The Fundamental Theorem of Tropical Differential Algebra over nontrivially valued fields

Stefano Mereta

(technically not at) MPI MiS Leipzig

21st June 2023 Algebraic and tropical methods for solving differential equations, Oaxaca, MX.

arXiv:2303.12124

Summary of contents

Preliminaries and statement of the theorem;

Summary of contents

Preliminaries and statement of the theorem;

Some definitions and sketch of proof;

Summary of contents

- Preliminaries and statement of the theorem;
- Some definitions and sketch of proof;
- (Maybe) Tropical methods for radius of convergence of solutions to nonarchimedean differential equations.

Preliminaries: differential polynomials

 (R, d_R) differential ring. Let

$$R\{x_1,\ldots,x_n\} := R[x_i^{(j)} \mid i=1,\ldots,n; j \in \mathbb{N}]$$

Equipped with the differential $d(x_i^{(j)}) = x_i^{(j+1)}$ extending d_R , it is a differential ring.

Preliminaries: differential polynomials

 (R, d_R) differential ring. Let

$$R\{x_1,\ldots,x_n\} := R[x_i^{(j)} \mid i = 1,\ldots,n; j \in \mathbb{N}]$$

Equipped with the differential $d(x_i^{(j)}) = x_i^{(j+1)}$ extending d_R , it is a differential ring.

An element $r = (r_1, \ldots, r_n) \in \mathbb{R}^n$ is a solution for $F \in \mathbb{R}\{x_1, \ldots, x_n\}$ iff

$$F|_{x_i^{(j)}=d_R^j r_i}=0$$

A semiring (S, \oplus, \odot) is an algebraic structure satisfying all the axioms to be a ring but the existence of additive inverses.

A semiring (S, \oplus, \odot) is an algebraic structure satisfying all the axioms to be a ring but the existence of additive inverses. It is *idempotent* if $a \oplus a = a$ for all $a \in S$.

A semiring (S, \oplus, \odot) is an algebraic structure satisfying all the axioms to be a ring but the existence of additive inverses. It is *idempotent* if $a \oplus a = a$ for all $a \in S$.

Example

- $\mathbb{T} := (\mathbb{R} \cup \{\infty\}, \min, +)$, the tropical idempotent semiring;
- For $n \in \mathbb{N}$, let $(\mathbb{T}_n, \oplus, \odot) := (\mathbb{R}^n \cup \{\infty\}, \min_{lex}, +)$. It is an idempotent semiring. For n = 1, we recover the usual tropical semiring \mathbb{T} .

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

We say that a sum in an idempotent semiring *tropically vanishes* if by deleting any of the summands the result does not change.

We say that a sum in an idempotent semiring *tropically vanishes* if by deleting any of the summands the result does not change.

Let R be a ring, a rank n valuation is a map $v : R \to \mathbb{T}_n$ such that:

Let K be an uncountable, algebraically closed field of characteristic 0 equipped with a valuation $v_{K} : K \to \mathbb{T}$.

Let (K[[t]], d) be the differential ring of power series over K and $v : K[[t]] \to \mathbb{T}_2$ the rank 2 valuation defined as:

 $a_{n_0}t^{n_0}+\ldots \longmapsto (n_0,v_K(a_{n_0})).$

Preliminaries: tropicalization of differential polynomials

Given a differential polynomial $P \in K[[t]] \{x_1, \ldots, x_n\}$ we define its tropicalization $\operatorname{trop}_v(P)$ with respect to v as the element of $\mathbb{T}_2\{x_1, \ldots, x_n\}$ obtained by applying v to the coefficients of P.

Preliminaries: tropicalization of differential polynomials

Given a differential polynomial $P \in K[[t]]\{x_1, \ldots, x_n\}$ we define its tropicalization $\operatorname{trop}_v(P)$ with respect to v as the element of $\mathbb{T}_2\{x_1, \ldots, x_n\}$ obtained by applying v to the coefficients of P.

