The Fundamental Theorem of Tropical Differential Algebra over nontrivially valued fields

Stefano Mereta (technically not at) MPI MiS Leipzig
$21^{\text {st }}$ June 2023
Algebraic and tropical methods for solving differential equations, Oaxaca, MX.

Summary of contents

- Preliminaries and statement of the theorem;

Summary of contents

－Preliminaries and statement of the theorem；
－Some definitions and sketch of proof；

Summary of contents

- Preliminaries and statement of the theorem;
- Some definitions and sketch of proof;
- (Maybe) Tropical methods for radius of convergence of solutions to nonarchimedean differential equations.

Preliminaries: differential polynomials

$\left(R, d_{R}\right)$ differential ring. Let

$$
R\left\{x_{1}, \ldots, x_{n}\right\}:=R\left[x_{i}^{(j)} \mid i=1, \ldots, n ; j \in \mathbb{N}\right]
$$

Equipped with the differential $d\left(x_{i}^{(j)}\right)=x_{i}^{(j+1)}$ extending d_{R}, it is a differential ring.

Preliminaries: differential polynomials

$\left(R, d_{R}\right)$ differential ring. Let

$$
R\left\{x_{1}, \ldots, x_{n}\right\}:=R\left[x_{i}^{(j)} \mid i=1, \ldots, n ; j \in \mathbb{N}\right]
$$

Equipped with the differential $d\left(x_{i}^{(j)}\right)=x_{i}^{(j+1)}$ extending d_{R}, it is a differential ring.
An element $r=\left(r_{1}, \ldots, r_{n}\right) \in R^{n}$ is a solution for $F \in R\left\{x_{1}, \ldots, x_{n}\right\}$ iff

$$
\left.F\right|_{x_{i}^{(j)}=d_{R}^{j} r_{i}}=0
$$

Preliminaries: semirings

A semiring (S, \oplus, \odot) is an algebraic structure satisfying all the axioms to be a ring but the existence of additive inverses.

Preliminaries: semirings

A semiring (S, \oplus, \odot) is an algebraic structure satisfying all the axioms to be a ring but the existence of additive inverses. It is idempotent if $a \oplus a=a$ for all $a \in S$.

Preliminaries: semirings

A semiring (S, \oplus, \odot) is an algebraic structure satisfying all the axioms to be a ring but the existence of additive inverses. It is idempotent if $a \oplus a=a$ for all $a \in S$.

Example

- $\mathbb{T}:=(\mathbb{R} \cup\{\infty\}, \min ,+)$, the tropical idempotent semiring;
- For $n \in \mathbb{N}$, let $\left(\mathbb{T}_{n}, \oplus, \odot\right):=\left(\mathbb{R}^{n} \cup\{\infty\}\right.$, $\left.\min _{\text {lex }},+\right)$. It is an idempotent semiring. For $n=1$, we recover the usual tropical semiring \mathbb{T}.

Preliminaries: valuations

We say that a sum in an idempotent semiring tropically vanishes if by deleting any of the summands the result does not change.

Preliminaries: valuations

We say that a sum in an idempotent semiring tropically vanishes if by deleting any of the summands the result does not change.

Let R be a ring, a rank n valuation is a map $v: R \rightarrow \mathbb{T}_{n}$ such that:

1. $v(0)=\infty, v(1)=v(-1)=0$;
2. $v(a b)=v(a) \odot v(b)$;
3. $v(a+b) \oplus v(a) \oplus v(b)$ tropically vanishes (i.e. min is attained at least twice).

Preliminaries: setting

Let K be an uncountable, algebraically closed field of characteristic 0 equipped with a valuation $v_{K}: K \rightarrow \mathbb{T}$.

Let $(K \llbracket t \rrbracket, d)$ be the differential ring of power series over K and $v: K \llbracket t \rrbracket \rightarrow \mathbb{T}_{2}$ the rank 2 valuation defined as:

$$
a_{n_{0}} t^{n_{0}}+\ldots \longmapsto\left(n_{0}, v_{K}\left(a_{n_{0}}\right)\right)
$$

Preliminaries: tropicalization of differential polynomials

Given a differential polynomial $P \in K \llbracket t \rrbracket\left\{x_{1}, \ldots, x_{n}\right\}$ we define its tropicalization trop $_{v}(P)$ with respect to v as the element of $\mathbb{T}_{2}\left\{x_{1}, \ldots, x_{n}\right\}$ obtained by applying v to the coefficients of P.

