algebra, consider the purely transcendental
extension C(c) as base field and the differential polynomials

Q(t,y) · t′ − F(t,y), Q(t,y) · u−G(t,y) ∈ C(c){t,y,u}
where fi = Fi/Q, gi = Gi/Q.
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Proposition 32 (Lemma 3.2 in [7]). P := [Q(t,y) · t′−F(t,y), Q(t,y) ·u−G(t,y)] : Q∞

forms a prime differential ideal.

Input-output equations. Based on Proposition 32, we can compute a regular differential
chain A of P with a ranking t > (u,y). Then A ∩ C(c){y,u} are called the input-output
equations of (1) and generate P ∩ C(c){y,u}.

Example 33 (Predator-prey model). The following model describes the coexistence of two
species, prey (t1) and predators (t2), so that the population of prey can be observed and
controlled: 

t′1 = c1t1 − c2t1t2 + y

t′2 = −c3t2 + c4t1t2

u = t1

.

By choosing t > y > u we obtain the regular differential chain

A = {uu′′ + c1c4u
3 − c1c3u

2 − c4u
2u′ + c3uu

′ − u′2,−t1 + u,−c2ut2 − c1u− u′ + y}.
The first differential polynomial of A is the input-output equation.

Realization problem. Let us now try to find for a given system A ⊂ C(c){y,u} of differential
equations a corresponding system Σ as in (1). If such Σ exists, then we call it a realization
of A.

For a given differential system Σ as in (1) with one output-equation u, there exists a single
input-output equation which is unique up to multiplication with constants. Conversely, for
a given irreducible differential polynomial p ∈ C(c){y,u} (or a system of input-output
equations), there might be various realizations or none at all.

Let Σ ⊂ K[u0, . . . , un]. Then the variety given by Σ is given as

V(Σ) = {a ∈ Kn+1 | p(a) = 0 for every p ∈ Σ}.
Let p ∈ C(c){y, u} be a given irreducible differential polynomial of order n w.r.t. u. If

p has a realization t′ = f(t, y), u = g(t, y), then

(2) P = (g,Lf (g), . . . ,Ln
f (g)),

where Lf (g) =
∑n

i=1 fi ∂tig + Dy(g) is the Lie-derivative of g w.r.t. f , Li
f is the it-

erative application of Lf i-many times, and Dy is defined as the differential operator

Dy(g) =
∑

j≥0 y
(j+1) · ∂y(j)g, defines a parametrization of V(p). Thus, we have found

a necessary condition for the existence of realizations. Note that the construction of the
parametrization (2) from the realization does not require field extensions, keeps polyno-
miality of f , g etc. For a system of input-output equations in several output-variables, a
similar construction can be made.

Proposition 34. Let p ∈ K{y, u} be an irreducible polynomial of order n w.r.t. u. Then,

p is realizable if and only if there is a rational parametrization P ∈ K(y, . . . , y(n))(t)n+1 of
V(p) such that P0 ∈ K(y, t) and

(3) z = J (P0, . . . , Pn−1)
−1 · (P1 −Dy(P0), . . . , Pn −Dy(Pn−1))

T

is in K(y, t)n where J denotes the Jacobian (w.r.t. t). In the affirmative case, the real-
ization is t′ = z, u = P0.

Let us note that if in Proposition 34 the polynomial p is independent of y, then (3) is
also independent of y and its derivatives and thus, a rational parametrization P of V(p)
always provides a realization.

Exercise 35. Check whether the following input-output equations are realizable.
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(1) p = u2 + u′2 − 1;
(2) p = (u′ − yu)3 + yu2;
(3) p = 2u2u′2 + u2 + 2u′2.

Exercise 36. Let p ∈ K{u, y} be an irreducible polynomial of order n w.r.t. u. Show that
if the order of p w.r.t. y is bigger than n, then p is not realizable.

Identifiability. Let (ỹ, ũ) be the general solution of the input-output equations of a given
system as in (1). Then a function h ∈ C(c) is called identifiable iff h is in the smallest
differential subfield of C(c) generated by (ỹ, ũ). Of particular interest is the case where a
parameter ci itself is identifiable.

The smallest field K ⊆ C(c) such that the input-output equations of A lie in K{y,u}
is called its field of definition. The field generated by the identifiable functions is equal
to the field of definition [10, Theorem 11] and thus can be read-off the coefficients of the
input-output equations.