Example

Let $P = 12t^2xx' + (-9+3t)x'' \in \mathbb{Q}_3[t][x]$, then its tropicalization is:

 $trop_v(P) = (2,1)xx' + (0,2)x''$

The idempotent semiring $\mathbb{T}\llbracket t \rrbracket$ can be endowed with the tropical differential:

$$d_{\mathrm{v}_{K}}(t^{n})=egin{cases} v_{K}(n)t^{n-1} & n\geq 1\ \infty & n=0. \end{cases}$$

The idempotent semiring $\mathbb{T}[t]$ can be endowed with the tropical differential:

$$d_{v_{\mathcal{K}}}(t^n) = egin{cases} v_{\mathcal{K}}(n)t^{n-1} & n \geq 1 \ \infty & n=0. \end{cases}$$

This is an additive map such that, for every $A, B \in \mathbb{T}\llbracket t \rrbracket$ the expression

$$d_{v_{\mathcal{K}}}(AB)\oplus Bd_{v_{\mathcal{K}}}(A)\oplus Ad_{v_{\mathcal{K}}}(B)$$

tropically vanishes.

The idempotent semiring $\mathbb{T}[t]$ can be endowed with the tropical differential:

$$d_{v_{\mathcal{K}}}(t^n) = egin{cases} v_{\mathcal{K}}(n)t^{n-1} & n \geq 1 \ \infty & n=0. \end{cases}$$

This is an additive map such that, for every $A, B \in \mathbb{T}\llbracket t \rrbracket$ the expression

$$d_{v_{\mathcal{K}}}(AB)\oplus Bd_{v_{\mathcal{K}}}(A)\oplus Ad_{v_{\mathcal{K}}}(B)$$

tropically vanishes. We denote $(\mathbb{T}\llbracket t \rrbracket, d_{\nu_{K}})$ as $\mathbb{T}\llbracket t \rrbracket_{\nu_{K}}$.

We tropicalize elements of $\mathcal{K}[\![t]\!]$ via the map $\tilde{v} : \mathcal{K}[\![t]\!] \to \mathbb{T}[\![t]\!]_{v_{\mathcal{K}}}$ applying $v_{\mathcal{K}}$ coefficientwise:

$$\sum_{i=0}^\infty a_i t^i \mapsto \sum_{i=0}^\infty v_{\mathcal{K}}(a_i) t^i$$

This maps commutes with the differentials.

Applying \tilde{v} coordinatewise we obtain the tropicalization map trop_{$\tilde{v}} : K[t]^n \to \mathbb{T}[t]^n_{\mathcal{V}_{\kappa}}$.</sub>

Preliminaries: tropical solutions

Let $\Phi : \mathbb{T}\llbracket t \rrbracket_{\nu_{\mathcal{K}}} \to \mathbb{T}_2$ be the homomorphism of semirings

$$b_{n_0}t^{n_0}+\cdots\mapsto (n_0,b_{n_0}).$$

Given a $P \in K[t] \{x_1, \ldots, x_n\}$ and $S = (S_1, \ldots, S_n) \in \mathbb{T}[t]_{v_K}^n$, we say that S is a solution for the tropicalization of P if when plugging $\Phi(d^j S_i)$ for $x_i^{(j)}$ in trop_v(P) the result tropically vanishes in \mathbb{T}_2 .

Preliminaries: tropical solutions

Let $\Phi : \mathbb{T}\llbracket t \rrbracket_{\nu_{\mathcal{K}}} \to \mathbb{T}_2$ be the homomorphism of semirings

$$b_{n_0}t^{n_0}+\cdots\mapsto (n_0,b_{n_0}).$$

Given a $P \in K[t] \{x_1, \ldots, x_n\}$ and $S = (S_1, \ldots, S_n) \in \mathbb{T}[t]_{v_K}^n$, we say that S is a solution for the tropicalization of P if when plugging $\Phi(d^j S_i)$ for $x_i^{(j)}$ in trop_v(P) the result tropically vanishes in \mathbb{T}_2 .

