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» (Maybe) Tropical methods for radius of convergence of solutions to
nonarchimedean differential equations.
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Preliminaries: differential polynomials

(R, dr) differential ring. Let

R{x1,...,Xn} = R[X,-(j) |i=1,...,nj€N]
Equipped with the differential d(xl.(j)) = x,.(jH) extending dg, it is a differential ring.
An element r = (r1,...,r,) € R" is a solution for F € R{x1,...,x,} iff

F|xi0):dj§r, =0
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Preliminaries: semirings

A semiring (S,®,®) is an algebraic structure satisfying all the axioms to be a ring but
the existence of additive inverses. It is idempotent if adda=aforallae S.

Example

» T :=(RU{oco}, min,+), the tropical idempotent semiring;

» ForneN, let (T,,@®,®) = (R"U{oco}, minje,+). It is an idempotent semiring.
For n = 1, we recover the usual tropical semiring T.
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Preliminaries: valuations

We say that a sum in an idempotent semiring tropically vanishes if by deleting any of
the summands the result does not change.

Let R be a ring, a rank n valuation is a map v : R — T, such that:
1. v(0) = o0, v(1) = v(-1) =0;
2. v(ab) = v(a) ® v(b);
3. v(a+ b) @ v(a) & v(b) tropically vanishes (i.e. min is attained at least twice).



Preliminaries: setting

Let K be an uncountable, algebraically closed field of characteristic 0 equipped with a
valuation vk : K — T.

Let (K[t], d) be the differential ring of power series over K and v : K[t] — T> the
rank 2 valuation defined as:

angt™ + ... — (no, vk(any))-
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Preliminaries: tropicalization of differential polynomials

Given a differential polynomial P € K[t]{xi,...,xn} we define its tropicalization
trop, (P) with respect to v as the element of To{xi,...,x,} obtained by applying v to
the coefficients of P.

Example
Let P =12t>xx" 4+ (=9 4 3t)x” € Qs[t]{x}, then its tropicalization is:

trop, (P) = (2,1)xx’ + (0,2)x"
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Preliminaries: tropicalization of solutions

The idempotent semiring T[t] can be endowed with the tropical differential:

tn—l

(") = {VK(”) "~

00 n=0.
This is an additive map such that, for every A, B € T[t] the expression
o (AB) & Bd (A) & Ady, (B)

tropically vanishes. We denote (T[t], dy, ) as T[t]v,-



Preliminaries: tropicalization of solutions

We tropicalize elements of K[t] via the map v : K[t] — T[t]., applying vk

coefficientwise:
o0 o0
Z ajt' — Z vK(a;)t’
i=0 i=0

This maps commutes with the differentials.

Applying v coordinatewise we obtain the tropicalization map tropy : K[t]" — T[¢]7, .



Preliminaries: tropical solutions
Let ® : T[t],, — T2 be the homomorphism of semirings

bpgt™ + -+ +— (ng, bp,y)-

Given a P € K[t]{x1,...,xp} and S = (S1,...,S,) € T[t]7,, we say that S is a

solution for the tropicalization of P if when plugging ®(d’S;) for x,.(j) in trop, (P) the
result tropically vanishes in T5.



Preliminaries: tropical solutions
Let ® : T[t],, — T2 be the homomorphism of semirings

bpgt™ + -+ +— (ng, bp,y)-

Given a P € K[t[{x1,...,xn} and S = (S51,...,Sn) € T[t]]. , we say that S is a

vK!
solution for the tropicalization of P if when plugging ®(d’S;) for x,.(J) in trop, (P) the
result tropically vanishes in T5.
Example

Let P as before, trop,(P) = (2,1)xx’ + (0,2)x” and S = 0 + 1t + (=1)t* € T[t].s,
then S is a solution for trop,(P):

trop, P(S)

(2,1) © ®(S) ® ¢(dS) @ (0,2) ® d(d?S) =
(2,1) ®(0,0) ®(0,1) & (0,2) ® (2,0) =
(2,2) @ (2,2)



Fundamental theorem of tropical differential algebra

Theorem

Let K be an uncountable algebraically closed field of characteristic 0 and v : K — T a
valuation. Let | be a differential ideal in K[t]{x1,

..., Xn}, then the following equality
holds:

SOlTﬂt]]vK (trop, (1)) = tropV(SO|K|[t]|(I))'
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Motivations/Applications

» The Fundamental Theorem had already been proven by Aroca, Garay, Toghani in

the case of trivial valuation ~~ only tropical info about the support of power series
solutions.

» In the nontrivially valued case we want to have a valuated version of the
fundamental theorem ~~ tropical info about convergence of power series solutions.

» For p-adic differential equations, the convergence radius function of solutions is a

piecewise linear function in the norm of the expansion point. We want to have
tropical methods for computing it.
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The polynomials F;,

Fix K,v,v,® and / as above.
By results of Ritt, there is a finite number of elements f1, ..., € I such that

S
SoIKI[t]](I) = ﬂ SoIKM(f/)
I=1
Forall I=1,...,s, reN, set
Fipi=(df)emo € KXW | i=1,....mjeN]

and

A =V ({F,7,}1<,<5> c (KN)".

reN
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The function ¥
The map W : KN — K[t] defined as

00 1 )
(aj)jen Zﬁaﬂ”
j=0

is a bijection. We denote the bijection (KN)" — K[t]" again by V.