Example. In our predator-prey model we obtain the identifiable functions

C(c1c4, c4, c1c3, c3) = C(c1, c3, c4)
meaning that the values of c1, c3, c4 can be inferred from a series of experiments while the
value of c2 cannot.

Exercise 37. Determine the identifiable functions of the given dynamical system
t′1 = c1c2t1 − t1t2 + y

t′2 = −t2 + c3t1t2

u = t1

.

4.2. Finding solutions. A naive approach for finding rational solutions of a given (system
of) algebraic differential equations is to make an ansatz with unknown coefficients and
then derive necessary conditions for them. For algebraic solutions, we can apply a similar
approach by first computing any local solution and then check whether it is algebraic.
In general, however, we do not have any degree bound for rational solutions of algebraic
differential equations. Furthermore, if the degree of the solutions is relatively high, the
computations for the coefficients is very costly and will not terminate in reasonable time.

Rational solutions. Let us come back to differential ideals given by a set of differential
polynomials A = {p1, . . . , pm} ⊂ K{u1, . . . , un} independent of input-variables. We have
seen that if there is a rational parametrization P of the associated algebraic variety V(A),
then we can transform A into a dynamical system Σ. Moreover, solutions can generically
be transformed into each other.

Proposition 38. Let u(x) ∈ K(x)n be a zero of a given set of differential polynomials A
such that V(A) admits a rational parametrization P. Then one of the following holds.

(1) u(x) = P(t(x)) where t(x) is a solution of the corresponding dynamical system.
(2) u(x) /∈ Im(P).

Moreover, every solution t(x) of the corresponding dynamical system leads to the zero
P(t(x)) of A.

The second item is the non-generic one (for rational / algebraic solutions u(x)), since
every rational parametrization has a dense image. This implies that for a rational generic
solution of a given differential system and the generic rational solution of the corresponding
dynamical system item (1) is fulfilled and they can always be transformed into each other.

Let us analyse the case of a single differential polynomial of order one with constant
coefficients.
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Theorem 39 (Theorem 5 in [6]). Let p ∈ K[u, u′] be an irreducible polynomial such that
V(p) admits the birational parametrization P = (P0, P1) ∈ K(t)2. Then the corresponding
dynamical system t′ = P1(t)/P

′
0(t) has a solution t ∈ K(x) if and only if P1/P

′
0 is a constant

or of the form b · (t− a)2 for some a, b ∈ K.

Example 40. Let

p = u′3 + 4u′2 + (27u2 + 4)u′ + 27u4 + 4u2.

The birational parametrization P = (216t3 + 6t,−3888t4 − 36t2) fulfills Theorem 39, since
P1/P

′
0 = −6t2, and leads to the rational generic solution

u(x) =
(x+ c)2 + 1

(x+ c)3
.

Exercise 41. Let p = u′2 + 3u′ − 2u − 3x. Find a rational parametrization P of V(p)
and its corresponding dynamical system. Can you find a rational generic solution of it? Is
the solution us(x) = −3x/2− 9/8 covered by the rational generic solution. Is us(x) in the
image of P (cf. Proposition 38)?

Algebraic solutions. Given a differential system A in one differential unknown function u,
if an irreducible polynomial q(x, u) fulfills prem(q,A) = 0, then every zero of q is a zero of
A. Here, an ansatz of unknown coefficients for q does in general not lead to a polynomial
system in these coefficients. So we have to come up with another idea. In the case of
first-order differential equations with constant coefficients, the following holds.

Theorem 42. Let p ∈ K[u, u′] and let u(x) ∈ K(x) be an algebraic zero of p with minimal
polynomial q(x, u) ∈ K[x, u]. Then all formal power series solutions of p = 0 are algebraic
and given by q(x+ c, u), where c ∈ K.

Theorem 43. Let p ∈ K[u, u′] and let q(x, u) ∈ K[x, u] be the minimal polynomial of an
algebraic zero of p. Then

degx(q) = degu′(p), degu(q) ≤ degu(p) + degu′(p).

The previous theorems imply an algorithm for computing algebraic solutions of first-
order differential equations with constant coefficients.

Example 44. Let p = u4 + 3u′. We see that p = 0 cannot have a rational solution. A
local solution is easily found by

u(x) = 1− x/3 + 2x2/9− 14x3/81 +O(x4).