Example

.

Let P as before, $trop_v(P) = (2,1)xx' + (0,2)x''$ and $S = 0 + 1t + (-1)t^4 \in \mathbb{T}[\![t]\!]_{v_3}$, then S is a solution for $trop_v(P)$:

$$trop_{\nu}P(S) = (2,1) \odot \Phi(S) \odot \Phi(dS) \oplus (0,2) \odot \Phi(d^{2}S) =$$
$$= (2,1) \odot (0,0) \odot (0,1) \oplus (0,2) \odot (2,0) =$$
$$= (2,2) \oplus (2,2)$$

Fundamental theorem of tropical differential algebra

Theorem

Let K be an uncountable algebraically closed field of characteristic 0 and $v_K : K \to \mathbb{T}$ a valuation. Let I be a differential ideal in $K[[t]]\{x_1, \ldots, x_n\}$, then the following equality holds:

$$\operatorname{Sol}_{\mathbb{T}\llbracket t \rrbracket_{v_{\mathcal{K}}}}(\operatorname{trop}_{v}(I)) = \operatorname{trop}_{\widetilde{v}}(\operatorname{Sol}_{\mathcal{K}\llbracket t \rrbracket}(I)).$$

The Fundamental Theorem had already been proven by Aroca, Garay, Toghani in the case of trivial valuation ► The Fundamental Theorem had already been proven by Aroca, Garay, Toghani in the case of trivial valuation ~> only tropical info about the *support* of power series solutions.

Motivations/Applications

► The Fundamental Theorem had already been proven by Aroca, Garay, Toghani in the case of trivial valuation ~→ only tropical info about the *support* of power series solutions.

In the nontrivially valued case we want to have a valuated version of the fundamental theorem

Motivations/Applications

- ► The Fundamental Theorem had already been proven by Aroca, Garay, Toghani in the case of trivial valuation ~>> only tropical info about the *support* of power series solutions.
- In the nontrivially valued case we want to have a valuated version of the fundamental theorem ~> tropical info about convergence of power series solutions.

- ► The Fundamental Theorem had already been proven by Aroca, Garay, Toghani in the case of trivial valuation ~>> only tropical info about the *support* of power series solutions.
- In the nontrivially valued case we want to have a valuated version of the fundamental theorem ~> tropical info about convergence of power series solutions.
- For p-adic differential equations, the convergence radius function of solutions is a piecewise linear function in the norm of the expansion point. We want to have tropical methods for computing it.

The polynomials $F_{l,r}$

Fix K, v, \tilde{v}, Φ and I as above.

The polynomials $F_{l,r}$

Fix K, v, \tilde{v}, Φ and I as above. By results of Ritt, there is a finite number of elements $f_1, \ldots, f_s \in I$ such that

$$\operatorname{Sol}_{K\llbracket t
rbracket}(I) = \bigcap_{l=1}^{s} \operatorname{Sol}_{K\llbracket t
rbracket}(f_{l})$$

The polynomials $F_{l,r}$

Fix K, v, \tilde{v}, Φ and I as above. By results of Ritt, there is a finite number of elements $f_1, \ldots, f_s \in I$ such that

$$\operatorname{Sol}_{K\llbracket t
rbracket}(I) = igcap_{l=1}^{s} \operatorname{Sol}_{K\llbracket t
rbracket}(f_{l})$$

For all l = 1, ..., s, $r \in \mathbb{N}$, set $F_{l,r} := (d^r f_l)|_{t=0} \in K[x_i^{(j)} \mid i = 1, ..., n; j \in \mathbb{N}]$ and

$$A_{\infty} := V\left(\{F_{l,r}\}_{\substack{1 \leq l \leq s \\ r \in \mathbb{N}}}\right) \subset \left(K^{\mathbb{N}}\right)^{n}.$$

◆□ ▶ ◆昼 ▶ ◆ 臣 ▶ ◆ 臣 ● の Q @

The function Ψ

The map $\Psi: \mathcal{K}^{\mathbb{N}} \to \mathcal{K}\llbracket t \rrbracket$ defined as

$$(a_j)_{j\in\mathbb{N}}\mapsto \sum_{j=0}^\infty rac{1}{j!}a_jt^j$$

is a bijection. We denote the bijection $(\mathcal{K}^{\mathbb{N}})^n \to \mathcal{K}\llbracket t \rrbracket^n$ again by Ψ .