Preliminaries: tropicalization of differential polynomials

Given a differential polynomial $P \in K \llbracket t \rrbracket\left\{x_{1}, \ldots, x_{n}\right\}$ we define its tropicalization trop $_{v}(P)$ with respect to v as the element of $\mathbb{T}_{2}\left\{x_{1}, \ldots, x_{n}\right\}$ obtained by applying v to the coefficients of P.

Example

Let $P=12 t^{2} x x^{\prime}+(-9+3 t) x^{\prime \prime} \in \mathbb{Q}_{3} \llbracket t \rrbracket\{x\}$, then its tropicalization is:

$$
\operatorname{trop}_{v}(P)=(2,1) x x^{\prime}+(0,2) x^{\prime \prime}
$$

Preliminaries: tropicalization of solutions

The idempotent semiring $\mathbb{T} \llbracket t \rrbracket$ can be endowed with the tropical differential:

$$
d_{v_{K}}\left(t^{n}\right)= \begin{cases}v_{K}(n) t^{n-1} & n \geq 1 \\ \infty & n=0\end{cases}
$$

Preliminaries: tropicalization of solutions

The idempotent semiring $\mathbb{T} \llbracket t \rrbracket$ can be endowed with the tropical differential:

$$
d_{v_{K}}\left(t^{n}\right)= \begin{cases}v_{K}(n) t^{n-1} & n \geq 1 \\ \infty & n=0\end{cases}
$$

This is an additive map such that, for every $A, B \in \mathbb{T} \llbracket t \rrbracket$ the expression

$$
d_{v_{K}}(A B) \oplus B d_{v_{K}}(A) \oplus A d_{V_{K}}(B)
$$

tropically vanishes.

Preliminaries: tropicalization of solutions

The idempotent semiring $\mathbb{T} \llbracket t \rrbracket$ can be endowed with the tropical differential:

$$
d_{v_{K}}\left(t^{n}\right)= \begin{cases}v_{K}(n) t^{n-1} & n \geq 1 \\ \infty & n=0\end{cases}
$$

This is an additive map such that, for every $A, B \in \mathbb{T} \llbracket t \rrbracket$ the expression

$$
d_{v_{K}}(A B) \oplus B d_{v_{K}}(A) \oplus A d_{V_{K}}(B)
$$

tropically vanishes. We denote $\left(\mathbb{T} \llbracket t \rrbracket, d_{V_{K}}\right)$ as $\mathbb{T} \llbracket t \rrbracket_{v_{K}}$.

Preliminaries: tropicalization of solutions

We tropicalize elements of $K \llbracket t \rrbracket$ via the map $\widetilde{v}: K \llbracket t \rrbracket \rightarrow \mathbb{T} \llbracket t \rrbracket \rrbracket_{v_{K}}$ applying v_{K} coefficientwise:

$$
\sum_{i=0}^{\infty} a_{i} t^{i} \mapsto \sum_{i=0}^{\infty} v_{K}\left(a_{i}\right) t^{i}
$$

This maps commutes with the differentials.
Applying \widetilde{v} coordinatewise we obtain the tropicalization map trop $\tilde{v}_{v}: K \llbracket t \rrbracket^{n} \rightarrow \mathbb{T} \llbracket t \rrbracket_{v_{k}}^{n}$.

Preliminaries: tropical solutions

Let $\Phi: \mathbb{T} \llbracket t \rrbracket_{v_{K}} \rightarrow \mathbb{T}_{2}$ be the homomorphism of semirings

$$
b_{n_{0}} t^{n_{0}}+\cdots \mapsto\left(n_{0}, b_{n_{0}}\right) .
$$

Given a $P \in K \llbracket t \rrbracket\left\{x_{1}, \ldots, x_{n}\right\}$ and $S=\left(S_{1}, \ldots, S_{n}\right) \in \mathbb{T} \llbracket t \rrbracket_{v_{k}}^{n}$, we say that S is a solution for the tropicalization of P if when plugging $\Phi\left(d^{j} S_{i}\right)$ for $x_{i}^{(j)}$ in $\operatorname{trop}_{v}(P)$ the result tropically vanishes in \mathbb{T}_{2}.