Let q(x, u) =
∑

0≤i≤4,0≤j≤1 ci,jx
iuj. Then q(x, u(x)) = 0 leads to the possible choice q =

xu3 − 1 and the zeros, namely u(x) = ζ
3√x+c

for ζ3 = 1, are determined by q(x+ c, u).

The previous approach can be tried for more general differential equations, but in general
it is unknown which local solution should be used for finding the algebraic solution and no
general degree bounds for its minimal polynomial are known.

For global solutions such as rational or algebraic solutions, in contrast to local solutions,
one can try to incorporate boundary conditions etc. Besides avoiding the question of zero-
testing, this is one of the main advantages of global solutions compared to local solutions, if
they exist and can be found. In the next section, we deal with more general local solutions
than formal power series (with non-negative integer exponents).
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Local solutions. In the case where V(p) does not admit a rational parametrization, we can
still compute local parametrizations of the curve and derive local solutions if they exist.
For this purpose, however, we do not have a corresponding dynamical system with rational
right hand sides. Instead, we have to work with a formal power series right hand side and
call this system the associated differential equation.

A local parametrization of an algebraic curve V(p), implicitly defined by p ∈ K[u0, u1],

is a zero (P0, P1) ∈ K[[t]]2 \K2
of p.

A power series with fractional exponents (with bounded denominator and a least ele-

ment), i.e. series of the form
∑

i≥i0
cix

i/n with i0 ∈ Z, n ≥ 1, is called a formal Puiseux
series. Formal Puiseux series form a field which is algebraically closed for algebraically
closed base fields K.

Theorem 45 (Theorem 10 in [3]). Let p ∈ K[u, u′] be an irreducible polynomial and let
P = (P0, P1) ∈ K(t)2 be a local parametrization of V(p). Let

o := ordt(P0 − P0(0))− ordt(P1) > 0.

Then the associated differential equation

P ′
0(t) t

′ = o xo−1 P1(t)

has a solution t ∈ K[[x]], t(0) = 0, if and only if y(x) = P0(t(x
1/o)) is a formal Puiseux

series solution of p = 0.

Example 46. Let us consider

p = ((u′ − 1)2 + u2)3 − 4(u′ − 1)2u2 = 0.

The generic solutions is given by u(x) = c0 + c1x+O(x2) ∈ Q(c0, c1)[[x]] with p(c0, c1) =
0, Sp(c0, c1) ̸= 0. One of the critical curve points of V(p), not covered by the generic
solution, is (0, 1). One of the four local parametrizations centered at (0, 1) is given by

(P0, P1) = (t2, 1 +
√
2t− 3t3

4
√
2
− 15t5

64
√
2
+O(t6)).

The associated differential equation

tt′ = x(1 +
√
2t− 3t

4
√
2
− 15t5

64
√
2
)

has the formal power series solutions t1(x) = x+
√
2x2

3 + x3

18 − 89x4

540
√
2
+O(x5) and t2(x) =

−x+
√
2x2

3 − x3

18 −
89x4

540
√
2
+O(x5). Then P0(t1(x

1/2)) = x = 2
√
2x3/2

3 +O(x5/2), P0(t2(x
1/2))

are formal Puiseux series solutions of p = 0.

Exercise 47. Check whether the other local parametrizations of V(p) centered at (0, 1) lead
to formal Puiseux series solutions. In the affirmative case, predict the commen denominator
in the set of exponents. What about the local parametrizations of V(p) centered at (α, 0)
where α6 + 3α4 − α2 + 1 = 0?

There are more general type of local solutions than formal Puiseux series such as the
zero u(x) = c+ log(x) of p = xu′ − 1. Such solutions are covered by so-called logarithmic
transseries [13]. For a given differential polynomial p, we can derive the Newton degree
of p (see the course on the Newton polygon method) which leads to a lower bound of the
number of zeros as follows. For algebraic equations, the Newton degree coincides with the
degree of p.

Theorem 48 (Theorem 1 in [12]). Let p ∈ K[x]{u} be a differential polynomial of Newton-
degree n. Then there are at least n logarithmic transseries solutions of p = 0.
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Example 49. Consider the differential system A = {xu′ − cu − x, c′}. Try to find its
formal power series solutions. Are there other type of solutions?

