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Preliminaries: differential polynomials

(R, dR) differential ring. Let

R{x1, . . . , xn} := R[x
(j)
i | i = 1, . . . , n; j ∈ N]

Equipped with the differential d(x
(j)
i ) = x

(j+1)
i extending dR , it is a differential ring.

An element r = (r1, . . . , rn) ∈ Rn is a solution for F ∈ R{x1, . . . , xn} iff

F |
x
(j)
i =d j

R ri
= 0
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Preliminaries: semirings

A semiring (S ,⊕,�) is an algebraic structure satisfying all the axioms to be a ring but
the existence of additive inverses.

It is idempotent if a⊕ a = a for all a ∈ S .

Example

I T := (R ∪ {∞},min,+), the tropical idempotent semiring;
I For n ∈ N, let (Tn,⊕,�) := (Rn ∪ {∞},minlex ,+). It is an idempotent semiring.

For n = 1, we recover the usual tropical semiring T.



Preliminaries: semirings

A semiring (S ,⊕,�) is an algebraic structure satisfying all the axioms to be a ring but
the existence of additive inverses. It is idempotent if a⊕ a = a for all a ∈ S .

Example

I T := (R ∪ {∞},min,+), the tropical idempotent semiring;
I For n ∈ N, let (Tn,⊕,�) := (Rn ∪ {∞},minlex ,+). It is an idempotent semiring.

For n = 1, we recover the usual tropical semiring T.



Preliminaries: semirings

A semiring (S ,⊕,�) is an algebraic structure satisfying all the axioms to be a ring but
the existence of additive inverses. It is idempotent if a⊕ a = a for all a ∈ S .

Example

I T := (R ∪ {∞},min,+), the tropical idempotent semiring;
I For n ∈ N, let (Tn,⊕,�) := (Rn ∪ {∞},minlex ,+). It is an idempotent semiring.

For n = 1, we recover the usual tropical semiring T.



Preliminaries: valuations

We say that a sum in an idempotent semiring tropically vanishes if by deleting any of
the summands the result does not change.

Let R be a ring, a rank n valuation is a map v : R → Tn such that:
1. v(0) =∞, v(1) = v(−1) = 0;
2. v(ab) = v(a)� v(b);
3. v(a + b)⊕ v(a)⊕ v(b) tropically vanishes (i.e. min is attained at least twice).
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Preliminaries: setting

Let K be an uncountable, algebraically closed field of characteristic 0 equipped with a
valuation vK : K → T.

Let (K [[t]], d) be the differential ring of power series over K and v : K [[t]]→ T2 the
rank 2 valuation defined as:

an0t
n0 + . . . 7−→ (n0, vK (an0)).



Preliminaries: tropicalization of differential polynomials

Given a differential polynomial P ∈ K [[t]]{x1, . . . , xn} we define its tropicalization
tropv (P) with respect to v as the element of T2{x1, . . . , xn} obtained by applying v to
the coefficients of P .

Example
Let P = 12t2xx ′ + (−9 + 3t)x ′′ ∈ Q3[[t]]{x}, then its tropicalization is:

tropv (P) = (2, 1)xx ′ + (0, 2)x ′′
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Preliminaries: tropicalization of solutions

The idempotent semiring T[[t]] can be endowed with the tropical differential:

dvK (tn) =

{
vK (n)tn−1 n ≥ 1
∞ n = 0.

This is an additive map such that, for every A,B ∈ T[[t]] the expression

dvK (AB)⊕ BdvK (A)⊕ AdvK (B)

tropically vanishes. We denote (T[[t]], dvK ) as T[[t]]vK .
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Preliminaries: tropicalization of solutions

We tropicalize elements of K [[t]] via the map ṽ : K [[t]]→ T[[t]]vK applying vK
coefficientwise:

∞∑
i=0

ai t
i 7→

∞∑
i=0

vK (ai )t
i

This maps commutes with the differentials.

Applying ṽ coordinatewise we obtain the tropicalization map tropṽ : K [[t]]n → T[[t]]nvK .



Preliminaries: tropical solutions
Let Φ : T[[t]]vK → T2 be the homomorphism of semirings

bn0t
n0 + · · · 7→ (n0, bn0).