The function Ψ

The map $\Psi: \mathcal{K}^{\mathbb{N}} \to \mathcal{K}\llbracket t \rrbracket$ defined as

$$(a_j)_{j\in\mathbb{N}}\mapsto \sum_{j=0}^\infty rac{1}{j!}a_jt^j$$

is a bijection. We denote the bijection $(\mathcal{K}^{\mathbb{N}})^n \to \mathcal{K}\llbracket t \rrbracket^n$ again by Ψ .

Given $f \in K[[t]] \{x_1, \ldots, x_n\}$ and $a \in (K^{\mathbb{N}})^n$ the following equality holds:

$$f\left(\Psi(a)\right) = \sum_{r=0}^{\infty} \left(\frac{1}{r!} \left(d^r(f)\right)|_{t=0}(a)\right) t^r.$$

The function Ψ

The map $\Psi: \mathcal{K}^{\mathbb{N}} \to \mathcal{K}\llbracket t \rrbracket$ defined as

$$(a_j)_{j\in\mathbb{N}}\mapsto \sum_{j=0}^\infty rac{1}{j!}a_jt^j$$

is a bijection. We denote the bijection $(\mathcal{K}^{\mathbb{N}})^n \to \mathcal{K}\llbracket t \rrbracket^n$ again by Ψ .

Given $f \in K[[t]] \{x_1, \ldots, x_n\}$ and $a \in (K^{\mathbb{N}})^n$ the following equality holds:

$$f(\Psi(a)) = \sum_{r=0}^{\infty} \left(\frac{1}{r!} \left(d^r(f)\right)|_{t=0}(a)\right) t^r.$$

Thus:

$$\operatorname{Sol}_{K\llbracket t
rbracket}(I) = \Psi(A_{\infty}).$$

(日本)(日本)(日本)(日本)(日本)(日本)

Truncations

For $m \in \mathbb{N}$, let N_m be the smallest natural number such that

$$\mathcal{F}_{l,r} \in \mathcal{K}[x_i^{(j)} \mid i=1,\ldots,n; j \leq N_m] \quad ext{ for all } 1 \leq l \leq s, \, 0 \leq r \leq m$$

Truncations

For $m \in \mathbb{N}$, let N_m be the smallest natural number such that

$$F_{l,r} \in \mathcal{K}[x_i^{(j)} \mid i = 1, \dots, n; j \leq N_m]$$
 for all $1 \leq l \leq s, 0 \leq r \leq m$

and let

$$A_m := V\left(\{F_{l,r}\}_{\substack{1 \leq l \leq s \\ 0 \leq r \leq m}}\right) \subset \left(K^{N_m+1}\right)^n.$$

Truncations

For $m \in \mathbb{N}$, let N_m be the smallest natural number such that

$$F_{l,r} \in K[x_i^{(j)} \mid i = 1, \dots, n; j \le N_m]$$
 for all $1 \le l \le s, 0 \le r \le m$

and let

$$A_m := V\left(\{F_{l,r}\}_{\substack{1 \leq l \leq s \\ 0 \leq r \leq m}}\right) \subset \left(K^{N_m+1}\right)^n.$$

then

$$A_{\infty}=\varprojlim A_m.$$

Fibers of tropicalization

Let $m \in \mathbb{N}$ and $S := (S_1, \ldots, S_n) \in \mathbb{T}[\![t]\!]_{V_K}^n$, where we write S_i as $\sum c_{i,j}t^j$ for every $i = 1, \ldots, n$. With this notation, we define:

$$(\mathbb{V}_{\infty})_{\mathcal{S}}^{\mathsf{v}_{\mathcal{K}}} := \mathsf{v}_{\mathcal{K}}^{-1}\left((c_{i,j} + \mathsf{v}_{\mathcal{K}}(j!))_{\substack{i=1,...,n\\j\in\mathbb{N}}}\right) \in \left(\mathcal{K}^{\mathbb{N}}\right)^{n}$$

and

$$(\mathbb{V}_m)^{\mathbf{v}_{\mathcal{K}}}_{S} := \mathbf{v}_{\mathcal{K}}^{-1}\left((c_{i,j} + \mathbf{v}_{\mathcal{K}}(j!))_{\substack{i=1,\ldots,n\\j\leq N_m}}\right) \in \left(\mathcal{K}^{N_m+1}\right)^n$$

Fibers of tropicalization

Let $m \in \mathbb{N}$ and $S := (S_1, \ldots, S_n) \in \mathbb{T}[\![t]\!]_{V_K}^n$, where we write S_i as $\sum c_{i,j}t^j$ for every $i = 1, \ldots, n$. With this notation, we define:

$$(\mathbb{V}_{\infty})^{\mathsf{v}_{\mathcal{K}}}_{\mathcal{S}} := \mathsf{v}_{\mathcal{K}}^{-1}\left((c_{i,j} + \mathsf{v}_{\mathcal{K}}(j!))_{\substack{i=1,...,n\\j\in\mathbb{N}}}\right) \in \left(\mathcal{K}^{\mathbb{N}}
ight)^n$$

and

$$(\mathbb{V}_m)^{\mathbf{v}_{\mathcal{K}}}_{S} := \mathbf{v}_{\mathcal{K}}^{-1} \left((c_{i,j} + \mathbf{v}_{\mathcal{K}}(j!))_{\substack{i=1,\ldots,n\\j \leq N_m}} \right) \in \left(\mathcal{K}^{N_m+1} \right)^n$$

Furthermore, let

$$(A_m)^{v_{\mathcal{K}}}_S := A_m \cap (\mathbb{V}_m)^{v_{\mathcal{K}}}_S.$$
 $(A_\infty)^{v_{\mathcal{K}}}_S := A_\infty \cap (\mathbb{V}_\infty)^{v_{\mathcal{K}}}_S$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

Criterion for lifting tropical solutions

As before for any $S \in \mathbb{T}\llbracket t \rrbracket_{\nu_K}^n$ we have $(A_\infty)_S^{\nu_K} = \varprojlim (A_m)_S^{\nu_K}$.

Criterion for lifting tropical solutions

As before for any $S \in \mathbb{T}\llbracket t \rrbracket_{\nu_{K}}^{n}$ we have $(A_{\infty})_{S}^{\nu_{K}} = \varprojlim (A_{m})_{S}^{\nu_{K}}$. Furthermore Remark

$$S \in \operatorname{trop}_{\widetilde{v}}(\operatorname{Sol}_{K\llbracket t
rbracket}(I)) \iff (A_{\infty})_{S}^{v_{K}} \neq \emptyset.$$

Criterion for lifting tropical solutions

As before for any $S \in \mathbb{T}\llbracket t \rrbracket_{\nu_{K}}^{n}$ we have $(A_{\infty})_{S}^{\nu_{K}} = \varprojlim (A_{m})_{S}^{\nu_{K}}$. Furthermore Remark

$$S \in \operatorname{trop}_{\widetilde{v}}(\operatorname{Sol}_{K\llbracket t \rrbracket}(I)) \iff (A_{\infty})_{S}^{\mathsf{v}_{K}} \neq \emptyset.$$

Proposition

$$(A_{\infty})_{S}^{\nu_{\mathcal{K}}} \neq \emptyset \iff (A_{m})_{S}^{\nu_{\mathcal{K}}} \neq \emptyset \text{ for all } m \in \mathbb{N}.$$