Preliminaries: tropical solutions

Let $\Phi: \mathbb{T} \llbracket t \rrbracket_{v_{K}} \rightarrow \mathbb{T}_{2}$ be the homomorphism of semirings

$$
b_{n_{0}} t^{n_{0}}+\cdots \mapsto\left(n_{0}, b_{n_{0}}\right) .
$$

Given a $P \in K \llbracket t \rrbracket\left\{x_{1}, \ldots, x_{n}\right\}$ and $S=\left(S_{1}, \ldots, S_{n}\right) \in \mathbb{T} \llbracket t \rrbracket_{v_{K}}^{n}$, we say that S is a solution for the tropicalization of P if when plugging $\Phi\left(d^{j} S_{i}\right)$ for $x_{i}^{(j)}$ in $\operatorname{trop}_{v}(P)$ the result tropically vanishes in \mathbb{T}_{2}.

Example

Let P as before, $\operatorname{trop}_{v}(P)=(2,1) x x^{\prime}+(0,2) x^{\prime \prime}$ and $S=0+1 t+(-1) t^{4} \in \mathbb{T} \llbracket t \rrbracket_{v_{3}}$, then S is a solution for $\operatorname{trop}_{v}(P)$:

$$
\begin{aligned}
\operatorname{trop}_{v} P(S) & =(2,1) \odot \Phi(S) \odot \Phi(d S) \oplus(0,2) \odot \Phi\left(d^{2} S\right)= \\
& =(2,1) \odot(0,0) \odot(0,1) \oplus(0,2) \odot(2,0)= \\
& =(2,2) \oplus(2,2)
\end{aligned}
$$

Fundamental theorem of tropical differential algebra

Theorem

Let K be an uncountable algebraically closed field of characteristic 0 and $v_{K}: K \rightarrow \mathbb{T} a$ valuation. Let I be a differential ideal in $K \llbracket t \rrbracket\left\{x_{1}, \ldots, x_{n}\right\}$, then the following equality holds:

$$
\operatorname{Sol}_{\mathbb{T} \llbracket t \rrbracket_{v_{K}}}\left(\operatorname{trop}_{v}(I)\right)=\operatorname{trop}_{\widetilde{v}}\left(\operatorname{Sol}_{K \llbracket t \rrbracket}(I)\right)
$$

Motivations/Applications

- The Fundamental Theorem had already been proven by Aroca, Garay, Toghani in the case of trivial valuation

Motivations/Applications

- The Fundamental Theorem had already been proven by Aroca, Garay, Toghani in the case of trivial valuation \rightsquigarrow only tropical info about the support of power series solutions.

Motivations/Applications

- The Fundamental Theorem had already been proven by Aroca, Garay, Toghani in the case of trivial valuation \rightsquigarrow only tropical info about the support of power series solutions.
- In the nontrivially valued case we want to have a valuated version of the fundamental theorem

Motivations/Applications

- The Fundamental Theorem had already been proven by Aroca, Garay, Toghani in the case of trivial valuation \rightsquigarrow only tropical info about the support of power series solutions.
- In the nontrivially valued case we want to have a valuated version of the fundamental theorem \rightsquigarrow tropical info about convergence of power series solutions.

Motivations/Applications

- The Fundamental Theorem had already been proven by Aroca, Garay, Toghani in the case of trivial valuation \rightsquigarrow only tropical info about the support of power series solutions.
- In the nontrivially valued case we want to have a valuated version of the fundamental theorem \rightsquigarrow tropical info about convergence of power series solutions.
- For p-adic differential equations, the convergence radius function of solutions is a piecewise linear function in the norm of the expansion point. We want to have tropical methods for computing it.

The polynomials $F_{l, r}$

Fix $K, v, \widetilde{v}, \Phi$ and I as above.

The polynomials $F_{l, r}$

Fix $K, v, \widetilde{v}, \Phi$ and I as above.
By results of Ritt, there is a finite number of elements $f_{1}, \ldots, f_{s} \in I$ such that

$$
\operatorname{Sol}_{K \llbracket t \rrbracket}(I)=\bigcap_{l=1}^{s} \operatorname{Sol}_{K \llbracket \llbracket \rrbracket}\left(f_{l}\right)
$$

The polynomials $F_{l, r}$

Fix $K, v, \widetilde{v}, \Phi$ and I as above.
By results of Ritt, there is a finite number of elements $f_{1}, \ldots, f_{s} \in I$ such that

$$
\operatorname{Sol}_{K \llbracket t \rrbracket}(I)=\bigcap_{l=1}^{s} \operatorname{Sol}_{K \llbracket \llbracket \rrbracket}\left(f_{l}\right)
$$