Given f € K[t]{x1,...,x,} and a € (KN)" the following equality holds:

FwE) =3 (1 (df(fmt_o(a)) o

Thus:
Solgg (1) = W(Aw).
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Truncations

For m € N, let N, be the smallest natural number such that
Fire K[X,-(j) |i=1....,mj< Ny forall1</<s5,0<r<m
and let

Ap =V <{F,V,}1§/§s> - <K’Vm+1)n.

0<r<m



Truncations

For m € N, let N, be the smallest natural number such that
F/JEK[XI-U)|i:1,...,n;j§Nm] forall1</<s,0<r<m

and let

An =V <{F/7,} 1§l§s> - <KN'”+1) .
0<r<m
then

A = lim Ap.

<_



Fibers of tropicalization
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Fibers of tropicalization

Let me Nand S :=(S1,...,5,) € T[t]], . where we write S; as 3 ¢ jt/ for every
i=1,...,n. With this notation, we define:

(VOO);K — vEl <(C,‘J + vK(j!))ijléi\'i’n> € (KN)n

and

(Vm);K = v,;l <(c,-d- + VK(I!))izl,...,n> € (KNmH)n

J<Nm

Furthermore, let

(Am)2 = An O (Vi) 2. (Ace)E = Ane N (Vo)
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Criterion for lifting tropical solutions

As before for any S € T[t]}, we have (Ax)d* = lim (Am)g*. Furthermore

Remark
S € tropy(Solkpg (1)) <= (Ax)s # 0.

Proposition
(Ac) & #0 <= (Am)& #0 forall m e N.
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Jj=0



Proof of the theorem

Let Wyyop : TN — T[t]y, be the bijective map defined by:
wtrop JGN Z b - VK(_/I
j=0

Its inverse is defined as follows:
Wirop(S) = (e S)le=oo) ;e -

We denote again by Wirop the map (TN)” — T[t]7 obtained by applying Wirop
coordinatewise.



Proof of the theorem

Lemma
For every m € N, let 7, : (TN)" — (TNm*+1)7 pe the projection sending every entry to
its first N, + 1 coordinates. The following inclusion holds for every m € N:

o Vidy (Soogy, (r0p, (1)) © V7 ({ur0py, (Fur)} o)

r<m
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» The inclusion Sols(trop, (1)) 2 tropg(Solkpeg(/)) follows from the properties of
v,v and &;

» For every m € N by the Fundamental Theorem of Tropical Geometry, we have:

trop,, (Am) = /trop ({trova(Fh,)}/:1,,“,5> .
0<r<

rsm

Let S € Solypy,, (trop,(/)). From the Lemma above, we have, for all m € N:
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Proof of the theorem

» The inclusion Sols(trop, (1)) 2 tropg(Solkpeg(/)) follows from the properties of
v,v and &;

» For every m € N by the Fundamental Theorem of Tropical Geometry, we have:

trop,, (Am) = /trop ({trova(Fh,)}/:1,,“,5> .
0<r<

rsm

Let S € Solypy,, (trop,(/)). From the Lemma above, we have, for all m € N:
Tm o Was(S) € VHoP ({trova(F/,r)}/=1,...,n> = trop,, (Am)
0<r<m

— for all m € N there exists an element x € A, whose tropicalization is
Tm © Wtjép(S), i.e. x € (Ap) . Finally, thanks to Proposition and Remark,

(Am)& # D forallme N <= S € tropy(Solkpg(/))-
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Last remark on the theorem

There is a way to define the initial of a differential ideal / with respect to a weight
vector S € T[t]7 . so we get the following:

Theorem
Under the same hypothesis of the previous theorem, the following equalities hold:

tropy (Solkpe (/1)) = Solrpy,, (trop, (1)) = {S € T[t]y, | Ins(I) does not contain a monomial}
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Radius of convergence

Let us focus on the p-adic case. Recall that the p-adic norm of a natural number n is
defined as
|”|p = P_Vp(n)

and Q,, is the completion of Q w.r.t. this norm. Let C, := Q).
Given A=Y, a;t’ € Cp[t], its radius of convergence is

r(A) := sup{r € [0, 00) | i—lj—Too |ai|pr' = 0} €0, 00].
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Radius of convergence

Given B=3"7, bit' € T[t], we define its p-adic radius of convergence as:
rp(B) :=sup{r € [0,00) | . “—T p~bir =0} €10,00]
I——+00

with the convention that p=>° = 0. Then r(A) = ry(trop;(A)).

Corollary
Let | € K[t]{x}. Then:

{r(A) | A € Solkqeg (1)} = {rp(5) | S € Solqyyy,, (trop, (1))}-
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Given an ideal J € K[x1,...,xp| a tropical basis for J is a subset G of / such that

ViR (trop, (1)) = 1] V"*P(trop,(g))
geG

In general this set is larger than a set of generators for J, and it depends on some
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Radius of convergence

Given an ideal J € K[x1,...,xp| a tropical basis for J is a subset G of / such that

ViR (trop, (1)) = 1] V"*P(trop,(g))
geG

In general this set is larger than a set of generators for J, and it depends on some
matroidal conditions.

Analogously, Fink-Toghani proposed a notion of tropical differential basis for a
differential ideal / C K[t]{x1,...,xn}: a subset G of / such that (dropping some
notation)

Sol(trop,(/ ﬂ ﬂ Sol(trop, (d"g))

geG r=0

and they show an (easy) example where such a basis is not finite.
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Radius of convergence

To make these methods useful for computations:
> criterion to verify if a subset of / is a tropical differential basis?
> criterion that certifies that a given ideal admits a finite tropical differential basis?

> a different notion of tropical differential basis, that is ensured to be always finite?

Thank youl
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