Let $\Psi_{trop} : \mathbb{T}^{\mathbb{N}} \to \mathbb{T}\llbracket t \rrbracket_{v_{\mathcal{K}}}$ be the bijective map defined by:

$$\Psi_{ ext{trop}}((b_j)_{j\in\mathbb{N}}) = \sum_{j=0}^\infty (b_j - v_\mathcal{K}(j!))t^j.$$

Let $\Psi_{trop} : \mathbb{T}^{\mathbb{N}} \to \mathbb{T}\llbracket t \rrbracket_{v_{\mathcal{K}}}$ be the bijective map defined by:

$$\Psi_{ ext{trop}}((b_j)_{j\in\mathbb{N}}) = \sum_{j=0}^\infty (b_j - v_\mathcal{K}(j!))t^j.$$

Its inverse is defined as follows:

$$\Psi_{\mathsf{trop}}^{-1}(S) = ig((d^j_{
u_{\mathcal{K}}}S)ert_{t=\infty}ig)_{j\in\mathbb{N}}$$
 .

We denote again by Ψ_{trop} the map $(\mathbb{T}^{\mathbb{N}})^n \to \mathbb{T}\llbracket t \rrbracket_{\nu_{\mathcal{K}}}^n$ obtained by applying Ψ_{trop} coordinatewise.

Lemma

For every $m \in \mathbb{N}$, let $\pi_m : (\mathbb{T}^{\mathbb{N}})^n \to (\mathbb{T}^{N_m+1})^n$ be the projection sending every entry to its first $N_m + 1$ coordinates. The following inclusion holds for every $m \in \mathbb{N}$:

$$\pi_m \circ \Psi_{\operatorname{trop}}^{-1} \left(\operatorname{Sol}_{\mathbb{T}\llbracket t \rrbracket_{V_{\mathcal{K}}}}(\operatorname{trop}_{v}(I)) \right) \subset V^{\operatorname{trop}} \left(\left\{ \operatorname{trop}_{v_{\mathcal{K}}}(F_{l,r}) \right\}_{\substack{l=1,\ldots,s\\ 0 \leq r \leq m}} \right).$$

The inclusion Sol_S(trop_ν(I)) ⊇ trop_ṽ(Sol_{K[[t]}(I)) follows from the properties of ν, ν̃ and Φ;

The inclusion Sol_S(trop_v(I)) ⊇ trop_ṽ(Sol_{K[[t]}(I)) follows from the properties of v, ν̃ and Φ;

▶ For every $m \in \mathbb{N}$ by the Fundamental Theorem of Tropical Geometry, we have:

$$\operatorname{trop}_{v_{\mathcal{K}}}(A_m) = V^{\operatorname{trop}}\left(\left\{\operatorname{trop}_{v_{\mathcal{K}}}(F_{l,r})\right\}_{\substack{l=1,\ldots,s\\0\leq r\leq m}}\right)$$

Let $S \in \mathsf{Sol}_{\mathbb{T}\llbracket t \rrbracket_{\nu_{\mathcal{K}}}}(\mathsf{trop}_{\nu}(I))$. From the Lemma above, we have, for all $m \in \mathbb{N}$:

$$\pi_m \circ \Psi_{\operatorname{trop}}^{-1}(S) \in V^{\operatorname{trop}}\left(\left\{\operatorname{trop}_{v_{\mathcal{K}}}(F_{l,r})\right\}_{\substack{l=1,\ldots,n\\0\leq r\leq m}}\right) = \operatorname{trop}_{v_{\mathcal{K}}}(A_m)$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ●目 ● のへの

The inclusion Sol_S(trop_v(I)) ⊇ trop_ṽ(Sol_{K[[t]}(I)) follows from the properties of v, ν̃ and Φ;

