W={16, 19, 16, 16, 16, 11, 10, 19, 16, 16, 16, 10, 7, 16, 11, 10, 16, 10, 7, 16, 27, 27}; L={100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,100,200,200}; -- M2 uses the max-convention to compute initial ideal, but we work with the min-convention. -- So for the computation we substract our weight vector W from a large vector L in the lineality space. R=QQ[p_{1,2,3},p_{1,2,4},p_{1,2,5},p_{1,2,6},p_{1,3,4},p_{1,3,5},p_{1,3,6},p_{1,4,5},p_{1,4,6},p_{1,5,6}, p_{2,3,4},p_{2,3,5},p_{2,3,6},p_{2,4,5},p_{2,4,6},p_{2,5,6},p_{3,4,5},p_{3,4,6},p_{3,5,6},p_{4,5,6},x,y, Weights=>L-W]; Iex =ideal( p_{1,4,5}*p_{2,3,6}-p_{1,2,3}*p_{4,5,6}-x, p_{1,2,4}*p_{3,5,6}-p_{1,2,3}*p_{4,5,6}-y, p_{1,2,5}*p_{3,4,6}-p_{1,2,6}*p_{3,4,5}-y, p_{1,3,4}*p_{2,5,6}-p_{1,5,6}*p_{2,3,4}-y, p_{1,3,6}*p_{2,4,5}-p_{1,2,6}*p_{3,4,5}-x, p_{1,4,6}*p_{2,3,5}-p_{1,5,6}*p_{2,3,4}-x, p_{1,3,4}*p_{2,5,6}+p_{1,2,5}*p_{3,4,6}-p_{1,3,5}*p_{2,4,6}+p_{1,2,3}*p_{4,5,6}+x-y, p_{2,5,6}*p_{3,4,6}-p_{2,4,6}*p_{3,5,6}+p_{2,3,6}*p_{4,5,6}, p_{1,5,6}*p_{3,4,6}-p_{1,4,6}*p_{3,5,6}+p_{1,3,6}*p_{4,5,6}, p_{2,5,6}*p_{3,4,5}-p_{2,4,5}*p_{3,5,6}+p_{2,3,5}*p_{4,5,6}, p_{2,4,6}*p_{3,4,5}-p_{2,4,5}*p_{3,4,6}+p_{2,3,4}*p_{4,5,6}, p_{2,3,6}*p_{3,4,5}-p_{2,3,5}*p_{3,4,6}+p_{2,3,4}*p_{3,5,6}, p_{1,5,6}*p_{3,4,5}-p_{1,4,5}*p_{3,5,6}+p_{1,3,5}*p_{4,5,6}, p_{1,4,6}*p_{3,4,5}-p_{1,4,5}*p_{3,4,6}+p_{1,3,4}*p_{4,5,6}, p_{1,3,6}*p_{3,4,5}-p_{1,3,5}*p_{3,4,6}+p_{1,3,4}*p_{3,5,6}, p_{1,5,6}*p_{2,4,6}-p_{1,4,6}*p_{2,5,6}+p_{1,2,6}*p_{4,5,6}, p_{2,3,6}*p_{2,4,5}-p_{2,3,5}*p_{2,4,6}+p_{2,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,4,5}-p_{1,4,5}*p_{2,5,6}+p_{1,2,5}*p_{4,5,6}, p_{1,4,6}*p_{2,4,5}-p_{1,4,5}*p_{2,4,6}+p_{1,2,4}*p_{4,5,6}, p_{1,2,6}*p_{2,4,5}-p_{1,2,5}*p_{2,4,6}+p_{1,2,4}*p_{2,5,6}, p_{1,5,6}*p_{2,3,6}-p_{1,3,6}*p_{2,5,6}+p_{1,2,6}*p_{3,5,6}, p_{1,4,6}*p_{2,3,6}-p_{1,3,6}*p_{2,4,6}+p_{1,2,6}*p_{3,4,6}, p_{1,5,6}*p_{2,3,5}-p_{1,3,5}*p_{2,5,6}+p_{1,2,5}*p_{3,5,6}, p_{1,4,5}*p_{2,3,5}-p_{1,3,5}*p_{2,4,5}+p_{1,2,5}*p_{3,4,5}, p_{1,3,6}*p_{2,3,5}-p_{1,3,5}*p_{2,3,6}+p_{1,2,3}*p_{3,5,6}, p_{1,2,6}*p_{2,3,5}-p_{1,2,5}*p_{2,3,6}+p_{1,2,3}*p_{2,5,6}, p_{1,4,6}*p_{2,3,4}-p_{1,3,4}*p_{2,4,6}+p_{1,2,4}*p_{3,4,6}, p_{1,4,5}*p_{2,3,4}-p_{1,3,4}*p_{2,4,5}+p_{1,2,4}*p_{3,4,5}, p_{1,3,6}*p_{2,3,4}-p_{1,3,4}*p_{2,3,6}+p_{1,2,3}*p_{3,4,6}, p_{1,3,5}*p_{2,3,4}-p_{1,3,4}*p_{2,3,5}+p_{1,2,3}*p_{3,4,5}, p_{1,2,6}*p_{2,3,4}-p_{1,2,4}*p_{2,3,6}+p_{1,2,3}*p_{2,4,6}, p_{1,2,5}*p_{2,3,4}-p_{1,2,4}*p_{2,3,5}+p_{1,2,3}*p_{2,4,5}, p_{1,3,6}*p_{1,4,5}-p_{1,3,5}*p_{1,4,6}+p_{1,3,4}*p_{1,5,6}, p_{1,2,6}*p_{1,4,5}-p_{1,2,5}*p_{1,4,6}+p_{1,2,4}*p_{1,5,6}, p_{1,2,6}*p_{1,3,5}-p_{1,2,5}*p_{1,3,6}+p_{1,2,3}*p_{1,5,6}, p_{1,2,6}*p_{1,3,4}-p_{1,2,4}*p_{1,3,6}+p_{1,2,3}*p_{1,4,6}, p_{1,2,5}*p_{1,3,4}-p_{1,2,4}*p_{1,3,5}+p_{1,2,3}*p_{1,4,5}); J=ideal(leadTerm(1,Iex)); mingens J {p_{1, 3, 4}*p_{2, 4, 5}, p_{1, 2, 5}*p_{1, 4, 6}, p_{1, 4, 5}*p_{2, 4, 6}, p_{1, 2, 4}*p_{1, 3, 5}, p_{1, 4, 5}*p_{3, 4, 6}, p_{1, 4, 5}*p_{2, 5, 6}, p_{1, 2, 4}*p_{2, 3, 5}, p_{1, 2, 4}*p_{1, 3, 6}, p_{1, 3, 4}*p_{2, 4, 6}, p_{1, 2, 5}*p_{2, 4, 6}, p_{1, 3, 5}*p_{2, 4, 5}, p_{1, 3, 5}*p_{1, 4, 6}, p_{1, 4, 5}*p_{3, 5, 6}, p_{1, 2, 4}*p_{3, 5, 6}, p_{2, 4, 5}*p_{3, 4, 6}, p_{1, 2, 5}*p_{3, 4, 6}, p_{1, 4, 6}*p_{2, 5, 6}, p_{1, 3, 4}*p_{2, 5, 6}, p_{1, 3, 6}*p_{2, 4, 5}, p_{1, 4, 5}*p_{2, 3, 6}, p_{1, 2, 4}*p_{2, 3, 6}, p_{1, 4, 6}*p_{2, 3, 5}, p_{1, 3, 4}*p_{2, 3, 5}, p_{1, 2, 5}*p_{1, 3, 6}, p_{2, 4, 5}*p_{3, 5, 6}, p_{1, 4, 6}*p_{3, 5, 6}, p_{1, 3, 4}*p_{2, 3, 6}, p_{1, 2, 5}*p_{2, 3, 6}, p_{1, 3, 5}*p_{2, 4, 6}, p_{1, 3, 5}*p_{3, 4, 6}, p_{1, 3, 5}*p_{2, 5, 6}, p_{2, 3, 5}*p_{2, 4, 6}, p_{1, 3, 6}*p_{2, 4, 6}, p_{2, 3, 5}*p_{3, 4, 6}, p_{1, 3, 6}*p_{2, 5, 6}, p_{2, 4, 6}*p_{3, 5, 6}, p_{1, 3, 5}*p_{2, 3, 6}, p_{1, 4, 5}*y, p_{1, 2, 4}*x, p_{2, 4, 5}*y, p_{1, 4, 6}*y, p_{1, 3, 4}*x, p_{1, 2, 5}*x, p_{2, 4, 6}*y, p_{1, 3, 5}*y, p_{2, 4, 6}*x, p_{1, 3, 5}*x, p_{2, 3, 5}*y, p_{1, 3, 6}*y, p_{3, 4, 6}*x, p_{2, 5, 6}*x, p_{2, 3, 6}*y, p_{3, 5, 6}*x, x*y}}