Using rational first integrals. In the general case, there is no algorithm for finding rational
/ formal power series solutions of realizations. If there are no solutions found, it can be
the case that an algebraic invariance can be derived. More precisely, we define a (rational)
first integral of (1) as any (rational) function W that satisfies D(W ) = 0 with

D =
∑
j

Fj ·
∂

∂tj
.

Assume that a solution t(x) of (1) fulfills an algebraic relation W (t(x)) = 0 for some
irreducible W . Then also d

dx(W (t(x))) = 0. We thus get

Q ·
∑
j

∂ W
∂tj

(t(x)) · t′j(x) = Q ·
∑
j

∂ W
∂tj

(t(x)) · fj = D(W (t(x))),

and if t(x) is non-constant, D(W ) is in the ideal generated by W itself. W with this
property is called invariant algebraic hypersurfaces. The special case where D(W ) = 0 with
W ∈ K(T ), namely the rational first integrals, are of particular interest. Let W = wn/wd

be a rational first integral. Consider

(4) L = numer((wn − cwd) ◦ (P−1(z))).

Then we can add L to the given input-output equations A and compute a regular differential
chain. Since L is not in the differential ideal generated by A, the new subsystems simplify.
We note that not all of the solutions of A and A ∪ {L} coincide, but the general solution
of A is preserved.

Example 50. Let p = (u′)2u′′ − u. The corresponding algebraic variety V(p) has the
rational parametrization P = (t1, t2, t1/t

2
2) with the inverse P−1(z0, z1, z2) = (z0, z1). This

leads to the realization

t′1 = t2, t
′
2 = t1/t

2
2, u = t1.

By making an ansatz and solving for the coefficients, we can find the rational first integral
W = t42 − 2t21. This leads to L = u′4 − 2u2 − c.

The process described here can be seen as literally integrating the given system of differ-
ential equations. This leads to the parameter c which can be freely chosen such as it is the
case for any indefinite integration. In the previous example, d

dxL = p and we can replace
p by L. This is exactly the case when using differential elimination applied to {p, L}.

Example 51. The algebraic variety implicitly defined by the differential system

{p1 = u′1u
′
2 + 2u1 − u′1 − 2u′2 + 2, p2 = −u′1u2 − u′2

2
+ u21 − u1 + 4u2 + u′2}

admits the rational parametrization

P =

(
t1,

2(t2 − t1 − 1)

t2 − 1
,
(t2 − 1)(t2 − t1)

2
, t2

)
.

The corresponding realization{
t′1 =

2(t2 − t1 − 1)

t2 − 1
, t′2 = 2, u1 = t1, u2 =

(t2 − 1)(t2 − t1)

2

}
has the rational first integral

W (t1, t2) = − t22 − 2t1t2 − 2t2 + 2t1
2

.
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We deduce
L = −u′22 + 2u1u

′
2 + 2u′2 − 2u1 − 2c.

Computing the Thomas decomposition of {p, L}, leading to an elimination of u′1, gives in
particular the simplified system

F = {q1 = 2u1u
′
2 − u′22 − 2c− 2u1 + 2u′2,

q2 = 3u′32 − 4cu1 − 2cu′2 − 8u1u
′
2 − 8u′2u

′
2 − 3u′22 + 6c+ 2u1 + 8u2 − 2u′2,

q3 = 2cu21 − 2cu′22 + 4u21u2 − u2u
′2
2 − 2cu1 + 2cu2 + 2cu′2 − u21 + 2u2u

′
2 + u′22 + u1 − 2u2 − u′2}.

Exercise 52. In Example 51:

(1) Could we have eliminated u′2 in {p, L} instead of u′1? What is a necessary criteria
for that?

(2) Try to find a zero of {p1, p2} and of F by using software. Is the zero u(x) =

( c+x2

x , x2 − c+ x) of F also a zero of {p1, p2}?
(3) Can we use the above approach to further simplify F?

Exercise 53. Use the above approach to simplify the system given by

p1 =u22 − u′2,

p2 =9u21u
′
1u

′
2 − 8u21u

′
2 − 2u1u

′
1u2 − u1u

′
1u

′
2 + u′21 u2 − 2u′21 u

′
2 + 4u1u2 + 2u1u

′
2 + u′21

− 4u′1u2 + 8u′1u
′
2 − 4u′1 + 4u2 − 8u′2 + 4.
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