▶ For every $m \in \mathbb{N}$ by the Fundamental Theorem of Tropical Geometry, we have:

$$\operatorname{trop}_{v_{\mathcal{K}}}(A_m) = V^{\operatorname{trop}}\left(\left\{\operatorname{trop}_{v_{\mathcal{K}}}(F_{l,r})\right\}_{\substack{l=1,\ldots,s\\0\leq r\leq m}}\right)$$

Let $S \in \mathsf{Sol}_{\mathbb{T}\llbracket t \rrbracket_{v_{\mathcal{K}}}}(\mathsf{trop}_{v}(I))$. From the Lemma above, we have, for all $m \in \mathbb{N}$:

$$\pi_m \circ \Psi_{\operatorname{trop}}^{-1}(S) \in V^{\operatorname{trop}}\left(\left\{\operatorname{trop}_{v_{\mathcal{K}}}(F_{l,r})\right\}_{\substack{l=1,\ldots,n\\0\leq r\leq m}}\right) = \operatorname{trop}_{v_{\mathcal{K}}}(A_m)$$

⇒ for all $m \in \mathbb{N}$ there exists an element $x \in A_m$ whose tropicalization is $\pi_m \circ \Psi_{\text{trop}}^{-1}(S)$, i.e. $x \in (A_m)_S^{\nu_K}$. Finally, thanks to Proposition and Remark,

$$(A_m)_S^{v_K} \neq \emptyset$$
 for all $m \in \mathbb{N} \iff S \in \operatorname{trop}_{\widetilde{v}}(\operatorname{Sol}_{K[[t]]}(I)).$

There is a way to define the initial of a differential ideal I with respect to a weight vector $S \in \mathbb{T}[\![t]\!]_{v_{k'}}^{n}$, so we get the following:

There is a way to define the initial of a differential ideal I with respect to a weight vector $S \in \mathbb{T}[\![t]\!]_{V_{K}}^{n}$, so we get the following:

Theorem

Under the same hypothesis of the previous theorem, the following equalities hold:

 $\operatorname{trop}_{\tilde{v}}(\operatorname{Sol}_{K\llbracket t \rrbracket}(I)) = \operatorname{Sol}_{\mathbb{T}\llbracket t \rrbracket_{v_{K}}}(\operatorname{trop}_{v}(I)) = \{S \in \mathbb{T}\llbracket t \rrbracket_{v_{K}}^{n} \mid \operatorname{In}_{S}(I) \text{ does not contain a monomial}\}$

Let us focus on the *p*-adic case.

Let us focus on the p-adic case. Recall that the p-adic norm of a natural number n is defined as

$$|n|_p := p^{-v_p(n)}$$

and \mathbb{Q}_p is the completion of \mathbb{Q} w.r.t. this norm. Let $\mathbb{C}_p := \widehat{\overline{\mathbb{Q}_p}}$.

Let us focus on the p-adic case. Recall that the p-adic norm of a natural number n is defined as

$$|n|_p := p^{-\nu_p(n)}$$

and \mathbb{Q}_p is the completion of \mathbb{Q} w.r.t. this norm. Let $\mathbb{C}_p := \widehat{\overline{\mathbb{Q}_p}}$.

Given $A = \sum_{i=0}^{\infty} a_i t^i \in \mathbb{C}_p[\![t]\!]$, its radius of convergence is

$$r(A) := \sup\{r \in [0,\infty) \mid \lim_{i \to +\infty} |a_i|_p r^i = 0\} \in [0,\infty].$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Given $B = \sum_{i=0}^{n} b_i t^i \in \mathbb{T}[[t]]$, we define its *p*-adic radius of convergence as:

$$r_p(B) := \sup\{r \in [0,\infty) \mid \lim_{i \to +\infty} p^{-b_i} r^i = 0\} \in [0,\infty]$$

with the convention that $p^{-\infty} = 0$.

Given $B = \sum_{i=0}^{n} b_i t^i \in \mathbb{T}[[t]]$, we define its *p*-adic radius of convergence as:

$$r_p(B) := \sup\{r \in [0,\infty) \mid \lim_{i \to +\infty} p^{-b_i} r^i = 0\} \in [0,\infty]$$

with the convention that $p^{-\infty} = 0$. Then $r(A) = r_p(\operatorname{trop}_{\widetilde{v}}(A))$.