Given a P ∈ K [[t]]{x1, . . . , xn} and S = (S1, . . . ,Sn) ∈ T[[t]]nvK , we say that S is a

solution for the tropicalization of P if when plugging Φ(d jSi ) for x (j)i in tropv (P) the
result tropically vanishes in T2.

Example
Let P as before, tropv (P) = (2, 1)xx ′ + (0, 2)x ′′ and S = 0 + 1t + (−1)t4 ∈ T[[t]]v3 ,
then S is a solution for tropv (P):

tropvP(S) = (2, 1)� Φ(S)� Φ(dS)⊕ (0, 2)� Φ(d2S) =

= (2, 1)� (0, 0)� (0, 1)⊕ (0, 2)� (2, 0) =

= (2, 2)⊕ (2, 2)

.
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Fundamental theorem of tropical differential algebra

Theorem
Let K be an uncountable algebraically closed field of characteristic 0 and vK : K → T a
valuation. Let I be a differential ideal in K [[t]]{x1, . . . , xn}, then the following equality
holds:

SolT[[t]]vK (tropv (I )) = tropṽ (SolK [[t]](I )).



Motivations/Applications

I The Fundamental Theorem had already been proven by Aroca, Garay, Toghani in
the case of trivial valuation

 only tropical info about the support of power series
solutions.

I In the nontrivially valued case we want to have a valuated version of the
fundamental theorem  tropical info about convergence of power series solutions.

I For p-adic differential equations, the convergence radius function of solutions is a
piecewise linear function in the norm of the expansion point. We want to have
tropical methods for computing it.
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The polynomials Fl ,r

Fix K , v , ṽ ,Φ and I as above.

By results of Ritt, there is a finite number of elements f1, . . . , fs ∈ I such that

SolK [[t]](I ) =
s⋂

l=1

SolK [[t]](fl)

For all l = 1, . . . , s, r ∈ N, set

Fl ,r := (d r fl)|t=0 ∈ K [x
(j)
i | i = 1, . . . , n; j ∈ N]

and

A∞ := V

(
{Fl ,r}1≤l≤s

r∈N

)
⊂
(
KN
)n
.
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The function Ψ

The map Ψ : KN → K [[t]] defined as

(aj)j∈N 7→
∞∑
j=0

1
j!
aj t

j

is a bijection. We denote the bijection
(
KN)n → K [[t]]n again by Ψ.

Given f ∈ K [[t]]{x1, . . . , xn} and a ∈
(
KN)n the following equality holds:

f (Ψ(a)) =
∞∑
r=0

(
1
r !

(d r (f ))|t=0(a)

)
tr .

Thus:
SolK [[t]](I ) = Ψ(A∞).
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Truncations

For m ∈ N, let Nm be the smallest natural number such that

Fl ,r ∈ K [x
(j)
i | i = 1, . . . , n; j ≤ Nm] for all 1 ≤ l ≤ s, 0 ≤ r ≤ m

and let

Am := V

(
{Fl ,r} 1≤l≤s

0≤r≤m

)
⊂
(
KNm+1

)n
.

then
A∞ = lim←−Am.



Truncations

For m ∈ N, let Nm be the smallest natural number such that

Fl ,r ∈ K [x
(j)
i | i = 1, . . . , n; j ≤ Nm] for all 1 ≤ l ≤ s, 0 ≤ r ≤ m

and let

Am := V

(
{Fl ,r} 1≤l≤s

0≤r≤m

)
⊂
(
KNm+1

)n
.

then
A∞ = lim←−Am.



Truncations

For m ∈ N, let Nm be the smallest natural number such that

Fl ,r ∈ K [x
(j)
i | i = 1, . . . , n; j ≤ Nm] for all 1 ≤ l ≤ s, 0 ≤ r ≤ m

and let

Am := V

(
{Fl ,r} 1≤l≤s

0≤r≤m

)
⊂
(
KNm+1

)n
.

then
A∞ = lim←−Am.



