-- seeds (mutable cluster variables only): {p124, p256, p125, p245} {p124, p145, p125, p245} {p124, p145, p146, p245} {p124, p246, p146, p245} {p124, p134, p146, p346} {p124, p134, p146, p145} {p136, p134, p146, p145} {p136, p134, p135, p145} {p125, p245, p145, p235} {p124, p246, p256, p245} {p124, p246, p256, p346} {p124, p246, p146, p346} {p125, p356, p256, p235} {p125, p245, p256, p235} {p124, p145, p125, p134} {p236, p235, p256, p245} {p236, p246, p256, p245} {p236, p246, p256, p346} {p236, p356, p256, p346} {p236, p356, p256, p235} {p135, p145, p136, p235} {p135, p145, p125, p235} {p135, p145, p125, p134} {p236, p246, p146, p245} {p236, p246, p146, p346} {p236, p356, p136, p346} {p236, p356, p136, p235} {p135, p356, p136, p235} {p135, p356, p125, p235} {p236, p146, p136, p346} {p134, p146, p136, p346} {p134, p356, p136, p135} {p134, p356, p125, p135} {p134, p356, p136, p346} {p236, p235, x, p245} {p236, x, p146, p245} {p124, p256, p125, y} {x, p145, p146, p245} {p124, y, p256, p346} {p236, p146, p136, x} {p124, p134, y, p346} {y, p356, p256, p346} {p125, p356, p256, y} {p136, x, p146, p145} {p236, x, p136, p235} {x, p145, p136, p235} {p134, p356, y, p346} {x, p245, p145, p235} {p134, p356, p125, y} {p124, y, p125, p134} -- correspondence of rays with mutable cluster variables r1 < - > p125 r2 < - > p134 r3 < - > p124 r4 < - > p145 r5 < - > p135 r6 < - > p136 r7 < - > p146 r8 < - > p256 r9 < - > p356 r10 < - > p346 r11 < - > y r12 < - > p245 r13 < - > p235 r14 < - > x r15 < - > p236 r16 < - > p246 -- weight vectors for each seed (=sums of rays corresponding to cluster variables in each seed): U={ {2, 3, 3, 5, 1, 0, 1, 1, 2, 2, 2, 1, 2, 2, 3, 3, 2, 2, 1, 2, 3, 5}, {2, 1, 3, 6, 0, 1, 3, 0, 2, 4, 2, 3, 4, 2, 3, 5, 2, 2, 3, 2, 5, 5}, {2, 1, 3, 5, 0, 1, 3, 0, 2, 5, 2, 3, 4, 2, 3, 5, 2, 2, 3, 2, 5, 5}, {2, 3, 3, 4, 1, 0, 1, 1, 2, 4, 2, 1, 2, 2, 3, 4, 2, 2, 1, 2, 3, 5}, {3, 4, 5, 3, 4, 4, 2, 5, 3, 6, 3, 2, 0, 3, 1, 3, 3, 1, 2, 3, 5, 7}, {2, 1, 4, 4, 1, 3, 3, 2, 2, 6, 2, 3, 2, 2, 1, 4, 2, 1, 3, 2, 5, 5}, {3, 2, 4, 3, 2, 4, 3, 4, 3, 6, 3, 4, 2, 3, 1, 3, 3, 1, 3, 3, 7, 5}, {4, 3, 5, 4, 3, 5, 4, 6, 4, 6, 4, 5, 2, 4, 1, 3, 4, 1, 3, 4, 9, 6}, {3, 2, 2, 6, 1, 1, 4, 1, 3, 3, 3, 3, 5, 3, 4, 4, 3, 3, 3, 3, 7, 5}, {3, 5, 4, 5, 2, 0, 1, 2, 3, 3, 3, 1, 2, 3, 4, 4, 3, 3, 1, 3, 4, 7}, {4, 7, 5, 4, 5, 2, 1, 5, 4, 4, 4, 1, 0, 4, 3, 3, 4, 3, 1, 4, 5, 9}, {3, 5, 4, 3, 4, 2, 1, 4, 3, 5, 3, 1, 0, 3, 2, 3, 3, 2, 1, 3, 4, 7}, {4, 6, 3, 4, 5, 2, 2, 5, 4, 1, 4, 1, 1, 4, 3, 0, 4, 3, 0, 4, 6, 6}, {3, 4, 2, 5, 2, 0, 2, 2, 3, 1, 3, 1, 3, 3, 4, 2, 3, 3, 1, 3, 5, 5}, {2, 1, 4, 5, 1, 3, 3, 2, 2, 5, 2, 3, 2, 2, 1, 4, 2, 1, 3, 2, 5, 5}, {4, 5, 2, 4, 3, 0, 2, 3, 4, 1, 4, 1, 3, 4, 5, 2, 4, 4, 1, 4, 6, 6}, {4, 6, 3, 4, 3, 0, 1, 3, 4, 2, 4, 1, 2, 4, 5, 3, 4, 4, 1, 4, 5, 7}, {5, 8, 4, 3, 6, 2, 1, 6, 5, 3, 5, 1, 0, 5, 4, 2, 5, 4, 1, 5, 6, 9}, {6, 9, 5, 3, 8, 4, 2, 8, 6, 3, 6, 2, 0, 6, 4, 1, 6, 4, 1, 6, 8, 10}, {5, 7, 3, 3, 6, 2, 2, 6, 5, 1, 5, 1, 1, 5, 4, 0, 5, 4, 0, 5, 7, 7}, {4, 3, 3, 4, 3, 3, 4, 5, 4, 4, 4, 4, 3, 4, 2, 2, 4, 2, 2, 4, 9, 5}, {3, 2, 2, 5, 2, 2, 4, 3, 3, 3, 3, 3, 3, 3, 2, 2, 3, 2, 2, 3, 7, 4}, {3, 2, 4, 5, 2, 4, 4, 4, 3, 5, 3, 4, 2, 3, 1, 3, 3, 1, 3, 3, 7, 5}, {3, 4, 2, 3, 2, 0, 1, 2, 3, 3, 3, 1, 2, 3, 4, 3, 3, 3, 1, 3, 4, 5}, {4, 6, 3, 2, 5, 2, 1, 5, 4, 4, 4, 1, 0, 4, 3, 2, 4, 3, 1, 4, 5, 7}, {6, 8, 5, 2, 8, 5, 2, 9, 6, 4, 6, 3, 0, 6, 3, 1, 6, 3, 1, 6, 9, 9}, {5, 6, 3, 2, 6, 3, 2, 7, 5, 2, 5, 2, 1, 5, 3, 0, 5, 3, 0, 5, 8, 6}, {5, 6, 4, 3, 6, 4, 3, 8, 5, 3, 5, 3, 1, 5, 2, 0, 5, 2, 0, 5, 9, 6}, {4, 5, 3, 4, 5, 3, 3, 6, 4, 2, 4, 2, 1, 4, 2, 0, 4, 2, 0, 4, 7, 5}, {4, 5, 3, 1, 5, 3, 1, 6, 4, 4, 4, 2, 0, 4, 2, 1, 4, 2, 1, 4, 6, 6}, {4, 5, 5, 2, 5, 5, 2, 7, 4, 6, 4, 3, 0, 4, 1, 2, 4, 1, 2, 4, 7, 7}, {5, 6, 6, 3, 6, 6, 3, 9, 5, 5, 5, 4, 0, 5, 1, 1, 5, 1, 1, 5, 9, 7}, {4, 5, 5, 4, 5, 5, 3, 7, 4, 4, 4, 3, 0, 4, 1, 1, 4, 1, 1, 4, 7, 6}, {6, 8, 7, 3, 8, 7, 3, 10, 6, 6, 6, 4, 0, 6, 2, 2, 6, 2, 2, 6, 10, 10}, {4, 3, 1, 4, 2, 0, 3, 2, 4, 2, 4, 2, 5, 4, 5, 3, 4, 4, 2, 4, 7, 5}, {3, 2, 1, 3, 1, 0, 2, 1, 3, 3, 3, 2, 4, 3, 4, 3, 3, 3, 2, 3, 5, 4}, {3, 5, 5, 5, 4, 2, 1, 4, 3, 3, 3, 1, 0, 3, 2, 2, 3, 2, 1, 3, 4, 7}, {3, 1, 2, 5, 0, 1, 4, 0, 3, 5, 3, 4, 6, 3, 4, 5, 3, 3, 4, 3, 7, 5}, {5, 8, 7, 5, 7, 4, 2, 7, 5, 5, 5, 2, 0, 5, 3, 3, 5, 3, 2, 5, 7, 11}, {3, 2, 1, 1, 2, 1, 1, 3, 3, 3, 3, 2, 2, 3, 2, 1, 3, 2, 1, 3, 5, 3}, {5, 7, 8, 5, 7, 6, 3, 8, 5, 7, 5, 3, 0, 5, 2, 4, 5, 2, 3, 5, 8, 11}, {7, 11, 8, 5, 10, 6, 3, 10, 7, 5, 7, 3, 0, 7, 4, 2, 7, 4, 2, 7, 10, 13}, {5, 8, 6, 5, 7, 4, 2, 7, 5, 3, 5, 2, 0, 5, 3, 1, 5, 3, 1, 5, 7, 9}, {3, 1, 2, 3, 1, 2, 3, 2, 3, 5, 3, 4, 4, 3, 2, 3, 3, 2, 3, 3, 7, 4}, {4, 3, 1, 2, 3, 1, 2, 4, 4, 2, 4, 2, 3, 4, 3, 1, 4, 3, 1, 4, 7, 4}, {4, 2, 2, 4, 2, 2, 4, 3, 4, 4, 4, 4, 5, 4, 3, 3, 4, 3, 3, 4, 9, 5}, {7, 10, 9, 5, 10, 8, 4, 11, 7, 7, 7, 4, 0, 7, 3, 3, 7, 3, 3, 7, 11, 13}, {4, 2, 2, 6, 1, 1, 5, 1, 4, 4, 4, 4, 7, 4, 5, 5, 4, 4, 4, 4, 9, 6}, {5, 7, 7, 5, 7, 6, 3, 8, 5, 5, 5, 3, 0, 5, 2, 2, 5, 2, 2, 5, 8, 9}, {3, 4, 6, 5, 4, 4, 2, 5, 3, 5, 3, 2, 0, 3, 1, 3, 3, 1, 2, 3, 5, 7}}; -- big weight in lineality space to switch from min to max convention for computation in M2 b={20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,20,40,40}; R=QQ[p_{1,2,3},p_{1,2,4},p_{1,2,5},p_{1,2,6},p_{1,3,4},p_{1,3,5},p_{1,3,6},p_{1,4,5},p_{1,4,6},p_{1,5,6}, p_{2,3,4},p_{2,3,5},p_{2,3,6},p_{2,4,5},p_{2,4,6},p_{2,5,6},p_{3,4,5},p_{3,4,6},p_{3,5,6},p_{4,5,6},x,y, Weights=>b-U_i] Iex =ideal( p_{1,4,5}*p_{2,3,6}-p_{1,2,3}*p_{4,5,6}-x, p_{1,2,4}*p_{3,5,6}-p_{1,2,3}*p_{4,5,6}-y, p_{1,2,5}*p_{3,4,6}-p_{1,2,6}*p_{3,4,5}-y, p_{1,3,4}*p_{2,5,6}-p_{1,5,6}*p_{2,3,4}-y, p_{1,3,6}*p_{2,4,5}-p_{1,2,6}*p_{3,4,5}-x, p_{1,4,6}*p_{2,3,5}-p_{1,5,6}*p_{2,3,4}-x, p_{1,3,4}*p_{2,5,6}+p_{1,2,5}*p_{3,4,6}-p_{1,3,5}*p_{2,4,6}+p_{1,2,3}*p_{4,5,6}+x-y, p_{2,5,6}*p_{3,4,6}-p_{2,4,6}*p_{3,5,6}+p_{2,3,6}*p_{4,5,6}, p_{1,5,6}*p_{3,4,6}-p_{1,4,6}*p_{3,5,6}+p_{1,3,6}*p_{4,5,6}, p_{2,5,6}*p_{3,4,5}-p_{2,4,5}*p_{3,5,6}+p_{2,3,5}*p_{4,5,6}, p_{2,4,6}*p_{3,4,5}-p_{2,4,5}*p_{3,4,6}+p_{2,3,4}*p_{4,5,6}, p_{2,3,6}*p_{3,4,5}-p_{2,3,5}*p_{3,4,6}+p_{2,3,4}*p_{3,5,6}, p_{1,5,6}*p_{3,4,5}-p_{1,4,5}*p_{3,5,6}+p_{1,3,5}*p_{4,5,6}, p_{1,4,6}*p_{3,4,5}-p_{1,4,5}*p_{3,4,6}+p_{1,3,4}*p_{4,5,6}, p_{1,3,6}*p_{3,4,5}-p_{1,3,5}*p_{3,4,6}+p_{1,3,4}*p_{3,5,6}, p_{1,5,6}*p_{2,4,6}-p_{1,4,6}*p_{2,5,6}+p_{1,2,6}*p_{4,5,6}, p_{2,3,6}*p_{2,4,5}-p_{2,3,5}*p_{2,4,6}+p_{2,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,4,5}-p_{1,4,5}*p_{2,5,6}+p_{1,2,5}*p_{4,5,6}, p_{1,4,6}*p_{2,4,5}-p_{1,4,5}*p_{2,4,6}+p_{1,2,4}*p_{4,5,6}, p_{1,2,6}*p_{2,4,5}-p_{1,2,5}*p_{2,4,6}+p_{1,2,4}*p_{2,5,6}, p_{1,5,6}*p_{2,3,6}-p_{1,3,6}*p_{2,5,6}+p_{1,2,6}*p_{3,5,6}, p_{1,4,6}*p_{2,3,6}-p_{1,3,6}*p_{2,4,6}+p_{1,2,6}*p_{3,4,6}, p_{1,5,6}*p_{2,3,5}-p_{1,3,5}*p_{2,5,6}+p_{1,2,5}*p_{3,5,6}, p_{1,4,5}*p_{2,3,5}-p_{1,3,5}*p_{2,4,5}+p_{1,2,5}*p_{3,4,5}, p_{1,3,6}*p_{2,3,5}-p_{1,3,5}*p_{2,3,6}+p_{1,2,3}*p_{3,5,6}, p_{1,2,6}*p_{2,3,5}-p_{1,2,5}*p_{2,3,6}+p_{1,2,3}*p_{2,5,6}, p_{1,4,6}*p_{2,3,4}-p_{1,3,4}*p_{2,4,6}+p_{1,2,4}*p_{3,4,6}, p_{1,4,5}*p_{2,3,4}-p_{1,3,4}*p_{2,4,5}+p_{1,2,4}*p_{3,4,5}, p_{1,3,6}*p_{2,3,4}-p_{1,3,4}*p_{2,3,6}+p_{1,2,3}*p_{3,4,6}, p_{1,3,5}*p_{2,3,4}-p_{1,3,4}*p_{2,3,5}+p_{1,2,3}*p_{3,4,5}, p_{1,2,6}*p_{2,3,4}-p_{1,2,4}*p_{2,3,6}+p_{1,2,3}*p_{2,4,6}, p_{1,2,5}*p_{2,3,4}-p_{1,2,4}*p_{2,3,5}+p_{1,2,3}*p_{2,4,5}, p_{1,3,6}*p_{1,4,5}-p_{1,3,5}*p_{1,4,6}+p_{1,3,4}*p_{1,5,6}, p_{1,2,6}*p_{1,4,5}-p_{1,2,5}*p_{1,4,6}+p_{1,2,4}*p_{1,5,6}, p_{1,2,6}*p_{1,3,5}-p_{1,2,5}*p_{1,3,6}+p_{1,2,3}*p_{1,5,6}, p_{1,2,6}*p_{1,3,4}-p_{1,2,4}*p_{1,3,6}+p_{1,2,3}*p_{1,4,6}, p_{1,2,5}*p_{1,3,4}-p_{1,2,4}*p_{1,3,5}+p_{1,2,3}*p_{1,4,5}); -- initial ideals with respect to the weights U_i (same order as above), all initial ideals are prime, binomial and totally positive: P1=ideal( p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,2,5}*p_{2,3,6} - p_{1,2,3}*p_{2,5,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,2,5}*p_{1,4,6} - p_{1,2,4}*p_{1,5,6}, p_{2,4,6}*p_{3,5,6} - p_{2,3,6}*p_{4,5,6}, p_{1,2,4}*p_{3,5,6} - p_{1,2,3}*p_{4,5,6}, p_{2,4,5}*p_{3,4,6} - p_{2,3,4}*p_{4,5,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,5,6}*p_{2,4,5} - p_{1,4,5}*p_{2,5,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,5,6}*p_{2,3,6} - p_{1,3,6}*p_{2,5,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,2,4}*p_{2,3,5} - p_{1,2,3}*p_{2,4,5}, p_{1,5,6}*p_{2,3,4} - p_{1,3,4}*p_{2,5,6}, p_{1,4,6}*p_{2,3,4} - p_{1,3,4}*p_{2,4,6}, p_{1,2,5}*p_{1,3,6} - p_{1,2,3}*p_{1,5,6}, p_{1,2,4}*p_{1,3,6} - p_{1,2,3}*p_{1,4,6}, p_{2,4,5}*p_{3,5,6} - p_{2,3,5}*p_{4,5,6}, p_{1,4,6}*p_{3,5,6} - p_{1,3,6}*p_{4,5,6}, p_{2,3,5}*p_{3,4,6} - p_{2,3,4}*p_{3,5,6}, p_{1,4,5}*p_{3,4,6} - p_{1,3,4}*p_{4,5,6}, p_{1,3,5}*p_{2,4,6} - x, p_{1,3,6}*p_{2,4,5} - x, p_{1,4,5}*p_{2,3,6} - x, p_{1,5,6}*p_{2,3,5} - p_{1,3,5}*p_{2,5,6}, p_{1,4,6}*p_{2,3,5} - x, p_{1,4,5}*p_{2,3,4} - p_{1,3,4}*p_{2,4,5}, p_{1,3,6}*p_{2,3,4} - p_{1,3,4}*p_{2,3,6}, p_{1,2,4}*p_{1,3,5} - p_{1,2,3}*p_{1,4,5}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}); P2=ideal( p_{1,5,6}*p_{2,3,6} - p_{1,3,6}*p_{2,5,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,2,5}*p_{2,3,6} - p_{1,2,3}*p_{2,5,6}, p_{2,4,6}*p_{3,5,6} - p_{2,3,6}*p_{4,5,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,2,5}*p_{1,3,6} - p_{1,2,3}*p_{1,5,6}, p_{2,4,5}*p_{3,5,6} - p_{2,3,5}*p_{4,5,6}, p_{1,4,6}*p_{3,5,6} - p_{1,3,6}*p_{4,5,6}, p_{2,3,5}*p_{3,4,6} - p_{2,3,4}*p_{3,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{1,4,5}*p_{2,5,6} - p_{1,2,5}*p_{4,5,6}, p_{1,3,4}*p_{2,5,6} - y, p_{1,3,6}*p_{2,4,5} - x, p_{1,3,5}*p_{2,3,6} - p_{1,2,3}*p_{3,5,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,4,6}*p_{2,3,5} - x, p_{1,2,5}*p_{1,4,6} - p_{1,2,4}*p_{1,5,6}, p_{1,2,4}*p_{3,5,6} - p_{1,2,3}*p_{4,5,6}, p_{2,4,5}*p_{3,4,6} - p_{2,3,4}*p_{4,5,6}, p_{1,3,5}*p_{2,4,6} - p_{1,2,3}*p_{4,5,6}, p_{1,4,5}*p_{2,3,6} - p_{1,2,3}*p_{4,5,6}, p_{1,3,4}*p_{2,3,6} - p_{1,2,3}*p_{3,4,6}, p_{1,2,4}*p_{2,3,5} - p_{1,2,3}*p_{2,4,5}, p_{1,2,4}*p_{1,3,6} - p_{1,2,3}*p_{1,4,6}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,4,5}*p_{2,4,6} - p_{1,2,4}*p_{4,5,6}, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{1,4,5}*p_{3,4,6} - p_{1,3,4}*p_{4,5,6}, p_{1,4,5}*p_{2,3,4} - p_{1,3,4}*p_{2,4,5}, p_{1,2,4}*p_{1,3,5} - p_{1,2,3}*p_{1,4,5}); P3=ideal( p_{1,3,6}*p_{2,5,6} - p_{1,2,6}*p_{3,5,6}, p_{1,4,6}*p_{2,5,6} - p_{1,2,6}*p_{4,5,6}, p_{1,2,5}*p_{2,3,6} - p_{1,2,3}*p_{2,5,6}, p_{2,4,6}*p_{3,5,6} - p_{2,3,6}*p_{4,5,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{2,4,5}*p_{3,5,6} - p_{2,3,5}*p_{4,5,6}, p_{1,4,6}*p_{3,5,6} - p_{1,3,6}*p_{4,5,6}, p_{2,3,5}*p_{3,4,6} - p_{2,3,4}*p_{3,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{1,4,5}*p_{2,5,6} - p_{1,2,5}*p_{4,5,6}, p_{1,3,4}*p_{2,5,6} - y, p_{1,3,6}*p_{2,4,5} - x, p_{1,3,5}*p_{2,3,6} - p_{1,2,3}*p_{3,5,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,4,6}*p_{2,3,5} - x, p_{1,2,6}*p_{1,4,5} - p_{1,2,5}*p_{1,4,6}, p_{1,2,4}*p_{3,5,6} - p_{1,2,3}*p_{4,5,6}, p_{2,4,5}*p_{3,4,6} - p_{2,3,4}*p_{4,5,6}, p_{1,3,5}*p_{2,4,6} - p_{1,2,3}*p_{4,5,6}, p_{1,4,5}*p_{2,3,6} - p_{1,2,3}*p_{4,5,6}, p_{1,3,4}*p_{2,3,6} - p_{1,2,3}*p_{3,4,6}, p_{1,2,4}*p_{2,3,5} - p_{1,2,3}*p_{2,4,5}, p_{1,2,4}*p_{1,3,6} - p_{1,2,3}*p_{1,4,6}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,4,5}*p_{2,4,6} - p_{1,2,4}*p_{4,5,6}, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{1,4,5}*p_{3,4,6} - p_{1,3,4}*p_{4,5,6}, p_{1,4,5}*p_{2,3,4} - p_{1,3,4}*p_{2,4,5}, p_{1,2,4}*p_{1,3,5} - p_{1,2,3}*p_{1,4,5}, p_{1,2,5}*p_{2,3,4}*p_{2,5,6}*x - p_{1,2,6}*p_{2,3,5}*p_{2,4,5}*y, p_{1,2,6}*p_{1,3,4}*p_{3,4,6}*x - p_{1,3,6}*p_{1,4,6}*p_{2,3,4}*y); P4=ideal( p_{1,4,6}*p_{2,5,6} - p_{1,2,6}*p_{4,5,6}, p_{1,2,6}*p_{2,4,5} - p_{1,2,5}*p_{2,4,6}, p_{1,2,5}*p_{3,4,6} - y, p_{1,4,5}*p_{2,5,6} - p_{1,2,5}*p_{4,5,6}, p_{1,3,6}*p_{2,5,6} - p_{1,2,6}*p_{3,5,6}, p_{1,3,4}*p_{2,5,6} - y, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,2,6}*p_{2,3,5} - p_{1,2,5}*p_{2,3,6}, p_{1,2,6}*p_{1,4,5} - p_{1,2,5}*p_{1,4,6}, p_{2,4,6}*p_{3,5,6} - p_{2,3,6}*p_{4,5,6}, p_{1,2,4}*p_{3,5,6} - p_{1,2,3}*p_{4,5,6}, p_{2,4,5}*p_{3,4,6} - p_{2,3,4}*p_{4,5,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,2,4}*p_{2,3,5} - p_{1,2,3}*p_{2,4,5}, p_{1,4,6}*p_{2,3,4} - p_{1,3,4}*p_{2,4,6}, p_{1,2,4}*p_{1,3,6} - p_{1,2,3}*p_{1,4,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{2,4,5}*p_{3,5,6} - p_{2,3,5}*p_{4,5,6}, p_{1,4,6}*p_{3,5,6} - p_{1,3,6}*p_{4,5,6}, p_{2,3,5}*p_{3,4,6} - p_{2,3,4}*p_{3,5,6}, p_{1,4,5}*p_{3,4,6} - p_{1,3,4}*p_{4,5,6}, p_{1,3,5}*p_{2,4,6} - x, p_{1,3,6}*p_{2,4,5} - x, p_{1,4,5}*p_{2,3,6} - x, p_{1,4,6}*p_{2,3,5} - x, p_{1,4,5}*p_{2,3,4} - p_{1,3,4}*p_{2,4,5}, p_{1,3,6}*p_{2,3,4} - p_{1,3,4}*p_{2,3,6}, p_{1,2,4}*p_{1,3,5} - p_{1,2,3}*p_{1,4,5}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{2,5,6}*p_{3,4,6}*x - p_{2,3,6}*p_{4,5,6}*y, p_{1,2,6}*p_{3,4,6}*x - p_{1,3,6}*p_{2,4,6}*y, p_{2,3,4}*p_{2,5,6}*x - p_{2,3,5}*p_{2,4,6}*y); P5=ideal( p_{1,4,5}*p_{2,5,6} - p_{1,2,5}*p_{4,5,6}, p_{1,2,6}*p_{1,4,5} - p_{1,2,5}*p_{1,4,6}, p_{1,2,4}*p_{1,3,5} - p_{1,2,3}*p_{1,4,5}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,3,4}*p_{2,5,6} - y, p_{1,3,4}*p_{2,4,5} - p_{1,2,4}*p_{3,4,5}, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{1,2,4}*p_{3,5,6} - p_{1,2,3}*p_{4,5,6}, p_{1,4,6}*p_{3,4,5} - p_{1,4,5}*p_{3,4,6}, p_{1,2,6}*p_{3,4,5} - p_{1,2,5}*p_{3,4,6}, p_{1,4,6}*p_{2,5,6} - p_{1,2,6}*p_{4,5,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,2,6}*p_{2,4,5} - p_{1,2,5}*p_{2,4,6}, p_{1,3,4}*p_{2,3,5} - p_{1,2,3}*p_{3,4,5}, p_{1,2,4}*p_{2,3,5} - p_{1,2,3}*p_{2,4,5}, p_{1,2,4}*p_{1,3,6} - p_{1,2,3}*p_{1,4,6}, p_{2,4,5}*p_{3,5,6} - p_{2,3,5}*p_{4,5,6}, p_{1,4,6}*p_{3,5,6} - p_{1,3,6}*p_{4,5,6}, p_{1,3,6}*p_{3,4,5} - p_{1,3,5}*p_{3,4,6}, p_{1,3,6}*p_{2,5,6} - p_{1,2,6}*p_{3,5,6}, p_{1,3,5}*p_{2,4,6} - x, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,3,6}*p_{2,4,5} - x, p_{1,4,5}*p_{2,3,6} - x, p_{1,4,6}*p_{2,3,5} - x, p_{1,2,6}*p_{2,3,5} - p_{1,2,5}*p_{2,3,6}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,3,4}*p_{2,3,6} - p_{1,2,3}*p_{3,4,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{2,4,6}*p_{3,5,6} - p_{2,3,6}*p_{4,5,6}, p_{2,3,6}*p_{3,4,5} - p_{2,3,5}*p_{3,4,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}); P6=ideal( p_{1,3,6}*p_{2,5,6} - p_{1,2,6}*p_{3,5,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{1,4,6}*p_{2,5,6} - p_{1,2,6}*p_{4,5,6}, p_{1,4,5}*p_{2,5,6} - p_{1,2,5}*p_{4,5,6}, p_{1,2,5}*p_{2,3,6} - p_{1,2,3}*p_{2,5,6}, p_{1,2,6}*p_{1,4,5} - p_{1,2,5}*p_{1,4,6}, p_{2,4,5}*p_{3,5,6} - p_{2,3,5}*p_{4,5,6}, p_{1,4,6}*p_{3,5,6} - p_{1,3,6}*p_{4,5,6}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{1,3,4}*p_{2,5,6} - y, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{1,3,6}*p_{2,4,5} - x, p_{1,3,5}*p_{2,3,6} - p_{1,2,3}*p_{3,5,6}, p_{1,4,6}*p_{2,3,5} - x, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{2,4,6}*p_{3,5,6} - p_{2,3,6}*p_{4,5,6}, p_{1,2,4}*p_{3,5,6} - p_{1,2,3}*p_{4,5,6}, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{2,3,6}*p_{3,4,5} - p_{2,3,5}*p_{3,4,6}, p_{1,3,5}*p_{2,4,6} - p_{1,2,3}*p_{4,5,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,4,5}*p_{2,3,6} - p_{1,2,3}*p_{4,5,6}, p_{1,3,4}*p_{2,3,5} - p_{1,2,3}*p_{3,4,5}, p_{1,2,4}*p_{2,3,5} - p_{1,2,3}*p_{2,4,5}, p_{1,2,4}*p_{1,3,6} - p_{1,2,3}*p_{1,4,6}, p_{1,2,4}*p_{1,3,5} - p_{1,2,3}*p_{1,4,5}, p_{1,4,5}*p_{3,4,6} - p_{1,3,4}*p_{4,5,6}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,4,5}*p_{2,4,6} - p_{1,2,4}*p_{4,5,6}, p_{1,3,4}*p_{2,4,5} - p_{1,2,4}*p_{3,4,5}, p_{1,3,4}*p_{2,3,6} - p_{1,2,3}*p_{3,4,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}); P7= ideal( p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,4,5}*p_{