Given $B = \sum_{i=0}^{n} b_i t^i \in \mathbb{T}[[t]]$, we define its *p*-adic radius of convergence as:

$$r_p(B) := \sup\{r \in [0,\infty) \mid \lim_{i \to +\infty} p^{-b_i} r^i = 0\} \in [0,\infty]$$

with the convention that $p^{-\infty} = 0$. Then $r(A) = r_p(\operatorname{trop}_{\widetilde{v}}(A))$.

Corollary

Let $I \in K[[t]]{x}$. Then:

 $\{r(A) \mid A \in \operatorname{Sol}_{K\llbracket t \rrbracket}(I)\} = \{r_p(S) \mid S \in \operatorname{Sol}_{{}^{}_{} \llbracket t \rrbracket_{\nu_{\kappa}}}(\operatorname{trop}_{\nu}(I))\}.$

(日本)(日本)(日本)(日本)(日本)(日本)

Given an ideal $J \in K[x_1, \ldots, x_n]$ a tropical basis for J is a subset G of I such that

$$V^{\mathrm{trop}}(\mathrm{trop}_{v}(I)) = \bigcap_{g \in G} V^{\mathrm{trop}}(\mathrm{trop}_{v}(g))$$

In general this set is larger than a set of generators for J, and it depends on some matroidal conditions.

Given an ideal $J \in K[x_1, \ldots, x_n]$ a tropical basis for J is a subset G of I such that

$$V^{\mathrm{trop}}(\mathrm{trop}_{v}(I)) = \bigcap_{g \in G} V^{\mathrm{trop}}(\mathrm{trop}_{v}(g))$$

In general this set is larger than a set of generators for J, and it depends on some matroidal conditions.

Analogously, Fink-Toghani proposed a notion of tropical differential basis for a differential ideal $I \subset K[[t]] \{x_1, \ldots, x_n\}$: a subset G of I such that (dropping some notation)

$$\operatorname{Sol}(\operatorname{trop}_{v}(I)) = \bigcap_{g \in G} \bigcap_{r=0}^{\infty} \operatorname{Sol}(\operatorname{trop}_{v}(d^{r}g))$$

and they show an (easy) example where such a basis is not finite.

To make these methods useful for computations:

criterion to verify if a subset of I is a tropical differential basis?

To make these methods useful for computations:

- criterion to verify if a subset of *I* is a tropical differential basis?
- criterion that certifies that a given ideal admits a finite tropical differential basis?

To make these methods useful for computations:

- criterion to verify if a subset of I is a tropical differential basis?
- criterion that certifies that a given ideal admits a finite tropical differential basis?
- > a different notion of tropical differential basis, that is ensured to be always finite?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

To make these methods useful for computations:

- criterion to verify if a subset of I is a tropical differential basis?
- criterion that certifies that a given ideal admits a finite tropical differential basis?
- a different notion of tropical differential basis, that is ensured to be always finite?

Thank you!

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

References

- F. Aroca, C. Garay, Z. Toghani The fundamental theorem of tropical differential algebraic geometry. Pacific Journal of Mathematics, 283(2), 257-270.
- A. Fink, Z. Toghani Initial forms and a notion of basis for tropical differential equations. Pacific Journal of Mathematics 318(2), 453-468.
- J. Giansiracusa, N. Giansiracusa Equations of tropical varieties. Duke Mathematical Journal, 165(18), 3379-3433.
- J. Giansiracusa, S. Mereta A general framework for tropical differential equations, arXiv:2111.03925.
- D. Grigoriev Tropical differential equations, Advances in Applied Mathematics, 2017, 82: 120-128.
- S. Mereta The Fundamental Theorem of tropical differential algebra over nontrivially valued fields and the radius of convergence of nonarchimedean differential equations, arXiv:2303.12124.