For all $I=1, \ldots, s, r \in \mathbb{N}$, set

$$
F_{l, r}:=\left.\left(d^{r} f_{l}\right)\right|_{t=0} \in K\left[x_{i}^{(j)} \mid i=1, \ldots, n ; j \in \mathbb{N}\right]
$$

and

$$
A_{\infty}:=V\left(\left\{F_{l, r}\right\}_{\substack{1 \leq I \leq s \\ r \in \mathbb{N}}}\right) \subset\left(K^{\mathbb{N}}\right)^{n}
$$

The function Ψ

The map $\Psi: K^{\mathbb{N}} \rightarrow K \llbracket t \rrbracket$ defined as

$$
\left(a_{j}\right)_{j \in \mathbb{N}} \mapsto \sum_{j=0}^{\infty} \frac{1}{j!} a_{j} t^{j}
$$

is a bijection. We denote the bijection $\left(K^{\mathbb{N}}\right)^{n} \rightarrow K \llbracket t \rrbracket^{n}$ again by ψ.

The function Ψ

The map $\Psi: K^{\mathbb{N}} \rightarrow K \llbracket t \rrbracket$ defined as

$$
\left(a_{j}\right)_{j \in \mathbb{N}} \mapsto \sum_{j=0}^{\infty} \frac{1}{j!} a_{j} t^{j}
$$

is a bijection. We denote the bijection $\left(K^{\mathbb{N}}\right)^{n} \rightarrow K \llbracket t \rrbracket^{n}$ again by ψ.
Given $f \in K \llbracket t \rrbracket\left\{x_{1}, \ldots, x_{n}\right\}$ and $a \in\left(K^{\mathbb{N}}\right)^{n}$ the following equality holds:

$$
f(\Psi(a))=\sum_{r=0}^{\infty}\left(\left.\frac{1}{r!}\left(d^{r}(f)\right)\right|_{t=0}(a)\right) t^{r}
$$

The function Ψ

The map $\Psi: K^{\mathbb{N}} \rightarrow K \llbracket t \rrbracket$ defined as

$$
\left(a_{j}\right)_{j \in \mathbb{N}} \mapsto \sum_{j=0}^{\infty} \frac{1}{j!} a_{j} t^{j}
$$

is a bijection. We denote the bijection $\left(K^{\mathbb{N}}\right)^{n} \rightarrow K \llbracket t \rrbracket^{n}$ again by ψ.
Given $f \in K \llbracket t \rrbracket\left\{x_{1}, \ldots, x_{n}\right\}$ and $a \in\left(K^{\mathbb{N}}\right)^{n}$ the following equality holds:

$$
f(\Psi(a))=\sum_{r=0}^{\infty}\left(\left.\frac{1}{r!}\left(d^{r}(f)\right)\right|_{t=0}(a)\right) t^{r}
$$

Thus:

$$
\operatorname{Sol}_{K \llbracket t \rrbracket}(I)=\Psi\left(A_{\infty}\right)
$$

Truncations

For $m \in \mathbb{N}$, let N_{m} be the smallest natural number such that

$$
F_{l, r} \in K\left[x_{i}^{(j)} \mid i=1, \ldots, n ; j \leq N_{m}\right] \quad \text { for all } 1 \leq I \leq s, 0 \leq r \leq m
$$

Truncations

For $m \in \mathbb{N}$, let N_{m} be the smallest natural number such that

$$
F_{l, r} \in K\left[x_{i}^{(j)} \mid i=1, \ldots, n ; j \leq N_{m}\right] \quad \text { for all } 1 \leq I \leq s, 0 \leq r \leq m
$$

and let

$$
A_{m}:=V\left(\left\{F_{l, r}\right\}_{\substack{1 \leq 1 \leq s \\ 0 \leq r \leq m}}\right) \subset\left(K^{N_{m}+1}\right)^{n}
$$