Fibers of tropicalization

Let m ∈ N and S := (S1, . . . ,Sn) ∈ T[[t]]nvK , where we write Si as
∑

ci ,j t
j for every

i = 1, . . . , n. With this notation, we define:

(V∞)vKS := v−1
K

(
(ci ,j + vK (j!))i=1,...,n

j∈N

)
∈
(
KN
)n

and

(Vm)vKS := v−1
K

(
(ci ,j + vK (j!))i=1,...,n

j≤Nm

)
∈
(
KNm+1

)n

Furthermore, let

(Am)vKS := Am ∩ (Vm)vKS . (A∞)vKS := A∞ ∩ (V∞)vKS
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Criterion for lifting tropical solutions

As before for any S ∈ T[[t]]nvK we have (A∞)vKS = lim←− (Am)vKS .

Furthermore

Remark

S ∈ tropṽ (SolK [[t]](I )) ⇐⇒ (A∞)vKS 6= ∅.

Proposition
(A∞)vKS 6= ∅ ⇐⇒ (Am)vKS 6= ∅ for all m ∈ N.
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Proof of the theorem

Let Ψtrop : TN → T[[t]]vK be the bijective map defined by:

Ψtrop((bj)j∈N) =
∞∑
j=0

(bj − vK (j!))t j .

Its inverse is defined as follows:

Ψ−1
trop(S) =

(
(d j

vK
S)|t=∞

)
j∈N .

We denote again by Ψtrop the map (TN)n → T[[t]]nvK obtained by applying Ψtrop
coordinatewise.
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Proof of the theorem

Lemma
For every m ∈ N, let πm : (TN)n → (TNm+1)n be the projection sending every entry to
its first Nm + 1 coordinates. The following inclusion holds for every m ∈ N:

πm ◦Ψ−1
trop

(
SolT[[t]]vK (tropv (I ))

)
⊂ V trop

({
tropvK (Fl ,r )

}
l=1,...,s
0≤r≤m

)
.



Proof of the theorem
I The inclusion SolS(tropv (I )) ⊇ tropṽ (SolK [[t]](I )) follows from the properties of

v , ṽ and Φ;

I For every m ∈ N by the Fundamental Theorem of Tropical Geometry, we have:

tropvK (Am) = V trop
({

tropvK (Fl ,r )
}
l=1,...,s
0≤r≤m

)
.

Let S ∈ SolT[[t]]vK (tropv (I )). From the Lemma above, we have, for all m ∈ N:

πm ◦Ψ−1
trop(S) ∈ V trop

({
tropvK (Fl ,r )

}
l=1,...,n
0≤r≤m

)
= tropvK (Am)

=⇒ for all m ∈ N there exists an element x ∈ Am whose tropicalization is
πm ◦Ψ−1

trop(S), i.e. x ∈ (Am)vKS . Finally, thanks to Proposition and Remark,

(Am)vKS 6= ∅ for all m ∈ N ⇐⇒ S ∈ tropṽ (SolK [[t]](I )).
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Last remark on the theorem

There is a way to define the initial of a differential ideal I with respect to a weight
vector S ∈ T[[t]]nvK , so we get the following:

Theorem
Under the same hypothesis of the previous theorem, the following equalities hold:

tropṽ (SolK [[t]](I )) = SolT[[t]]vK (tropv (I )) = {S ∈ T[[t]]nvK | InS(I ) does not contain a monomial}
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tropṽ (SolK [[t]](I )) = SolT[[t]]vK (tropv (I )) = {S ∈ T[[t]]nvK | InS(I ) does not contain a monomial}



Radius of convergence

Let us focus on the p-adic case.

Recall that the p-adic norm of a natural number n is
defined as

|n|p := p−vp(n)

and Qp is the completion of Q w.r.t. this norm. Let Cp := Q̂p.

Given A =
∑∞

i=0 ai t
i ∈ Cp[[t]], its radius of convergence is

r(A) := sup{r ∈ [0,∞) | lim
i→+∞

|ai |pr i = 0} ∈ [0,∞].
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Radius of convergence

Given B =
∑n

i=0 bi t
i ∈ T[[t]], we define its p-adic radius of convergence as:

rp(B) := sup{r ∈ [0,∞) | lim
i→+∞
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