Truncations

For $m \in \mathbb{N}$, let N_{m} be the smallest natural number such that

$$
F_{l, r} \in K\left[x_{i}^{(j)} \mid i=1, \ldots, n ; j \leq N_{m}\right] \quad \text { for all } 1 \leq I \leq s, 0 \leq r \leq m
$$

and let

$$
A_{m}:=V\left(\left\{F_{l, r}\right\}_{\substack{1 \leq l \leq s \\ 0 \leq r \leq m}}\right) \subset\left(K^{N_{m}+1}\right)^{n}
$$

then

$$
A_{\infty}=\lim _{\leftrightarrows} A_{m}
$$

Fibers of tropicalization

Let $m \in \mathbb{N}$ and $S:=\left(S_{1}, \ldots, S_{n}\right) \in \mathbb{T} \llbracket t \rrbracket_{v_{K}}^{n}$, where we write S_{i} as $\sum c_{i, j} t^{j}$ for every $i=1, \ldots, n$. With this notation, we define:

$$
\left(\mathbb{V}_{\infty}\right)_{S}^{v_{K}}:=v_{K}^{-1}\left(\left(c_{i, j}+v_{K}(j!)\right)_{\substack{i=1, \ldots, n \\ j \in \mathbb{N}}}\right) \in\left(K^{\mathbb{N}}\right)^{n}
$$

and

$$
\left(\mathbb{V}_{m}\right)_{S}^{v_{K}}:=v_{K}^{-1}\left(\left(c_{i, j}+v_{K}(j!)\right)_{\substack{i=1, \ldots, n \\ j \leq N_{m}}}\right) \in\left(K^{N_{m}+1}\right)^{n}
$$

Fibers of tropicalization

Let $m \in \mathbb{N}$ and $S:=\left(S_{1}, \ldots, S_{n}\right) \in \mathbb{T} \llbracket t \rrbracket_{v_{K}}^{n}$, where we write S_{i} as $\sum c_{i, j} t^{j}$ for every $i=1, \ldots, n$. With this notation, we define:

$$
\left(\mathbb{V}_{\infty}\right)_{S}^{v_{K}}:=v_{K}^{-1}\left(\left(c_{i, j}+v_{K}(j!)\right)_{\substack{i=1, \ldots, n \\ j \in \mathbb{N}}}\right) \in\left(K^{\mathbb{N}}\right)^{n}
$$

and

$$
\left(\mathbb{V}_{m}\right)_{S}^{v_{K}}:=v_{K}^{-1}\left(\left(c_{i, j}+v_{K}(j!)\right)_{\substack{i=1, \ldots, n \\ j \leq N_{m}}}\right) \in\left(K^{N_{m}+1}\right)^{n}
$$

Furthermore, let

$$
\left(A_{m}\right)_{s}^{v_{K}}:=A_{m} \cap\left(\mathbb{V}_{m}\right)_{s}^{v_{K}} . \quad\left(A_{\infty}\right)_{s}^{v_{K}}:=A_{\infty} \cap\left(\mathbb{V}_{\infty}\right)_{s}^{v_{K}}
$$

Criterion for lifting tropical solutions

As before for any $S \in \mathbb{T} \llbracket t \rrbracket_{v_{K}}^{n}$ we have $\left(A_{\infty}\right)_{S}^{v_{K}}=\lim _{\longleftarrow}\left(A_{m}\right)_{S}^{v_{K}}$.

Criterion for lifting tropical solutions

As before for any $S \in \mathbb{T} \llbracket t \rrbracket_{v_{K}}^{n}$ we have $\left(A_{\infty}\right)_{S}^{v_{K}}=\lim _{\leftrightarrows}\left(A_{m}\right)_{S}^{v_{K}}$. Furthermore Remark

$$
S \in \operatorname{trop}_{\widetilde{v}}\left(\operatorname{Sol}_{K \llbracket t \rrbracket}(I)\right) \Longleftrightarrow\left(A_{\infty}\right)_{S}^{v_{K}} \neq \emptyset .
$$

Criterion for lifting tropical solutions

As before for any $S \in \mathbb{T} \llbracket t \rrbracket_{v_{K}}^{n}$ we have $\left(A_{\infty}\right)_{S}^{v_{K}}=\lim _{\leftrightarrows}\left(A_{m}\right)_{S}^{v_{K}}$. Furthermore Remark

$$
S \in \operatorname{trop}_{\widetilde{v}}\left(\operatorname{Sol}_{K \llbracket t \rrbracket}(I)\right) \Longleftrightarrow\left(A_{\infty}\right)_{S}^{v_{K}} \neq \emptyset .
$$

Proposition

$$
\left(A_{\infty}\right)_{S}^{v_{K}} \neq \emptyset \Longleftrightarrow\left(A_{m}\right)_{S}^{v_{K}} \neq \emptyset \text { for all } m \in \mathbb{N} .
$$

Proof of the theorem

Let $\Psi_{\text {trop }}: \mathbb{T}^{\mathbb{N}} \rightarrow \mathbb{T} \llbracket t \rrbracket_{v_{k}}$ be the bijective map defined by:

$$
\Psi_{\text {trop }}\left(\left(b_{j}\right)_{j \in \mathbb{N}}\right)=\sum_{j=0}^{\infty}\left(b_{j}-v_{K}(j!)\right) t^{j} .
$$

Proof of the theorem

Let $\Psi_{\text {trop }}: \mathbb{T}^{\mathbb{N}} \rightarrow \mathbb{T} \llbracket t \rrbracket_{v_{k}}$ be the bijective map defined by:

$$
\Psi_{\text {trop }}\left(\left(b_{j}\right)_{j \in \mathbb{N}}\right)=\sum_{j=0}^{\infty}\left(b_{j}-v_{K}(j!)\right) t^{j}
$$

Its inverse is defined as follows:

$$
\Psi_{\text {trop }}^{-1}(S)=\left(\left.\left(d_{V_{k}}^{j} S\right)\right|_{t=\infty}\right)_{j \in \mathbb{N}} .
$$

We denote again by $\Psi_{\text {trop }}$ the map $\left(\mathbb{T}^{\mathbb{N}}\right)^{n} \rightarrow \mathbb{T} \llbracket t \rrbracket_{v_{K}}^{n}$ obtained by applying $\Psi_{\text {trop }}$ coordinatewise.

Proof of the theorem

Lemma

For every $m \in \mathbb{N}$, let $\pi_{m}:\left(\mathbb{T}^{\mathbb{N}}\right)^{n} \rightarrow\left(\mathbb{T}^{N_{m}+1}\right)^{n}$ be the projection sending every entry to its first $N_{m}+1$ coordinates. The following inclusion holds for every $m \in \mathbb{N}$:

$$
\left.\pi_{m} \circ \Psi_{\text {trop }}^{-1}\left(\operatorname{Sol}_{\mathbb{T} \llbracket t \rrbracket_{v_{K}}}\left(\operatorname{trop}_{v}(I)\right)\right) \subset V^{\text {trop }}\left(\left\{\operatorname{trop}_{v_{K}}\left(F_{l, r}\right)\right\}_{l=1, \ldots, s}^{0 \leq r \leq m}\right\}\right)
$$

Proof of the theorem

- The inclusion $\operatorname{Sol}_{\mathbf{s}}\left(\operatorname{trop}_{v}(I)\right) \supseteq \operatorname{trop}_{\tilde{v}}\left(\operatorname{Sol}_{k[t t]}(I)\right)$ follows from the properties of v, \tilde{v} and Φ;

Proof of the theorem

- The inclusion $\operatorname{Sol}_{S}\left(\operatorname{trop}_{v}(I)\right) \supseteq \operatorname{trop}_{\tilde{v}}\left(\operatorname{Sol}_{K \llbracket t \rrbracket}(I)\right)$ follows from the properties of v, \widetilde{v} and Φ;
- For every $m \in \mathbb{N}$ by the Fundamental Theorem of Tropical Geometry, we have:

$$
\operatorname{trop}_{v_{K}}\left(A_{m}\right)=V^{\text {trop }}\left(\left\{\operatorname{trop}_{v_{K}}\left(F_{l, r}\right)\right\}_{\substack{l=1, \ldots, s \\ 0 \leq r \leq m}}\right) .
$$

Let $S \in \operatorname{Sol}_{\mathbb{T} \llbracket t \rrbracket_{v_{K}}}\left(\operatorname{trop}_{v}(I)\right)$. From the Lemma above, we have, for all $m \in \mathbb{N}$:

$$
\pi_{m} \circ \Psi_{\text {trop }}^{-1}(S) \in V^{\text {trop }}\left(\left\{\operatorname{trop}_{v_{K}}\left(F_{l, r}\right)\right\}_{\substack{l=1, \ldots, n \\ 0 \leq r \leq m}}\right)=\operatorname{trop}_{v_{K}}\left(A_{m}\right)
$$

Proof of the theorem

- The inclusion $\operatorname{Sol}_{\mathbf{S}}\left(\operatorname{trop}_{v}(I)\right) \supseteq \operatorname{trop}_{\tilde{v}}\left(\operatorname{Sol}_{K \llbracket t \rrbracket}(I)\right)$ follows from the properties of v, \widetilde{v} and Φ;
- For every $m \in \mathbb{N}$ by the Fundamental Theorem of Tropical Geometry, we have:

$$
\operatorname{trop}_{v_{K}}\left(A_{m}\right)=V^{\text {trop }}\left(\left\{\operatorname{trop}_{v_{K}}\left(F_{l, r}\right)\right\}_{\substack{l=1, \ldots, s \\ 0 \leq r \leq m}}\right)
$$

Let $S \in \operatorname{Sol}_{\mathbb{T} \llbracket t \rrbracket_{v_{K}}}\left(\operatorname{trop}_{v}(I)\right)$. From the Lemma above, we have, for all $m \in \mathbb{N}$:

$$
\pi_{m} \circ \Psi_{\text {trop }}^{-1}(S) \in V^{\text {trop }}\left(\left\{\operatorname{trop}_{v_{K}}\left(F_{l, r}\right)\right\}_{\substack{l=1, \ldots, n \\ 0 \leq r \leq m}}\right)=\operatorname{trop}_{v_{K}}\left(A_{m}\right)
$$

\Longrightarrow for all $m \in \mathbb{N}$ there exists an element $x \in A_{m}$ whose tropicalization is $\pi_{m} \circ \Psi_{\text {trop }}^{-1}(S)$, i.e. $x \in\left(A_{m}\right)_{S}^{v_{K}}$. Finally, thanks to Proposition and Remark,

$$
\left(A_{m}\right)_{S}^{v_{K}} \neq \emptyset \text { for all } m \in \mathbb{N} \Longleftrightarrow S \in \operatorname{trop}_{\tilde{v}}\left(\operatorname{Sol}_{K \llbracket t \rrbracket}(I)\right)
$$

Last remark on the theorem

There is a way to define the initial of a differential ideal I with respect to a weight vector $S \in \mathbb{T} \llbracket t \rrbracket_{v_{K}}^{n}$, so we get the following:

Last remark on the theorem

There is a way to define the initial of a differential ideal I with respect to a weight vector $S \in \mathbb{T} \llbracket t \rrbracket_{v_{K}}^{n}$, so we get the following:
Theorem
Under the same hypothesis of the previous theorem, the following equalities hold: $\operatorname{trop}_{\tilde{v}}\left(\operatorname{Sol}_{K \llbracket t \rrbracket}(I)\right)=\operatorname{Sol}_{\mathbb{T} \llbracket t \rrbracket_{v_{K}}}\left(\operatorname{trop}_{v}(I)\right)=\left\{S \in \mathbb{T} \llbracket t \rrbracket_{v_{K}}^{n} \mid \operatorname{In}_{S}(I)\right.$ does not contain a monomia $\}$

Radius of convergence

Let us focus on the p－adic case．

Radius of convergence

Let us focus on the p-adic case. Recall that the p-adic norm of a natural number n is defined as

$$
|n|_{p}:=p^{-v_{p}(n)}
$$

and \mathbb{Q}_{p} is the completion of \mathbb{Q} w.r.t. this norm. Let $\mathbb{C}_{p}:=\widehat{\widehat{\mathbb{Q}_{p}}}$.

Radius of convergence

Let us focus on the p-adic case. Recall that the p-adic norm of a natural number n is defined as

$$
|n|_{p}:=p^{-v_{p}(n)}
$$

and \mathbb{Q}_{p} is the completion of \mathbb{Q} w.r.t. this norm. Let $\mathbb{C}_{p}:=\widehat{\mathbb{Q}_{p}}$.
Given $A=\sum_{i=0}^{\infty} a_{i} t^{i} \in \mathbb{C}_{p} \llbracket t \rrbracket$, its radius of convergence is

$$
r(A):=\sup \left\{r \in[0, \infty)\left|\lim _{i \rightarrow+\infty}\right| a_{i}| |_{p} r^{i}=0\right\} \in[0, \infty] .
$$

Radius of convergence

Given $B=\sum_{i=0}^{n} b_{i} t^{i} \in \mathbb{T} \llbracket t \rrbracket$, we define its p-adic radius of convergence as:

$$
r_{p}(B):=\sup \left\{r \in[0, \infty) \mid \lim _{i \rightarrow+\infty} p^{-b_{i}} r^{i}=0\right\} \in[0, \infty]
$$

with the convention that $p^{-\infty}=0$.

Radius of convergence

Given $B=\sum_{i=0}^{n} b_{i} t^{i} \in \mathbb{T} \llbracket t \rrbracket$, we define its p-adic radius of convergence as:

$$
r_{p}(B):=\sup \left\{r \in[0, \infty) \mid \lim _{i \rightarrow+\infty} p^{-b_{i}} r^{i}=0\right\} \in[0, \infty]
$$

with the convention that $p^{-\infty}=0$. Then $r(A)=r_{p}\left(\operatorname{trop}_{\widetilde{v}}(A)\right)$.

Radius of convergence

Given $B=\sum_{i=0}^{n} b_{i} t^{i} \in \mathbb{T} \llbracket t \rrbracket$, we define its p-adic radius of convergence as:

$$
r_{p}(B):=\sup \left\{r \in[0, \infty) \mid \lim _{i \rightarrow+\infty} p^{-b_{i}} r^{i}=0\right\} \in[0, \infty]
$$

with the convention that $p^{-\infty}=0$. Then $r(A)=r_{p}\left(\operatorname{trop}_{\widetilde{v}}(A)\right)$.
Corollary
Let $I \in K \llbracket t \rrbracket\{x\}$. Then:

$$
\left\{r(A) \mid A \in \operatorname{Sol}_{K \llbracket t \rrbracket}(I)\right\}=\left\{r_{p}(S) \mid S \in \operatorname{Sol}_{\mathbb{T} \llbracket t \rrbracket_{v_{K}}}\left(\operatorname{trop}_{v}(I)\right)\right\} .
$$

Radius of convergence

Given an ideal $J \in K\left[x_{1}, \ldots, x_{n}\right]$ a tropical basis for J is a subset G of $/$ such that

$$
V^{\text {trop }}\left(\operatorname{trop}_{v}(I)\right)=\bigcap_{g \in G} V^{\text {trop }}\left(\operatorname{trop}_{v}(g)\right)
$$

In general this set is larger than a set of generators for J, and it depends on some matroidal conditions.

Radius of convergence

Given an ideal $J \in K\left[x_{1}, \ldots, x_{n}\right]$ a tropical basis for J is a subset G of I such that

$$
V^{\text {trop }}\left(\operatorname{trop}_{v}(I)\right)=\bigcap_{g \in G} V^{\text {trop }}\left(\operatorname{trop}_{v}(g)\right)
$$

In general this set is larger than a set of generators for J, and it depends on some matroidal conditions.

Analogously, Fink-Toghani proposed a notion of tropical differential basis for a differential ideal $I \subset K \llbracket t \rrbracket\left\{x_{1}, \ldots, x_{n}\right\}$: a subset G of I such that (dropping some notation)

$$
\operatorname{Sol}\left(\operatorname{trop}_{v}(I)\right)=\bigcap_{g \in G} \bigcap_{r=0}^{\infty} \operatorname{Sol}\left(\operatorname{trop}_{v}\left(d^{r} g\right)\right)
$$

and they show an (easy) example where such a basis is not finite.

Radius of convergence

To make these methods useful for computations:

- criterion to verify if a subset of I is a tropical differential basis?

Radius of convergence

To make these methods useful for computations:

- criterion to verify if a subset of I is a tropical differential basis?
- criterion that certifies that a given ideal admits a finite tropical differential basis?

Radius of convergence

To make these methods useful for computations:

- criterion to verify if a subset of I is a tropical differential basis?
- criterion that certifies that a given ideal admits a finite tropical differential basis?
- a different notion of tropical differential basis, that is ensured to be always finite?

Radius of convergence

To make these methods useful for computations:

- criterion to verify if a subset of I is a tropical differential basis?
- criterion that certifies that a given ideal admits a finite tropical differential basis?
- a different notion of tropical differential basis, that is ensured to be always finite?

Thank you!

References

- F. Aroca, C. Garay, Z. Toghani - The fundamental theorem of tropical differential algebraic geometry. Pacific Journal of Mathematics, 283(2), 257-270.
- A. Fink, Z. Toghani - Initial forms and a notion of basis for tropical differential equations. Pacific Journal of Mathematics 318(2), 453-468.
- J. Giansiracusa, N. Giansiracusa - Equations of tropical varieties. Duke Mathematical Journal, 165(18), 3379-3433.
- J. Giansiracusa, S. Mereta - A general framework for tropical differential equations, arXiv:2111.03925.
- D. Grigoriev - Tropical differential equations, Advances in Applied Mathematics, 2017, 82: 120-128.
- S. Mereta - The Fundamental Theorem of tropical differential algebra over nontrivially valued fields and the radius of convergence of nonarchimedean differential equations, arXiv:2303.12124.