2,5,6} - p_{1,2,5}*p_{4,5,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,3,5}*p_{2,4,5} - p_{1,2,5}*p_{3,4,5}, p_{1,4,6}*p_{2,3,5} - x, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{1,2,6}*p_{1,4,5} - p_{1,2,5}*p_{1,4,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{1,4,6}*p_{3,5,6} - p_{1,3,6}*p_{4,5,6}, p_{2,5,6}*p_{3,4,5} - p_{2,4,5}*p_{3,5,6}, p_{1,4,6}*p_{2,5,6} - p_{1,2,6}*p_{4,5,6}, p_{1,3,6}*p_{2,5,6} - p_{1,2,6}*p_{3,5,6}, p_{1,3,6}*p_{2,4,5} - p_{1,2,6}*p_{3,4,5}, p_{1,4,5}*p_{2,3,6} - p_{1,2,3}*p_{4,5,6}, p_{1,3,5}*p_{2,3,6} - p_{1,2,3}*p_{3,5,6}, p_{1,2,5}*p_{2,3,6} - p_{1,2,3}*p_{2,5,6}, p_{1,3,4}*p_{2,3,5} - p_{1,2,3}*p_{3,4,5}, p_{1,2,4}*p_{2,3,5} - p_{1,2,3}*p_{2,4,5}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,2,4}*p_{3,5,6} - y, p_{1,4,5}*p_{3,4,6} - p_{1,3,4}*p_{4,5,6}, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{2,3,6}*p_{3,4,5} - p_{2,3,5}*p_{3,4,6}, p_{1,3,4}*p_{2,5,6} - y, p_{1,4,5}*p_{2,4,6} - p_{1,2,4}*p_{4,5,6}, p_{1,3,5}*p_{2,4,6} - y, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,3,4}*p_{2,4,5} - p_{1,2,4}*p_{3,4,5}, p_{1,2,6}*p_{1,3,4} - p_{1,2,4}*p_{1,3,6}, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,3,6}*p_{2,4,6} - p_{1,2,6}*p_{3,4,6}, p_{1,3,4}*p_{2,3,6} - p_{1,2,3}*p_{3,4,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}); P8=ideal( p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,4,5}*p_{2,5,6} - p_{1,2,5}*p_{4,5,6}, p_{1,3,5}*p_{2,4,5} - p_{1,2,5}*p_{3,4,5}, p_{1,4,6}*p_{2,3,5} - x, p_{1,3,5}*p_{1,4,6} - p_{1,3,4}*p_{1,5,6}, p_{1,2,5}*p_{1,4,6} - p_{1,2,4}*p_{1,5,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,3,6}*p_{2,4,5} - p_{1,2,6}*p_{3,4,5}, p_{1,4,5}*p_{2,3,6} - p_{1,2,3}*p_{4,5,6}, p_{1,3,4}*p_{2,3,5} - p_{1,2,3}*p_{3,4,5}, p_{1,2,4}*p_{2,3,5} - p_{1,2,3}*p_{2,4,5}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,5,6}*p_{3,4,6} - p_{1,4,6}*p_{3,5,6}, p_{1,4,5}*p_{3,4,6} - p_{1,3,4}*p_{4,5,6}, p_{2,5,6}*p_{3,4,5} - p_{2,4,5}*p_{3,5,6}, p_{1,3,6}*p_{2,5,6} - p_{1,2,6}*p_{3,5,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,4,5}*p_{2,4,6} - p_{1,2,4}*p_{4,5,6}, p_{1,3,4}*p_{2,4,5} - p_{1,2,4}*p_{3,4,5}, p_{1,3,5}*p_{2,3,6} - p_{1,2,3}*p_{3,5,6}, p_{1,2,5}*p_{2,3,6} - p_{1,2,3}*p_{2,5,6}, p_{1,2,6}*p_{1,3,4} - p_{1,2,4}*p_{1,3,6}, p_{1,2,4}*p_{3,5,6} - y, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{2,3,6}*p_{3,4,5} - p_{2,3,5}*p_{3,4,6}, p_{1,3,4}*p_{2,5,6} - y, p_{1,3,5}*p_{2,4,6} - y, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,3,6}*p_{2,4,6} - p_{1,2,6}*p_{3,4,6}, p_{1,3,4}*p_{2,3,6} - p_{1,2,3}*p_{3,4,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,2,5}*p_{3,5,6}*x - p_{1,5,6}*p_{2,3,5}*y); P9=ideal( p_{1,5,6}*p_{2,3,6} - p_{1,3,6}*p_{2,5,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{2,3,5}*p_{2,4,6} - p_{2,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,3,6}*p_{2,4,5} - x, p_{1,2,5}*p_{2,3,6} - p_{1,2,3}*p_{2,5,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{2,4,5}*p_{3,5,6} - p_{2,3,5}*p_{4,5,6}, p_{2,4,5}*p_{3,4,6} - p_{2,3,4}*p_{4,5,6}, p_{2,3,5}*p_{3,4,6} - p_{2,3,4}*p_{3,5,6}, p_{1,5,6}*p_{3,4,6} - p_{1,4,6}*p_{3,5,6}, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{1,4,5}*p_{2,3,6} - p_{1,2,3}*p_{4,5,6}, p_{1,3,5}*p_{2,3,6} - p_{1,2,3}*p_{3,5,6}, p_{1,3,4}*p_{2,3,6} - p_{1,2,3}*p_{3,4,6}, p_{1,5,6}*p_{2,3,4} - p_{1,4,6}*p_{2,3,5}, p_{1,2,5}*p_{1,3,6} - p_{1,2,3}*p_{1,5,6}, p_{1,2,4}*p_{1,3,6} - p_{1,2,3}*p_{1,4,6}, p_{1,2,4}*p_{3,5,6} - y, p_{1,2,5}*p_{3,4,6} - y, p_{1,4,5}*p_{2,5,6} - p_{1,2,5}*p_{4,5,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,3,4}*p_{2,5,6} - y, p_{1,4,5}*p_{2,4,6} - p_{1,2,4}*p_{4,5,6}, p_{1,3,5}*p_{2,4,6} - y, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,2,5}*p_{2,3,4} - p_{1,2,4}*p_{2,3,5}, p_{1,2,5}*p_{1,4,6} - p_{1,2,4}*p_{1,5,6}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,4,5}*p_{3,4,6} - p_{1,3,4}*p_{4,5,6}, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,4,5}*p_{2,3,4} - p_{1,3,4}*p_{2,4,5}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,3,5}*p_{1,4,6} - p_{1,3,4}*p_{1,5,6}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}); P10=ideal( p_{1,2,6}*p_{2,4,5} - p_{1,2,5}*p_{2,4,6}, p_{1,2,5}*p_{3,4,6} - y, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,2,6}*p_{1,4,5} - p_{1,2,5}*p_{1,4,6}, p_{1,2,4}*p_{3,5,6} - p_{1,2,3}*p_{4,5,6}, p_{2,4,5}*p_{3,4,6} - p_{2,3,4}*p_{4,5,6}, p_{1,5,6}*p_{2,4,5} - p_{1,4,5}*p_{2,5,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,2,6}*p_{2,3,5} - p_{1,2,5}*p_{2,3,6}, p_{1,2,4}*p_{2,3,5} - p_{1,2,3}*p_{2,4,5}, p_{1,5,6}*p_{2,3,4} - p_{1,3,4}*p_{2,5,6}, p_{1,4,6}*p_{2,3,4} - p_{1,3,4}*p_{2,4,6}, p_{1,2,4}*p_{1,3,6} - p_{1,2,3}*p_{1,4,6}, p_{2,4,6}*p_{3,5,6} - p_{2,3,6}*p_{4,5,6}, p_{1,4,5}*p_{3,4,6} - p_{1,3,4}*p_{4,5,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,5,6}*p_{2,3,6} - p_{1,3,6}*p_{2,5,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,4,5}*p_{2,3,4} - p_{1,3,4}*p_{2,4,5}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{1,2,4}*p_{1,3,5} - p_{1,2,3}*p_{1,4,5}, p_{2,4,5}*p_{3,5,6} - p_{2,3,5}*p_{4,5,6}, p_{1,4,6}*p_{3,5,6} - p_{1,3,6}*p_{4,5,6}, p_{2,3,5}*p_{3,4,6} - p_{2,3,4}*p_{3,5,6}, p_{1,3,5}*p_{2,4,6} - x, p_{1,3,6}*p_{2,4,5} - x, p_{1,4,5}*p_{2,3,6} - x, p_{1,5,6}*p_{2,3,5} - p_{1,3,5}*p_{2,5,6}, p_{1,4,6}*p_{2,3,5} - x, p_{1,3,6}*p_{2,3,4} - p_{1,3,4}*p_{2,3,6}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,2,6}*p_{3,4,6}*x - p_{1,3,6}*p_{2,4,6}*y); P11=ideal( p_{1,4,5}*p_{2,3,4} - p_{1,3,4}*p_{2,4,5}, p_{1,2,6}*p_{1,4,5} - p_{1,2,5}*p_{1,4,6}, p_{1,2,4}*p_{1,3,5} - p_{1,2,3}*p_{1,4,5}, p_{1,2,4}*p_{3,5,6} - p_{1,2,3}*p_{4,5,6}, p_{1,4,6}*p_{3,4,5} - p_{1,4,5}*p_{3,4,6}, p_{1,2,6}*p_{3,4,5} - p_{1,2,5}*p_{3,4,6}, p_{1,5,6}*p_{2,4,5} - p_{1,4,5}*p_{2,5,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,2,6}*p_{2,4,5} - p_{1,2,5}*p_{2,4,6}, p_{1,2,4}*p_{2,3,5} - p_{1,2,3}*p_{2,4,5}, p_{1,5,6}*p_{2,3,4} - p_{1,3,4}*p_{2,5,6}, p_{1,4,6}*p_{2,3,4} - p_{1,3,4}*p_{2,4,6}, p_{1,2,4}*p_{1,3,6} - p_{1,2,3}*p_{1,4,6}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{2,4,5}*p_{3,5,6} - p_{2,3,5}*p_{4,5,6}, p_{1,4,6}*p_{3,5,6} - p_{1,3,6}*p_{4,5,6}, p_{1,3,6}*p_{3,4,5} - p_{1,3,5}*p_{3,4,6}, p_{1,3,5}*p_{2,4,6} - x, p_{1,3,6}*p_{2,4,5} - x, p_{1,4,5}*p_{2,3,6} - x, p_{1,5,6}*p_{2,3,5} - p_{1,3,5}*p_{2,5,6}, p_{1,4,6}*p_{2,3,5} - x, p_{1,2,6}*p_{2,3,5} - p_{1,2,5}*p_{2,3,6}, p_{1,3,6}*p_{2,3,4} - p_{1,3,4}*p_{2,3,6}, p_{2,4,6}*p_{3,5,6} - p_{2,3,6}*p_{4,5,6}, p_{2,3,6}*p_{3,4,5} - p_{2,3,5}*p_{3,4,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,5,6}*p_{2,3,6} - p_{1,3,6}*p_{2,5,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,2,5}*p_{1,3,4}*p_{4,5,6} - p_{1,4,5}*y, p_{1,2,5}*p_{2,3,4}*p_{4,5,6} - p_{2,4,5}*y, p_{1,2,6}*p_{1,3,4}*p_{4,5,6} - p_{1,4,6}*y, p_{1,2,6}*p_{2,3,4}*p_{4,5,6} - p_{2,4,6}*y, p_{1,2,5}*p_{1,3,4}*p_{3,5,6} - p_{1,3,5}*y, p_{1,2,5}*p_{2,3,4}*p_{3,5,6} - p_{2,3,5}*y, p_{1,2,6}*p_{1,3,4}*p_{3,5,6} - p_{1,3,6}*y, p_{1,2,6}*p_{2,3,4}*p_{3,5,6} - p_{2,3,6}*y); P12=ideal( p_{1,4,5}*p_{2,5,6} - p_{1,2,5}*p_{4,5,6}, p_{1,3,4}*p_{2,5,6} - y, p_{1,4,5}*p_{2,3,4} - p_{1,3,4}*p_{2,4,5}, p_{1,2,6}*p_{1,4,5} - p_{1,2,5}*p_{1,4,6}, p_{1,2,4}*p_{1,3,5} - p_{1,2,3}*p_{1,4,5}, p_{1,2,4}*p_{3,5,6} - p_{1,2,3}*p_{4,5,6}, p_{1,4,6}*p_{3,4,5} - p_{1,4,5}*p_{3,4,6}, p_{1,2,6}*p_{3,4,5} - p_{1,2,5}*p_{3,4,6}, p_{1,4,6}*p_{2,5,6} - p_{1,2,6}*p_{4,5,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,2,6}*p_{2,4,5} - p_{1,2,5}*p_{2,4,6}, p_{1,2,4}*p_{2,3,5} - p_{1,2,3}*p_{2,4,5}, p_{1,4,6}*p_{2,3,4} - p_{1,3,4}*p_{2,4,6}, p_{1,2,4}*p_{1,3,6} - p_{1,2,3}*p_{1,4,6}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{2,4,5}*p_{3,5,6} - p_{2,3,5}*p_{4,5,6}, p_{1,4,6}*p_{3,5,6} - p_{1,3,6}*p_{4,5,6}, p_{1,3,6}*p_{3,4,5} - p_{1,3,5}*p_{3,4,6}, p_{1,3,6}*p_{2,5,6} - p_{1,2,6}*p_{3,5,6}, p_{1,3,5}*p_{2,4,6} - x, p_{1,3,6}*p_{2,4,5} - x, p_{1,4,5}*p_{2,3,6} - x, p_{1,4,6}*p_{2,3,5} - x, p_{1,2,6}*p_{2,3,5} - p_{1,2,5}*p_{2,3,6}, p_{1,3,6}*p_{2,3,4} - p_{1,3,4}*p_{2,3,6}, p_{2,4,6}*p_{3,5,6} - p_{2,3,6}*p_{4,5,6}, p_{2,3,6}*p_{3,4,5} - p_{2,3,5}*p_{3,4,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{2,3,4}*p_{2,5,6}*x - p_{2,3,5}*p_{2,4,6}*y); P13=ideal( p_{1,4,5}*p_{2,3,4} - p_{1,3,4}*p_{2,4,5}, p_{1,4,6}*p_{3,4,5} - p_{1,4,5}*p_{3,4,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,4} - p_{1,3,4}*p_{2,4,6}, p_{1,2,4}*p_{1,3,6} - p_{1,2,3}*p_{1,4,6}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,2,5}*p_{2,3,4} - p_{1,2,4}*p_{2,3,5}, p_{1,2,5}*p_{1,4,6} - p_{1,2,4}*p_{1,5,6}, p_{1,2,4}*p_{3,5,6} - y, p_{1,2,5}*p_{3,4,6} - y, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{1,3,6}*p_{2,4,5} - x, p_{1,4,5}*p_{2,3,6} - x, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,6}*p_{2,3,4} - p_{1,3,4}*p_{2,3,6}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,3,5}*p_{1,4,6} - p_{1,3,4}*p_{1,5,6}, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,5,6}*p_{3,4,5} - p_{1,4,5}*p_{3,5,6}, p_{1,3,5}*p_{2,4,6} - p_{1,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,4,5} - p_{1,4,5}*p_{2,5,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,4,6}*p_{2,3,5} - p_{1,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,3,4} - p_{1,3,4}*p_{2,5,6}, p_{1,2,5}*p_{1,3,6} - p_{1,2,3}*p_{1,5,6}, p_{2,3,5}*p_{3,4,6} - p_{2,3,4}*p_{3,5,6}, p_{1,5,6}*p_{3,4,6} - p_{1,4,6}*p_{3,5,6}, p_{2,5,6}*p_{3,4,5} - p_{2,4,5}*p_{3,5,6}, p_{2,3,5}*p_{2,4,6} - p_{2,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,2,5}*p_{2,3,6} - p_{1,2,3}*p_{2,5,6}, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,5,6}*p_{2,3,6} - p_{1,3,6}*p_{2,5,6}, p_{1,5,6}*p_{2,3,5} - p_{1,3,5}*p_{2,5,6}, p_{1,2,4}*p_{1,2,5}*p_{3,4,5}*x - p_{1,2,3}*p_{1,4,5}*p_{2,4,5}*y, p_{1,2,3}*p_{3,4,6}*p_{3,5,6}*x - p_{1,3,6}*p_{2,3,6}*p_{3,4,5}*y); P14=ideal( p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{2,4,5}*p_{3,4,6} - p_{2,3,4}*p_{4,5,6}, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,4,6}*p_{2,3,4} - p_{1,3,4}*p_{2,4,6}, p_{1,2,4}*p_{1,3,6} - p_{1,2,3}*p_{1,4,6}, p_{1,2,4}*p_{3,5,6} - y, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{1,4,5}*p_{3,4,6} - p_{1,3,4}*p_{4,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{2,3,5}*p_{2,4,6} - p_{2,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,3,6}*p_{2,4,5} - x, p_{1,4,5}*p_{2,3,6} - x, p_{1,2,5}*p_{2,3,6} - p_{1,2,3}*p_{2,5,6}, p_{1,4,5}*p_{2,3,4} - p_{1,3,4}*p_{2,4,5}, p_{1,3,6}*p_{2,3,4} - p_{1,3,4}*p_{2,3,6}, p_{1,2,5}*p_{2,3,4} - p_{1,2,4}*p_{2,3,5}, p_{1,2,5}*p_{1,4,6} - p_{1,2,4}*p_{1,5,6}, p_{2,4,5}*p_{3,5,6} - p_{2,3,5}*p_{4,5,6}, p_{2,3,5}*p_{3,4,6} - p_{2,3,4}*p_{3,5,6}, p_{1,5,6}*p_{3,4,6} - p_{1,4,6}*p_{3,5,6}, p_{1,3,5}*p_{2,4,6} - p_{1,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,4,5} - p_{1,4,5}*p_{2,5,6}, p_{1,5,6}*p_{2,3,6} - p_{1,3,6}*p_{2,5,6}, p_{1,4,6}*p_{2,3,5} - p_{1,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,3,4} - p_{1,3,4}*p_{2,5,6}, p_{1,2,5}*p_{1,3,6} - p_{1,2,3}*p_{1,5,6}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,3,5}*p_{1,4,6} - p_{1,3,4}*p_{1,5,6}, p_{1,5,6}*p_{2,3,5} - p_{1,3,5}*p_{2,5,6}); P15=ideal( p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,5,6}*p_{2,3,6} - p_{1,3,6}*p_{2,5,6}, p_{1,2,5}*p_{1,3,6} - p_{1,2,3}*p_{1,5,6}, p_{1,4,5}*p_{2,5,6} - p_{1,2,5}*p_{4,5,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,2,5}*p_{2,3,6} - p_{1,2,3}*p_{2,5,6}, p_{1,2,5}*p_{1,4,6} - p_{1,2,4}*p_{1,5,6}, p_{2,4,5}*p_{3,5,6} - p_{2,3,5}*p_{4,5,6}, p_{1,4,6}*p_{3,5,6} - p_{1,3,6}*p_{4,5,6}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{1,3,4}*p_{2,5,6} - y, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{1,3,6}*p_{2,4,5} - x, p_{1,3,5}*p_{2,3,6} - p_{1,2,3}*p_{3,5,6}, p_{1,4,6}*p_{2,3,5} - x, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{2,4,6}*p_{3,5,6} - p_{2,3,6}*p_{4,5,6}, p_{1,2,4}*p_{3,5,6} - p_{1,2,3}*p_{4,5,6}, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{2,3,6}*p_{3,4,5} - p_{2,3,5}*p_{3,4,6}, p_{1,3,5}*p_{2,4,6} - p_{1,2,3}*p_{4,5,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,4,5}*p_{2,3,6} - p_{1,2,3}*p_{4,5,6}, p_{1,3,4}*p_{2,3,5} - p_{1,2,3}*p_{3,4,5}, p_{1,2,4}*p_{2,3,5} - p_{1,2,3}*p_{2,4,5}, p_{1,2,4}*p_{1,3,6} - p_{1,2,3}*p_{1,4,6}, p_{1,2,4}*p_{1,3,5} - p_{1,2,3}*p_{1,4,5}, p_{1,4,5}*p_{3,4,6} - p_{1,3,4}*p_{4,5,6}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,4,5}*p_{2,4,6} - p_{1,2,4}*p_{4,5,6}, p_{1,3,4}*p_{2,4,5} - p_{1,2,4}*p_{3,4,5}, p_{1,3,4}*p_{2,3,6} - p_{1,2,3}*p_{3,4,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,2,5}*p_{2,5,6}*p_{3,4,5}*x - p_{1,5,6}*p_{2,3,5}*p_{2,4,5}*y, p_{1,3,4}*p_{1,5,6}*p_{3,4,6}*x - p_{1,3,6}*p_{1,4,6}*p_{3,4,5}*y); P16=ideal( p_{2,4,5}*p_{3,4,6} - p_{2,3,4}*p_{4,5,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,4} - p_{1,3,4}*p_{2,4,6}, p_{1,2,6}*p_{2,3,4} - p_{1,2,4}*p_{2,3,6}, p_{1,4,5}*p_{3,4,6} - p_{1,3,4}*p_{4,5,6}, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,4,5}*p_{2,3,4} - p_{1,3,4}*p_{2,4,5}, p_{1,2,6}*p_{1,3,4} - p_{1,2,4}*p_{1,3,6}, p_{1,2,4}*p_{3,5,6} - y, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{2,3,5}*p_{2,4,6} - p_{2,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,3,6}*p_{2,4,5} - x, p_{1,4,5}*p_{2,3,6} - x, p_{1,3,6}*p_{2,3,4} - p_{1,3,4}*p_{2,3,6}, p_{1,2,5}*p_{2,3,4} - p_{1,2,4}*p_{2,3,5}, p_{1,2,5}*p_{1,4,6} - p_{1,2,4}*p_{1,5,6}, p_{2,4,5}*p_{3,5,6} - p_{2,3,5}*p_{4,5,6}, p_{2,3,5}*p_{3,4,6} - p_{2,3,4}*p_{3,5,6}, p_{1,5,6}*p_{3,4,6} - p_{1,4,6}*p_{3,5,6}, p_{1,3,5}*p_{2,4,6} - p_{1,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,4,5} - p_{1,4,5}*p_{2,5,6}, p_{1,4,6}*p_{2,3,5} - p_{1,3,4}*p_{2,5,6}, p_{1,2,6}*p_{2,3,5} - p_{1,2,5}*p_{2,3,6}, p_{1,5,6}*p_{2,3,4} - p_{1,3,4}*p_{2,5,6}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,5,6}*p_{2,3,6} - p_{1,3,6}*p_{2,5,6}, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,3,5}*p_{1,4,6} - p_{1,3,4}*p_{1,5,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,5,6}*p_{2,3,5} - p_{1,3,5}*p_{2,5,6}, p_{1,2,4}*p_{1,2,5}*p_{4,5,6}*x - p_{1,2,6}*p_{1,4,5}*p_{2,4,5}*y, p_{1,2,6}*p_{3,4,6}*p_{3,5,6}*x - p_{1,3,6}*p_{2,3,6}*p_{4,5,6}*y); P17=ideal( p_{2,4,5}*p_{3,4,6} - p_{2,3,4}*p_{4,5,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,2,6}*p_{2,4,5} - p_{1,2,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,4} - p_{1,3,4}*p_{2,4,6}, p_{1,2,6}*p_{2,3,4} - p_{1,2,4}*p_{2,3,6}, p_{1,2,4}*p_{3,5,6} - y, p_{1,4,5}*p_{3,4,6} - p_{1,3,4}*p_{4,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,4,5}*p_{2,3,4} - p_{1,3,4}*p_{2,4,5}, p_{1,2,5}*p_{2,3,4} - p_{1,2,4}*p_{2,3,5}, p_{1,2,6}*p_{1,4,5} - p_{1,2,5}*p_{1,4,6}, p_{1,2,6}*p_{1,3,4} - p_{1,2,4}*p_{1,3,6}, p_{2,4,6}*p_{3,5,6} - p_{2,3,6}*p_{4,5,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,5,6}*p_{2,4,5} - p_{1,4,5}*p_{2,5,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,5,6}*p_{2,3,4} - p_{1,3,4}*p_{2,5,6}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{2,4,5}*p_{3,5,6} - p_{2,3,5}*p_{4,5,6}, p_{1,4,6}*p_{3,5,6} - p_{1,3,6}*p_{4,5,6}, p_{2,3,5}*p_{3,4,6} - p_{2,3,4}*p_{3,5,6}, p_{1,3,5}*p_{2,4,6} - x, p_{1,3,6}*p_{2,4,5} - x, p_{1,4,5}*p_{2,3,6} - x, p_{1,4,6}*p_{2,3,5} - x, p_{1,2,6}*p_{2,3,5} - p_{1,2,5}*p_{2,3,6}, p_{1,3,6}*p_{2,3,4} - p_{1,3,4}*p_{2,3,6}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,5,6}*p_{2,3,6} - p_{1,3,6}*p_{2,5,6}, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{1,5,6}*p_{2,3,5} - p_{1,3,5}*p_{2,5,6}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,2,4}*p_{4,5,6}*x - p_{1,4,5}*p_{2,4,6}*y, p_{1,2,4}*p_{3,4,6}*x - p_{1,3,4}*p_{2,4,6}*y, p_{1,2,6}*p_{3,4,6}*x - p_{1,3,6}*p_{2,4,6}*y); P18=ideal( p_{1,4,5}*p_{2,3,4} - p_{1,3,4}*p_{2,4,5}, p_{1,4,6}*p_{3,4,5} - p_{1,4,5}*p_{3,4,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,4} - p_{1,3,4}*p_{2,4,6}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,2,4}*p_{3,5,6} - y, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,2,5}*p_{2,3,4} - p_{1,2,4}*p_{2,3,5}, p_{1,2,6}*p_{1,4,5} - p_{1,2,5}*p_{1,4,6}, p_{1,2,6}*p_{1,3,4} - p_{1,2,4}*p_{1,3,6}, p_{1,2,6}*p_{3,4,5} - p_{1,2,5}*p_{3,4,6}, p_{1,5,6}*p_{2,4,5} - p_{1,4,5}*p_{2,5,6}, p_{1,2,6}*p_{2,4,5} - p_{1,2,5}*p_{2,4,6}, p_{1,5,6}*p_{2,3,4} - p_{1,3,4}*p_{2,5,6}, p_{1,2,6}*p_{2,3,4} - p_{1,2,4}*p_{2,3,6}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{2,4,5}*p_{3,5,6} - p_{2,3,5}*p_{4,5,6}, p_{1,4,6}*p_{3,5,6} - p_{1,3,6}*p_{4,5,6}, p_{1,3,6}*p_{3,4,5} - p_{1,3,5}*p_{3,4,6}, p_{1,3,5}*p_{2,4,6} - x, p_{1,3,6}*p_{2,4,5} - x, p_{1,4,5}*p_{2,3,6} - x, p_{1,4,6}*p_{2,3,5} - x, p_{1,3,6}*p_{2,3,4} - p_{1,3,4}*p_{2,3,6}, p_{2,4,6}*p_{3,5,6} - p_{2,3,6}*p_{4,5,6}, p_{2,3,6}*p_{3,4,5} - p_{2,3,5}*p_{3,4,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{1,5,6}*p_{2,3,5} - p_{1,3,5}*p_{2,5,6}, p_{1,2,6}*p_{2,3,5} - p_{1,2,5}*p_{2,3,6}, p_{1,5,6}*p_{2,3,6} - p_{1,3,6}*p_{2,5,6}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,2,4}*p_{4,5,6}*x - p_{1,4,5}*p_{2,4,6}*y); P19=ideal( p_{1,4,5}*p_{2,3,4} - p_{1,3,4}*p_{2,4,5}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,4,6}*p_{3,4,5} - p_{1,4,5}*p_{3,4,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,4} - p_{1,3,4}*p_{2,4,6}, p_{1,2,5}*p_{2,3,4} - p_{1,2,4}*p_{2,3,5}, p_{1,2,6}*p_{1,4,5} - p_{1,2,5}*p_{1,4,6}, p_{1,2,6}*p_{1,3,4} - p_{1,2,4}*p_{1,3,6}, p_{1,2,4}*p_{3,5,6} - y, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{1,5,6}*p_{3,4,5} - p_{1,4,5}*p_{3,5,6}, p_{1,2,6}*p_{3,4,5} - p_{1,2,5}*p_{3,4,6}, p_{1,5,6}*p_{2,4,5} - p_{1,4,5}*p_{2,5,6}, p_{1,2,6}*p_{2,4,5} - p_{1,2,5}*p_{2,4,6}, p_{1,5,6}*p_{2,3,4} - p_{1,3,4}*p_{2,5,6}, p_{1,2,6}*p_{2,3,4} - p_{1,2,4}*p_{2,3,6}, p_{1,3,6}*p_{3,4,5} - p_{1,3,5}*p_{3,4,6}, p_{1,3,5}*p_{2,4,6} - x, p_{1,3,6}*p_{2,4,5} - x, p_{1,4,5}*p_{2,3,6} - x, p_{1,4,6}*p_{2,3,5} - x, p_{1,3,6}*p_{2,3,4} - p_{1,3,4}*p_{2,3,6}, p_{1,5,6}*p_{3,4,6} - p_{1,4,6}*p_{3,5,6}, p_{2,5,6}*p_{3,4,5} - p_{2,4,5}*p_{3,5,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{2,3,6}*p_{3,4,5} - p_{2,3,5}*p_{3,4,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{1,5,6}*p_{2,3,5} - p_{1,3,5}*p_{2,5,6}, p_{1,2,6}*p_{2,3,5} - p_{1,2,5}*p_{2,3,6}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,5,6}*p_{2,3,6} - p_{1,3,6}*p_{2,5,6}); P20=ideal( p_{1,4,5}*p_{2,3,4} - p_{1,3,4}*p_{2,4,5}, p_{1,4,6}*p_{3,4,5} - p_{1,4,5}*p_{3,4,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,4} - p_{1,3,4}*p_{2,4,6}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,2,6}*p_{1,3,4} - p_{1,2,4}*p_{1,3,6}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,2,6}*p_{2,3,4} - p_{1,2,4}*p_{2,3,6}, p_{1,2,5}*p_{2,3,4} - p_{1,2,4}*p_{2,3,5}, p_{1,2,5}*p_{1,4,6} - p_{1,2,4}*p_{1,5,6}, p_{1,2,4}*p_{3,5,6} - y, p_{1,2,5}*p_{3,4,6} - y, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{1,3,6}*p_{2,4,5} - x, p_{1,4,5}*p_{2,3,6} - x, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,6}*p_{2,3,4} - p_{1,3,4}*p_{2,3,6}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,3,5}*p_{1,4,6} - p_{1,3,4}*p_{1,5,6}, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,5,6}*p_{3,4,5} - p_{1,4,5}*p_{3,5,6}, p_{1,3,5}*p_{2,4,6} - p_{1,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,4,5} - p_{1,4,5}*p_{2,5,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,4,6}*p_{2,3,5} - p_{1,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,3,4} - p_{1,3,4}*p_{2,5,6}, p_{2,3,5}*p_{3,4,6} - p_{2,3,4}*p_{3,5,6}, p_{1,5,6}*p_{3,4,6} - p_{1,4,6}*p_{3,5,6}, p_{2,5,6}*p_{3,4,5} - p_{2,4,5}*p_{3,5,6}, p_{2,3,5}*p_{2,4,6} - p_{2,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{1,2,6}*p_{2,3,5} - p_{1,2,5}*p_{2,3,6}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,5,6}*p_{2,3,6} - p_{1,3,6}*p_{2,5,6}, p_{1,5,6}*p_{2,3,5} - p_{1,3,5}*p_{2,5,6}); P21=ideal( p_{1,3,6}*p_{2,4,5} - p_{1,2,6}*p_{3,4,5}, p_{1,4,5}*p_{2,3,6} - p_{1,2,3}*p_{4,5,6}, p_{1,5,6}*p_{2,3,4} - p_{1,4,6}*p_{2,3,5}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,4,5}*p_{3,4,6} - p_{1,3,4}*p_{4,5,6}, p_{1,4,5}*p_{2,5,6} - p_{1,2,5}*p_{4,5,6}, p_{1,4,5}*p_{2,4,6} - p_{1,2,4}*p_{4,5,6}, p_{1,3,5}*p_{2,4,5} - p_{1,2,5}*p_{3,4,5}, p_{1,3,4}*p_{2,4,5} - p_{1,2,4}*p_{3,4,5}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,2,5}*p_{2,3,4} - p_{1,2,4}*p_{2,3,5}, p_{1,3,5}*p_{1,4,6} - p_{1,3,4}*p_{1,5,6}, p_{1,2,5}*p_{1,4,6} - p_{1,2,4}*p_{1,5,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{1,2,6}*p_{1,3,4} - p_{1,2,4}*p_{1,3,6}, p_{2,3,5}*p_{3,4,6} - p_{2,3,4}*p_{3,5,6}, p_{1,5,6}*p_{3,4,6} - p_{1,4,6}*p_{3,5,6}, p_{2,5,6}*p_{3,4,5} - p_{2,4,5}*p_{3,5,6}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,3,6}*p_{2,5,6} - p_{1,2,6}*p_{3,5,6}, p_{2,3,5}*p_{2,4,6} - p_{2,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,3,6}*p_{2,4,6} - p_{1,2,6}*p_{3,4,6}, p_{1,3,5}*p_{2,3,6} - p_{1,2,3}*p_{3,5,6}, p_{1,3,4}*p_{2,3,6} - p_{1,2,3}*p_{3,4,6}, p_{1,2,5}*p_{2,3,6} - p_{1,2,3}*p_{2,5,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,2,4}*p_{3,5,6} - y, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,3,4}*p_{2,5,6} - y, p_{1,3,5}*p_{2,4,6} - y, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{1,2,3}*p_{1,5,6}*p_{3,4,5} - p_{1,3,5}*x, p_{1,2,3}*p_{1,4,6}*p_{3,4,5} - p_{1,3,4}*x, p_{1,2,3}*p_{1,5,6}*p_{2,4,5} - p_{1,2,5}*x, p_{1,2,3}*p_{1,4,6}*p_{2,4,5} - p_{1,2,4}*x, p_{1,5,6}*p_{2,3,6}*p_{3,4,5} - p_{3,5,6}*x, p_{1,4,6}*p_{2,3,6}*p_{3,4,5} - p_{3,4,6}*x, p_{1,5,6}*p_{2,3,6}*p_{2,4,5} - p_{2,5,6}*x, p_{1,4,6}*p_{2,3,6}*p_{2,4,5} - p_{2,4,6}*x); P22=ideal( p_{1,3,6}*p_{2,4,5} - x, p_{1,5,6}*p_{2,3,6} - p_{1,3,6}*p_{2,5,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,4,5}*p_{2,3,6} - p_{1,2,3}*p_{4,5,6}, p_{1,5,6}*p_{2,3,4} - p_{1,4,6}*p_{2,3,5}, p_{1,2,5}*p_{1,3,6} - p_{1,2,3}*p_{1,5,6}, p_{1,2,4}*p_{1,3,6} - p_{1,2,3}*p_{1,4,6}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{2,3,5}*p_{3,4,6} - p_{2,3,4}*p_{3,5,6}, p_{1,5,6}*p_{3,4,6} - p_{1,4,6}*p_{3,5,6}, p_{1,4,5}*p_{3,4,6} - p_{1,3,4}*p_{4,5,6}, p_{2,5,6}*p_{3,4,5} - p_{2,4,5}*p_{3,5,6}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,4,5}*p_{2,5,6} - p_{1,2,5}*p_{4,5,6}, p_{2,3,5}*p_{2,4,6} - p_{2,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,4,5}*p_{2,4,6} - p_{1,2,4}*p_{4,5,6}, p_{1,3,5}*p_{2,4,5} - p_{1,2,5}*p_{3,4,5}, p_{1,3,4}*p_{2,4,5} - p_{1,2,4}*p_{3,4,5}, p_{1,3,5}*p_{2,3,6} - p_{1,2,3}*p_{3,5,6}, p_{1,3,4}*p_{2,3,6} - p_{1,2,3}*p_{3,4,6}, p_{1,2,5}*p_{2,3,6} - p_{1,2,3}*p_{2,5,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,2,5}*p_{2,3,4} - p_{1,2,4}*p_{2,3,5}, p_{1,3,5}*p_{1,4,6} - p_{1,3,4}*p_{1,5,6}, p_{1,2,5}*p_{1,4,6} - p_{1,2,4}*p_{1,5,6}, p_{1,2,4}*p_{3,5,6} - y, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,3,4}*p_{2,5,6} - y, p_{1,3,5}*p_{2,4,6} - y, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,3,4}*p_{3,5,6}*x - p_{1,3,6}*p_{3,4,5}*y); P23= ideal( p_{1,2,5}*p_{1,3,6} - p_{1,2,3}*p_{1,5,6}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,4,5}*p_{2,5,6} - p_{1,2,5}*p_{4,5,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,3,6}*p_{2,4,5} - x, p_{1,3,5}*p_{2,4,5} - p_{1,2,5}*p_{3,4,5}, p_{1,5,6}*p_{2,3,6} - p_{1,3,6}*p_{2,5,6}, p_{1,4,6}*p_{2,3,5} - x, p_{1,3,5}*p_{1,4,6} - p_{1,3,4}*p_{1,5,6}, p_{1,2,5}*p_{1,4,6} - p_{1,2,4}*p_{1,5,6}, p_{1,5,6}*p_{3,4,6} - p_{1,4,6}*p_{3,5,6}, p_{2,5,6}*p_{3,4,5} - p_{2,4,5}*p_{3,5,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,4,5}*p_{2,3,6} - p_{1,2,3}*p_{4,5,6}, p_{1,3,5}*p_{2,3,6} - p_{1,2,3}*p_{3,5,6}, p_{1,2,5}*p_{2,3,6} - p_{1,2,3}*p_{2,5,6}, p_{1,3,4}*p_{2,3,5} - p_{1,2,3}*p_{3,4,5}, p_{1,2,4}*p_{2,3,5} - p_{1,2,3}*p_{2,4,5}, p_{1,2,4}*p_{1,3,6} - p_{1,2,3}*p_{1,4,6}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,2,4}*p_{3,5,6} - y, p_{1,4,5}*p_{3,4,6} - p_{1,3,4}*p_{4,5,6}, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{2,3,6}*p_{3,4,5} - p_{2,3,5}*p_{3,4,6}, p_{1,3,4}*p_{2,5,6} - y, p_{1,4,5}*p_{2,4,6} - p_{1,2,4}*p_{4,5,6}, p_{1,3,5}*p_{2,4,6} - y, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,3,4}*p_{2,4,5} - p_{1,2,4}*p_{3,4,5}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,3,4}*p_{2,3,6} - p_{1,2,3}*p_{3,4,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,2,5}*p_{3,5,6}*x - p_{1,5,6}*p_{2,3,5}*y, p_{1,2,3}*p_{3,5,6}*x - p_{1,3,6}*p_{2,3,5}*y, p_{1,3,4}*p_{3,5,6}*x - p_{1,3,6}*p_{3,4,5}*y); P24=ideal( p_{2,4,5}*p_{3,4,6} - p_{2,3,4}*p_{4,5,6}, p_{1,4,6}*p_{2,5,6} - p_{1,2,6}*p_{4,5,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,2,6}*p_{2,4,5} - p_{1,2,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,4} - p_{1,3,4}*p_{2,4,6}, p_{1,2,6}*p_{2,3,4} - p_{1,2,4}*p_{2,3,6}, p_{2,4,6}*p_{3,5,6} - p_{2,3,6}*p_{4,5,6}, p_{1,2,4}*p_{3,5,6} - y, p_{1,4,5}*p_{3,4,6} - p_{1,3,4}*p_{4,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{1,4,5}*p_{2,5,6} - p_{1,2,5}*p_{4,5,6}, p_{1,3,4}*p_{2,5,6} - y, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,4,5}*p_{2,3,4} - p_{1,3,4}*p_{2,4,5}, p_{1,2,5}*p_{2,3,4} - p_{1,2,4}*p_{2,3,5}, p_{1,2,6}*p_{1,4,5} - p_{1,2,5}*p_{1,4,6}, p_{1,2,6}*p_{1,3,4} - p_{1,2,4}*p_{1,3,6}, p_{2,4,5}*p_{3,5,6} - p_{2,3,5}*p_{4,5,6}, p_{1,4,6}*p_{3,5,6} - p_{1,3,6}*p_{4,5,6}, p_{2,3,5}*p_{3,4,6} - p_{2,3,4}*p_{3,5,6}, p_{1,3,6}*p_{2,5,6} - p_{1,2,6}*p_{3,5,6}, p_{1,3,5}*p_{2,4,6} - x, p_{1,3,6}*p_{2,4,5} - x, p_{1,4,5}*p_{2,3,6} - x, p_{1,4,6}*p_{2,3,5} - x, p_{1,2,6}*p_{2,3,5} - p_{1,2,5}*p_{2,3,6}, p_{1,3,6}*p_{2,3,4} - p_{1,3,4}*p_{2,3,6}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,2,4}*p_{4,5,6}*x - p_{1,4,5}*p_{2,4,6}*y, p_{1,2,4}*p_{3,4,6}*x - p_{1,3,4}*p_{2,4,6}*y, p_{1,2,4}*p_{2,5,6}*x - p_{1,2,5}*p_{2,4,6}*y, p_{2,5,6}*p_{3,4,6}*x - p_{2,3,6}*p_{4,5,6}*y, p_{1,2,6}*p_{3,4,6}*x - p_{1,3,6}*p_{2,4,6}*y, p_{2,3,4}*p_{2,5,6}*x - p_{2,3,5}*p_{2,4,6}*y); P25=ideal( p_{1,4,5}*p_{2,3,4} - p_{1,3,4}*p_{2,4,5}, p_{1,4,6}*p_{3,4,5} - p_{1,4,5}*p_{3,4,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,4} - p_{1,3,4}*p_{2,4,6}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,2,4}*p_{3,5,6} - y, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,4,5}*p_{2,5,6} - p_{1,2,5}*p_{4,5,6}, p_{1,3,4}*p_{2,5,6} - y, p_{1,2,5}*p_{2,3,4} - p_{1,2,4}*p_{2,3,5}, p_{1,2,6}*p_{1,4,5} - p_{1,2,5}*p_{1,4,6}, p_{1,2,6}*p_{1,3,4} - p_{1,2,4}*p_{1,3,6}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,2,6}*p_{3,4,5} - p_{1,2,5}*p_{3,4,6}, p_{1,4,6}*p_{2,5,6} - p_{1,2,6}*p_{4,5,6}, p_{1,2,6}*p_{2,4,5} - p_{1,2,5}*p_{2,4,6}, p_{1,4,5}*p_{2,3,5} - p_{1,3,5}*p_{2,4,5}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,2,6}*p_{2,3,4} - p_{1,2,4}*p_{2,3,6}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{2,4,5}*p_{3,5,6} - p_{2,3,5}*p_{4,5,6}, p_{1,4,6}*p_{3,5,6} - p_{1,3,6}*p_{4,5,6}, p_{1,3,6}*p_{3,4,5} - p_{1,3,5}*p_{3,4,6}, p_{1,3,5}*p_{2,4,6} - x, p_{1,3,6}*p_{2,4,5} - x, p_{1,4,5}*p_{2,3,6} - x, p_{1,4,6}*p_{2,3,5} - x, p_{1,3,6}*p_{2,3,4} - p_{1,3,4}*p_{2,3,6}, p_{2,4,6}*p_{3,5,6} - p_{2,3,6}*p_{4,5,6}, p_{2,3,6}*p_{3,4,5} - p_{2,3,5}*p_{3,4,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{1,3,6}*p_{2,5,6} - p_{1,2,6}*p_{3,5,6}, p_{1,2,6}*p_{2,3,5} - p_{1,2,5}*p_{2,3,6}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,2,4}*p_{4,5,6}*x - p_{1,4,5}*p_{2,4,6}*y, p_{1,2,4}*p_{2,5,6}*x - p_{1,2,5}*p_{2,4,6}*y, p_{2,3,4}*p_{2,5,6}*x - p_{2,3,5}*p_{2,4,6}*y); P26=ideal( p_{1,3,4}*p_{2,4,5} - p_{1,2,4}*p_{3,4,5}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,4,6}*p_{3,4,5} - p_{1,4,5}*p_{3,4,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,3,5}*p_{2,4,5} - p_{1,2,5}*p_{3,4,5}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,2,5}*p_{2,3,4} - p_{1,2,4}*p_{2,3,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{1,2,6}*p_{1,4,5} - p_{1,2,5}*p_{1,4,6}, p_{1,5,6}*p_{3,4,5} - p_{1,4,5}*p_{3,5,6}, p_{1,5,6}*p_{2,4,5} - p_{1,4,5}*p_{2,5,6}, p_{1,2,6}*p_{1,3,4} - p_{1,2,4}*p_{1,3,6}, p_{1,2,4}*p_{3,5,6} - y, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,3,4}*p_{2,5,6} - y, p_{1,4,5}*p_{2,3,6} - x, p_{1,4,6}*p_{2,3,5} - x, p_{1,3,6}*p_{3,4,5} - p_{1,3,5}*p_{3,4,6}, p_{1,2,6}*p_{3,4,5} - p_{1,2,5}*p_{3,4,6}, p_{1,3,5}*p_{2,4,6} - p_{1,2,5}*p_{3,4,6}, p_{1,3,6}*p_{2,4,5} - p_{1,2,5}*p_{3,4,6}, p_{1,2,6}*p_{2,4,5} - p_{1,2,5}*p_{2,4,6}, p_{1,3,6}*p_{2,3,4} - p_{1,3,4}*p_{2,3,6}, p_{1,2,6}*p_{2,3,4} - p_{1,2,4}*p_{2,3,6}, p_{1,5,6}*p_{3,4,6} - p_{1,4,6}*p_{3,5,6}, p_{2,5,6}*p_{3,4,5} - p_{2,4,5}*p_{3,5,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{2,3,6}*p_{3,4,5} - p_{2,3,5}*p_{3,4,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,3,6}*p_{2,4,6} - p_{1,2,6}*p_{3,4,6}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,2,6}*p_{2,3,5} - p_{1,2,5}*p_{2,3,6}, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{1,3,6}*p_{2,5,6} - p_{1,2,6}*p_{3,5,6}); P27=ideal( p_{1,3,4}*p_{2,4,5} - p_{1,2,4}*p_{3,4,5}, p_{1,4,6}*p_{3,4,5} - p_{1,4,5}*p_{3,4,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,3,5}*p_{2,4,5} - p_{1,2,5}*p_{3,4,5}, p_{1,4,5}*p_{2,3,6} - x, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,2,5}*p_{2,3,4} - p_{1,2,4}*p_{2,3,5}, p_{1,3,5}*p_{1,4,6} - p_{1,3,4}*p_{1,5,6}, p_{1,2,5}*p_{1,4,6} - p_{1,2,4}*p_{1,5,6}, p_{1,2,6}*p_{1,3,4} - p_{1,2,4}*p_{1,3,6}, p_{1,5,6}*p_{3,4,5} - p_{1,4,5}*p_{3,5,6}, p_{1,5,6}*p_{2,4,5} - p_{1,4,5}*p_{2,5,6}, p_{1,3,6}*p_{2,4,5} - p_{1,2,6}*p_{3,4,5}, p_{1,5,6}*p_{2,3,4} - p_{1,4,6}*p_{2,3,5}, p_{1,3,6}*p_{2,3,4} - p_{1,3,4}*p_{2,3,6}, p_{1,2,6}*p_{2,3,4} - p_{1,2,4}*p_{2,3,6}, p_{1,2,4}*p_{3,5,6} - y, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{1,3,4}*p_{2,5,6} - y, p_{1,3,5}*p_{2,4,6} - y, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{2,3,5}*p_{3,4,6} - p_{2,3,4}*p_{3,5,6}, p_{1,5,6}*p_{3,4,6} - p_{1,4,6}*p_{3,5,6}, p_{2,5,6}*p_{3,4,5} - p_{2,4,5}*p_{3,5,6}, p_{2,3,5}*p_{2,4,6} - p_{2,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,3,6}*p_{2,4,6} - p_{1,2,6}*p_{3,4,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,2,6}*p_{2,3,5} - p_{1,2,5}*p_{2,3,6}, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,3,6}*p_{2,5,6} - p_{1,2,6}*p_{3,5,6}); P28=ideal( p_{1,3,4}*p_{2,4,5} - p_{1,2,4}*p_{3,4,5}, p_{1,4,6}*p_{3,4,5} - p_{1,4,5}*p_{3,4,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,3,5}*p_{2,4,5} - p_{1,2,5}*p_{3,4,5}, p_{1,4,5}*p_{2,3,6} - x, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,2,5}*p_{2,3,4} - p_{1,2,4}*p_{2,3,5}, p_{1,3,5}*p_{1,4,6} - p_{1,3,4}*p_{1,5,6}, p_{1,2,5}*p_{1,4,6} - p_{1,2,4}*p_{1,5,6}, p_{1,2,6}*p_{1,3,4} - p_{1,2,4}*p_{1,3,6}, p_{1,5,6}*p_{3,4,5} - p_{1,4,5}*p_{3,5,6}, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,5,6}*p_{2,4,5} - p_{1,4,5}*p_{2,5,6}, p_{1,3,6}*p_{2,4,5} - p_{1,2,6}*p_{3,4,5}, p_{1,5,6}*p_{2,3,4} - p_{1,4,6}*p_{2,3,5}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,3,4}*p_{2,3,6} - p_{1,2,3}*p_{3,4,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{1,2,4}*p_{3,5,6} - y, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{1,3,4}*p_{2,5,6} - y, p_{1,3,5}*p_{2,4,6} - y, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{2,3,5}*p_{3,4,6} - p_{2,3,4}*p_{3,5,6}, p_{1,5,6}*p_{3,4,6} - p_{1,4,6}*p_{3,5,6}, p_{2,5,6}*p_{3,4,5} - p_{2,4,5}*p_{3,5,6}, p_{2,3,5}*p_{2,4,6} - p_{2,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,3,6}*p_{2,4,6} - p_{1,2,6}*p_{3,4,6}, p_{1,3,5}*p_{2,3,6} - p_{1,2,3}*p_{3,5,6}, p_{1,2,5}*p_{2,3,6} - p_{1,2,3}*p_{2,5,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,3,6}*p_{2,5,6} - p_{1,2,6}*p_{3,5,6}, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{1,2,4}*p_{1,3,5}*x - p_{1,2,3}*p_{1,4,5}*y); P29=ideal( p_{1,3,4}*p_{2,4,5} - p_{1,2,4}*p_{3,4,5}, p_{1,4,6}*p_{3,4,5} - p_{1,4,5}*p_{3,4,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,2,4}*p_{1,3,6} - p_{1,2,3}*p_{1,4,6}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,3,6}*p_{2,4,5} - x, p_{1,3,5}*p_{2,4,5} - p_{1,2,5}*p_{3,4,5}, p_{1,4,5}*p_{2,3,6} - x, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,2,5}*p_{2,3,4} - p_{1,2,4}*p_{2,3,5}, p_{1,3,5}*p_{1,4,6} - p_{1,3,4}*p_{1,5,6}, p_{1,2,5}*p_{1,4,6} - p_{1,2,4}*p_{1,5,6}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,5,6}*p_{3,4,5} - p_{1,4,5}*p_{3,5,6}, p_{1,5,6}*p_{2,4,5} - p_{1,4,5}*p_{2,5,6}, p_{1,3,4}*p_{2,3,6} - p_{1,2,3}*p_{3,4,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,5,6}*p_{2,3,4} - p_{1,4,6}*p_{2,3,5}, p_{1,2,5}*p_{1,3,6} - p_{1,2,3}*p_{1,5,6}, p_{1,2,4}*p_{3,5,6} - y, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{1,3,4}*p_{2,5,6} - y, p_{1,3,5}*p_{2,4,6} - y, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{2,3,5}*p_{3,4,6} - p_{2,3,4}*p_{3,5,6}, p_{1,5,6}*p_{3,4,6} - p_{1,4,6}*p_{3,5,6}, p_{2,5,6}*p_{3,4,5} - p_{2,4,5}*p_{3,5,6}, p_{2,3,5}*p_{2,4,6} - p_{2,3,4}*p_{2,5,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,3,5}*p_{2,3,6} - p_{1,2,3}*p_{3,5,6}, p_{1,2,5}*p_{2,3,6} - p_{1,2,3}*p_{2,5,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,5,6}*p_{2,3,6} - p_{1,3,6}*p_{2,5,6}, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{1,2,4}*p_{1,3,5}*x - p_{1,2,3}*p_{1,4,5}*y, p_{1,3,4}*p_{1,5,6}*x - p_{1,3,6}*p_{1,4,5}*y, p_{1,3,4}*p_{3,5,6}*x - p_{1,3,6}*p_{3,4,5}*y); P30=ideal( p_{1,3,4}*p_{2,4,5} - p_{1,2,4}*p_{3,4,5}, p_{1,4,6}*p_{3,4,5} - p_{1,4,5}*p_{3,4,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,4,5}*p_{2,5,6} - p_{1,2,5}*p_{4,5,6}, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,3,5}*p_{2,4,5} - p_{1,2,5}*p_{3,4,5}, p_{1,3,5}*p_{2,3,4} - p_{1,3,4}*p_{2,3,5}, p_{1,2,5}*p_{2,3,4} - p_{1,2,4}*p_{2,3,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{1,2,6}*p_{1,4,5} - p_{1,2,5}*p_{1,4,6}, p_{1,2,4}*p_{3,5,6} - y, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,3,4}*p_{2,5,6} - y, p_{1,4,5}*p_{2,3,6} - x, p_{1,4,6}*p_{2,3,5} - x, p_{1,2,6}*p_{1,3,4} - p_{1,2,4}*p_{1,3,6}, p_{1,4,6}*p_{3,5,6} - p_{1,3,6}*p_{4,5,6}, p_{2,5,6}*p_{3,4,5} - p_{2,4,5}*p_{3,5,6}, p_{1,3,6}*p_{3,4,5} - p_{1,3,5}*p_{3,4,6}, p_{1,2,6}*p_{3,4,5} - p_{1,2,5}*p_{3,4,6}, p_{1,4,6}*p_{2,5,6} - p_{1,2,6}*p_{4,5,6}, p_{1,3,5}*p_{2,4,6} - p_{1,2,5}*p_{3,4,6}, p_{1,3,6}*p_{2,4,5} - p_{1,2,5}*p_{3,4,6}, p_{1,2,6}*p_{2,4,5} - p_{1,2,5}*p_{2,4,6}, p_{1,3,6}*p_{2,3,4} - p_{1,3,4}*p_{2,3,6}, p_{1,2,6}*p_{2,3,4} - p_{1,2,4}*p_{2,3,6}, p_{2,3,6}*p_{3,4,5} - p_{2,3,5}*p_{3,4,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{1,3,6}*p_{2,4,6} - p_{1,2,6}*p_{3,4,6}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,2,6}*p_{2,3,5} - p_{1,2,5}*p_{2,3,6}, p_{1,3,6}*p_{2,5,6} - p_{1,2,6}*p_{3,5,6}, p_{1,2,4}*p_{1,3,4}*p_{4,5,6}*x - p_{1,4,5}*p_{1,4,6}*p_{2,3,4}*y, p_{2,3,4}*p_{2,5,6}*p_{3,5,6}*x - p_{2,3,5}*p_{2,3,6}*p_{4,5,6}*y); P31=ideal( p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,4,5}*p_{3,5,6} - p_{1,3,5}*p_{4,5,6}, p_{1,4,5}*p_{2,5,6} - p_{1,2,5}*p_{4,5,6}, p_{1,3,5}*p_{2,4,5} - p_{1,2,5}*p_{3,4,5}, p_{1,3,4}*p_{2,4,5} - p_{1,2,4}*p_{3,4,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{1,2,6}*p_{1,4,5} - p_{1,2,5}*p_{1,4,6}, p_{1,4,6}*p_{3,4,5} - p_{1,4,5}*p_{3,4,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,3,4}*p_{2,3,5} - p_{1,2,3}*p_{3,4,5}, p_{1,2,4}*p_{2,3,5} - p_{1,2,3}*p_{2,4,5}, p_{1,2,4}*p_{3,5,6} - y, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,3,4}*p_{2,5,6} - y, p_{1,4,5}*p_{2,3,6} - x, p_{1,4,6}*p_{2,3,5} - x, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{1,2,6}*p_{1,3,4} - p_{1,2,4}*p_{1,3,6}, p_{1,4,6}*p_{3,5,6} - p_{1,3,6}*p_{4,5,6}, p_{2,5,6}*p_{3,4,5} - p_{2,4,5}*p_{3,5,6}, p_{1,3,6}*p_{3,4,5} - p_{1,3,5}*p_{3,4,6}, p_{1,2,6}*p_{3,4,5} - p_{1,2,5}*p_{3,4,6}, p_{1,4,6}*p_{2,5,6} - p_{1,2,6}*p_{4,5,6}, p_{1,3,5}*p_{2,4,6} - p_{1,2,5}*p_{3,4,6}, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,3,6}*p_{2,4,5} - p_{1,2,5}*p_{3,4,6}, p_{1,2,6}*p_{2,4,5} - p_{1,2,5}*p_{2,4,6}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,3,4}*p_{2,3,6} - p_{1,2,3}*p_{3,4,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,2,6}*p_{2,3,5} - p_{1,2,5}*p_{2,3,6}, p_{2,3,6}*p_{3,4,5} - p_{2,3,5}*p_{3,4,6}, p_{1,3,6}*p_{2,5,6} - p_{1,2,6}*p_{3,5,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{1,3,6}*p_{2,4,6} - p_{1,2,6}*p_{3,4,6}); P32=ideal( p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,3,5}*p_{2,4,5} - p_{1,2,5}*p_{3,4,5}, p_{1,3,4}*p_{2,4,5} - p_{1,2,4}*p_{3,4,5}, p_{1,3,5}*p_{1,4,6} - p_{1,3,4}*p_{1,5,6}, p_{1,2,5}*p_{1,4,6} - p_{1,2,4}*p_{1,5,6}, p_{1,5,6}*p_{3,4,5} - p_{1,4,5}*p_{3,5,6}, p_{1,4,6}*p_{3,4,5} - p_{1,4,5}*p_{3,4,6}, p_{1,5,6}*p_{2,4,5} - p_{1,4,5}*p_{2,5,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,3,4}*p_{2,3,5} - p_{1,2,3}*p_{3,4,5}, p_{1,2,4}*p_{2,3,5} - p_{1,2,3}*p_{2,4,5}, p_{1,4,5}*p_{2,3,6} - x, p_{1,4,6}*p_{2,3,5} - x, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{1,2,6}*p_{1,3,4} - p_{1,2,4}*p_{1,3,6}, p_{1,3,6}*p_{2,4,5} - p_{1,2,6}*p_{3,4,5}, p_{1,2,4}*p_{3,5,6} - y, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,3,4}*p_{2,5,6} - y, p_{1,3,5}*p_{2,4,6} - y, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{1,5,6}*p_{3,4,6} - p_{1,4,6}*p_{3,5,6}, p_{2,5,6}*p_{3,4,5} - p_{2,4,5}*p_{3,5,6}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,3,5}*p_{2,3,6} - p_{1,2,3}*p_{3,5,6}, p_{1,3,4}*p_{2,3,6} - p_{1,2,3}*p_{3,4,6}, p_{1,2,5}*p_{2,3,6} - p_{1,2,3}*p_{2,5,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{2,3,6}*p_{3,4,5} - p_{2,3,5}*p_{3,4,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,3,6}*p_{2,5,6} - p_{1,2,6}*p_{3,5,6}, p_{1,3,6}*p_{2,4,6} - p_{1,2,6}*p_{3,4,6}, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{1,2,4}*p_{1,3,5}*x - p_{1,2,3}*p_{1,4,5}*y, p_{1,2,5}*p_{3,4,5}*x - p_{1,4,5}*p_{2,3,5}*y, p_{1,2,5}*p_{3,5,6}*x - p_{1,5,6}*p_{2,3,5}*y); P33=ideal( p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,3,5}*p_{2,4,5} - p_{1,2,5}*p_{3,4,5}, p_{1,3,4}*p_{2,4,5} - p_{1,2,4}*p_{3,4,5}, p_{1,3,5}*p_{1,4,6} - p_{1,3,4}*p_{1,5,6}, p_{1,2,5}*p_{1,4,6} - p_{1,2,4}*p_{1,5,6}, p_{1,5,6}*p_{3,4,5} - p_{1,4,5}*p_{3,5,6}, p_{1,4,6}*p_{3,4,5} - p_{1,4,5}*p_{3,4,6}, p_{1,5,6}*p_{2,4,5} - p_{1,4,5}*p_{2,5,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,3,4}*p_{2,3,5} - p_{1,2,3}*p_{3,4,5}, p_{1,2,4}*p_{2,3,5} - p_{1,2,3}*p_{2,4,5}, p_{1,2,5}*p_{1,3,6} - p_{1,2,3}*p_{1,5,6}, p_{1,2,4}*p_{1,3,6} - p_{1,2,3}*p_{1,4,6}, p_{1,3,6}*p_{2,4,5} - x, p_{1,4,5}*p_{2,3,6} - x, p_{1,4,6}*p_{2,3,5} - x, p_{1,2,4}*p_{3,5,6} - y, p_{1,3,5}*p_{3,4,6} - p_{1,3,4}*p_{3,5,6}, p_{1,2,5}*p_{3,4,6} - y, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,3,4}*p_{2,5,6} - y, p_{1,3,5}*p_{2,4,6} - y, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,2,5}*p_{2,4,6} - p_{1,2,4}*p_{2,5,6}, p_{1,5,6}*p_{3,4,6} - p_{1,4,6}*p_{3,5,6}, p_{2,5,6}*p_{3,4,5} - p_{2,4,5}*p_{3,5,6}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,3,5}*p_{2,3,6} - p_{1,2,3}*p_{3,5,6}, p_{1,3,4}*p_{2,3,6} - p_{1,2,3}*p_{3,4,6}, p_{1,2,5}*p_{2,3,6} - p_{1,2,3}*p_{2,5,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{2,3,6}*p_{3,4,5} - p_{2,3,5}*p_{3,4,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,5,6}*p_{2,3,6} - p_{1,3,6}*p_{2,5,6}, p_{1,4,6}*p_{2,3,6} - p_{1,3,6}*p_{2,4,6}, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{1,2,4}*p_{1,3,5}*x - p_{1,2,3}*p_{1,4,5}*y, p_{1,2,5}*p_{3,4,5}*x - p_{1,4,5}*p_{2,3,5}*y, p_{1,3,4}*p_{1,5,6}*x - p_{1,3,6}*p_{1,4,5}*y, p_{1,3,4}*p_{3,5,6}*x - p_{1,3,6}*p_{3,4,5}*y, p_{1,2,5}*p_{3,5,6}*x - p_{1,5,6}*p_{2,3,5}*y, p_{1,2,3}*p_{3,5,6}*x - p_{1,3,6}*p_{2,3,5}*y); P34=ideal( p_{1,2,5}*p_{1,3,4} - p_{1,2,4}*p_{1,3,5}, p_{1,3,4}*p_{2,4,5} - p_{1,2,4}*p_{3,4,5}, p_{1,3,5}*p_{2,4,5} - p_{1,2,5}*p_{3,4,5}, p_{1,3,6}*p_{1,4,5} - p_{1,3,5}*p_{1,4,6}, p_{1,2,6}*p_{1,4,5} - p_{1,2,5}*p_{1,4,6}, p_{1,5,6}*p_{3,4,5} - p_{1,4,5}*p_{3,5,6}, p_{1,4,6}*p_{3,4,5} - p_{1,4,5}*p_{3,4,6}, p_{1,5,6}*p_{2,4,5} - p_{1,4,5}*p_{2,5,6}, p_{1,4,6}*p_{2,4,5} - p_{1,4,5}*p_{2,4,6}, p_{1,3,4}*p_{2,3,5} - p_{1,2,3}*p_{3,4,5}, p_{1,2,4}*p_{2,3,5} - p_{1,2,3}*p_{2,4,5}, p_{1,2,6}*p_{1,3,4} - p_{1,2,4}*p_{1,3,6}, p_{1,2,4}*p_{3,5,6} - y, p_{1,3,4}*p_{2,5,6} - y, p_{1,3,4}*p_{2,4,6} - p_{1,2,4}*p_{3,4,6}, p_{1,4,5}*p_{2,3,6} - x, p_{1,4,6}*p_{2,3,5} - x, p_{1,2,6}*p_{1,3,5} - p_{1,2,5}*p_{1,3,6}, p_{1,3,6}*p_{3,4,5} - p_{1,3,5}*p_{3,4,6}, p_{1,2,6}*p_{3,4,5} - p_{1,2,5}*p_{3,4,6}, p_{1,3,5}*p_{2,5,6} - p_{1,2,5}*p_{3,5,6}, p_{1,3,5}*p_{2,4,6} - p_{1,2,5}*p_{3,4,6}, p_{1,3,6}*p_{2,4,5} - p_{1,2,5}*p_{3,4,6}, p_{1,2,6}*p_{2,4,5} - p_{1,2,5}*p_{2,4,6}, p_{1,5,6}*p_{3,4,6} - p_{1,4,6}*p_{3,5,6}, p_{2,5,6}*p_{3,4,5} - p_{2,4,5}*p_{3,5,6}, p_{2,4,6}*p_{3,4,5} - p_{2,4,5}*p_{3,4,6}, p_{1,5,6}*p_{2,4,6} - p_{1,4,6}*p_{2,5,6}, p_{1,3,4}*p_{2,3,6} - p_{1,2,3}*p_{3,4,6}, p_{1,2,4}*p_{2,3,6} - p_{1,2,3}*p_{2,4,6}, p_{1,3,6}*p_{2,3,5} - p_{1,3,5}*p_{2,3,6}, p_{1,2,6}*p_{2,3,5} - p_{1,2,5}*p_{2,3,6}, p_{2,3,6}*p_{3,4,5} - p_{2,3,5}*p_{3,4,6}, p_{2,3,6}*p_{2,4,5} - p_{2,3,5}*p_{2,4,6}, p_{1,3,6}*p_{2,5,6} - p_{1,2,6}*p_{3,5,6}, p_{1,3,6}*p_{2,4,6} - p_{1,2,6}*p_{3,4,6}, p_{2,5,6}*p_{3,4,6} - p_{2,4,6}*p_{3,5,6}, p_{1,2,4}*p_{1,3,4}*p_{1,5,6}*x - p_{1,2,3}*p_{1,4,5}*p_{1,4,6}*y, p_{1,2,3}*p_{2,5,6}*p_{3,5,6}*x - p_{1,5,6}*p_{2,3,5}*p_{2,3,6}*y); P35=ideal( p_{2, 4, 5}*p_{3, 4, 6} - p_{2, 3, 4}*p_{4, 5, 6}, p_{1, 3, 6}*p_{2, 4, 6} - p_{1, 2, 6}*p_{3, 4, 6}, p_{1, 2, 6}*p_{2, 3, 4} - p_{1, 2, 4}*p_{2, 3, 6}, p_{2, 5, 6}*p_{3, 4, 6} - p_{2, 4, 6}*p_{3, 5, 6}, p_{2, 3, 5}*p_{2, 4, 6} - p_{2, 3, 4}*p_{2, 5, 6}, p_{1, 5, 6}*p_{2, 4, 6} - p_{1, 4, 6}*p_{2, 5, 6}, p_{1, 4, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{4, 5, 6}, p_{1, 3, 4}*p_{2, 4, 6} - p_{1, 2, 4}*p_{3, 4, 6}, p_{1, 3, 6}*p_{2, 4, 5} - x, p_{1, 4, 5}*p_{2, 3, 6} - x, p_{1, 3, 6}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 6}, p_{2, 4, 5}*p_{3, 5, 6} - p_{2, 3, 5}*p_{4, 5, 6}, p_{2, 3, 5}*p_{3, 4, 6} - p_{2, 3, 4}*p_{3, 5, 6}, p_{1, 5, 6}*p_{3, 4, 6} - p_{1, 4, 6}*p_{3, 5, 6}, p_{1, 4, 5}*p_{3, 4, 6} - p_{1, 3, 4}*p_{4, 5, 6}, p_{1, 3, 6}*p_{2, 5, 6} - p_{1, 2, 6}*p_{3, 5, 6}, p_{1, 2, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{2, 5, 6}, p_{1, 2, 6}*p_{2, 3, 5} - p_{1, 2, 5}*p_{2, 3, 6}, p_{1, 5, 6}*p_{2, 3, 4} - p_{1, 4, 6}*p_{2, 3, 5}, p_{1, 4, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 4, 5}, p_{1, 2, 6}*p_{1, 3, 4} - p_{1, 2, 4}*p_{1, 3, 6}, p_{1, 2, 4}*p_{3, 5, 6} - y, p_{1, 2, 5}*p_{3, 4, 6} - y, p_{1, 4, 5}*p_{2, 5, 6} - p_{1, 2, 5}*p_{4, 5, 6}, p_{1, 3, 4}*p_{2, 5, 6} - y, p_{1, 3, 5}*p_{2, 4, 6} - y, p_{1, 3, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 3, 6}, p_{1, 2, 5}*p_{2, 3, 4} - p_{1, 2, 4}*p_{2, 3, 5}, p_{1, 2, 5}*p_{1, 4, 6} - p_{1, 2, 4}*p_{1, 5, 6}, p_{1, 4, 5}*p_{3, 5, 6} - p_{1, 3, 5}*p_{4, 5, 6}, p_{1, 3, 5}*p_{3, 4, 6} - p_{1, 3, 4}*p_{3, 5, 6}, p_{1, 4, 5}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 4, 5}, p_{1, 3, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 5}, p_{1, 3, 5}*p_{1, 4, 6} - p_{1, 3, 4}*p_{1, 5, 6}, p_{1, 2, 6}*p_{1, 3, 5} - p_{1, 2, 5}*p_{1, 3, 6}, p_{1, 3, 5}*p_{2, 5, 6} - p_{1, 2, 5}*p_{3, 5, 6}, p_{1, 2, 5}*p_{1, 3, 4} - p_{1, 2, 4}*p_{1, 3, 5}, p_{2, 4, 6}*p_{3, 5, 6}*x - p_{2, 3, 6}*p_{4, 5, 6}*y, p_{2, 3, 4}*p_{2, 5, 6}*x - p_{2, 3, 6}*p_{2, 4, 5}*y, p_{1, 2, 4}*p_{2, 5, 6}*x - p_{1, 2, 6}*p_{2, 4, 5}*y); P36=ideal( p_{2, 5, 6}*p_{3, 4, 6} - p_{2, 4, 6}*p_{3, 5, 6}, p_{2, 4, 5}*p_{3, 4, 6} - p_{2, 3, 4}*p_{4, 5, 6}, p_{1, 4, 6}*p_{2, 5, 6} - p_{1, 2, 6}*p_{4, 5, 6}, p_{2, 3, 5}*p_{2, 4, 6} - p_{2, 3, 4}*p_{2, 5, 6}, p_{1, 3, 6}*p_{2, 4, 6} - p_{1, 2, 6}*p_{3, 4, 6}, p_{1, 2, 6}*p_{2, 3, 4} - p_{1, 2, 4}*p_{2, 3, 6}, p_{2, 4, 5}*p_{3, 5, 6} - p_{2, 3, 5}*p_{4, 5, 6}, p_{1, 4, 6}*p_{3, 5, 6} - p_{1, 3, 6}*p_{4, 5, 6}, p_{2, 3, 5}*p_{3, 4, 6} - p_{2, 3, 4}*p_{3, 5, 6}, p_{1, 3, 6}*p_{2, 5, 6} - p_{1, 2, 6}*p_{3, 5, 6}, p_{1, 4, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{4, 5, 6}, p_{1, 3, 4}*p_{2, 4, 6} - p_{1, 2, 4}*p_{3, 4, 6}, p_{1, 2, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{2, 5, 6}, p_{1, 3, 6}*p_{2, 4, 5} - x, p_{1, 4, 5}*p_{2, 3, 6} - x, p_{1, 4, 6}*p_{2, 3, 5} - x, p_{1, 2, 6}*p_{2, 3, 5} - p_{1, 2, 5}*p_{2, 3, 6}, p_{1, 3, 6}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 6}, p_{1, 2, 4}*p_{3, 5, 6} - y, p_{1, 4, 5}*p_{3, 4, 6} - p_{1, 3, 4}*p_{4, 5, 6}, p_{1, 2, 5}*p_{3, 4, 6} - y, p_{1, 4, 5}*p_{2, 5, 6} - p_{1, 2, 5}*p_{4, 5, 6}, p_{1, 3, 4}*p_{2, 5, 6} - y, p_{1, 3, 5}*p_{2, 4, 6} - y, p_{1, 3, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 3, 6}, p_{1, 4, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 4, 5}, p_{1, 2, 5}*p_{2, 3, 4} - p_{1, 2, 4}*p_{2, 3, 5}, p_{1, 2, 6}*p_{1, 4, 5} - p_{1, 2, 5}*p_{1, 4, 6}, p_{1, 2, 6}*p_{1, 3, 4} - p_{1, 2, 4}*p_{1, 3, 6}, p_{1, 4, 5}*p_{3, 5, 6} - p_{1, 3, 5}*p_{4, 5, 6}, p_{1, 3, 5}*p_{3, 4, 6} - p_{1, 3, 4}*p_{3, 5, 6}, p_{1, 3, 5}*p_{2, 5, 6} - p_{1, 2, 5}*p_{3, 5, 6}, p_{1, 4, 5}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 4, 5}, p_{1, 3, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 5}, p_{1, 3, 6}*p_{1, 4, 5} - p_{1, 3, 5}*p_{1, 4, 6}, p_{1, 2, 6}*p_{1, 3, 5} - p_{1, 2, 5}*p_{1, 3, 6}, p_{1, 2, 5}*p_{1, 3, 4} - p_{1, 2, 4}*p_{1, 3, 5}, p_{2, 4, 6}*p_{3, 5, 6}*x - p_{2, 3, 6}*p_{4, 5, 6}*y, p_{1, 2, 6}*p_{3, 4, 6}*x - p_{1, 4, 6}*p_{2, 3, 6}*y, p_{2, 3, 4}*p_{2, 5, 6}*x - p_{2, 3, 6}*p_{2, 4, 5}*y, p_{1, 2, 4}*p_{4, 5, 6}*x - p_{1, 4, 6}*p_{2, 4, 5}*y, p_{1, 2, 4}*p_{3, 4, 6}*x - p_{1, 4, 6}*p_{2, 3, 4}*y, p_{1, 2, 4}*p_{2, 5, 6}*x - p_{1, 2, 6}*p_{2, 4, 5}*y); P37=ideal( p_{1, 2, 5}*p_{1, 4, 6} - p_{1, 2, 4}*p_{1, 5, 6}, p_{1, 2, 5}*p_{3, 4, 6} - y, p_{1, 2, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{2, 5, 6}, p_{1, 4, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 4, 5}, p_{1, 2, 4}*p_{1, 3, 5} - p_{1, 2, 3}*p_{1, 4, 5}, p_{1, 2, 4}*p_{3, 5, 6} - p_{1, 2, 3}*p_{4, 5, 6}, p_{1, 4, 6}*p_{3, 4, 5} - p_{1, 4, 5}*p_{3, 4, 6}, p_{1, 5, 6}*p_{2, 4, 5} - p_{1, 4, 5}*p_{2, 5, 6}, p_{1, 4, 6}*p_{2, 4, 5} - p_{1, 4, 5}*p_{2, 4, 6}, p_{1, 2, 4}*p_{2, 3, 5} - p_{1, 2, 3}*p_{2, 4, 5}, p_{1, 5, 6}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 5, 6}, p_{1, 4, 6}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 4, 6}, p_{1, 2, 5}*p_{1, 3, 6} - p_{1, 2, 3}*p_{1, 5, 6}, p_{1, 2, 4}*p_{1, 3, 6} - p_{1, 2, 3}*p_{1, 4, 6}, p_{1, 4, 5}*p_{3, 5, 6} - p_{1, 3, 5}*p_{4, 5, 6}, p_{2, 4, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 4, 6}, p_{1, 5, 6}*p_{2, 4, 6} - p_{1, 4, 6}*p_{2, 5, 6}, p_{1, 2, 5}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 5, 6}, p_{1, 2, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 4, 6}, p_{1, 4, 5}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 4, 5}, p_{1, 3, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 5}, p_{1, 3, 6}*p_{1, 4, 5} - p_{1, 3, 5}*p_{1, 4, 6}, p_{2, 4, 5}*p_{3, 5, 6} - p_{2, 3, 5}*p_{4, 5, 6}, p_{1, 4, 6}*p_{3, 5, 6} - p_{1, 3, 6}*p_{4, 5, 6}, p_{1, 3, 6}*p_{3, 4, 5} - p_{1, 3, 5}*p_{3, 4, 6}, p_{1, 3, 5}*p_{2, 4, 6} - x, p_{1, 3, 6}*p_{2, 4, 5} - x, p_{1, 4, 5}*p_{2, 3, 6} - x, p_{1, 5, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 5, 6}, p_{1, 4, 6}*p_{2, 3, 5} - x, p_{1, 3, 6}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 6}, p_{2, 4, 6}*p_{3, 5, 6} - p_{2, 3, 6}*p_{4, 5, 6}, p_{2, 3, 6}*p_{3, 4, 5} - p_{2, 3, 5}*p_{3, 4, 6}, p_{2, 3, 6}*p_{2, 4, 5} - p_{2, 3, 5}*p_{2, 4, 6}, p_{1, 5, 6}*p_{2, 3, 6} - p_{1, 3, 6}*p_{2, 5, 6}, p_{1, 4, 6}*p_{2, 3, 6} - p_{1, 3, 6}*p_{2, 4, 6}, p_{1, 3, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 3, 6}, p_{1, 2, 5}*p_{3, 4, 5}*x - p_{1, 3, 5}*p_{2, 4, 5}*y); P38= ideal( p_{1, 3, 6}*p_{2, 5, 6} - p_{1, 2, 6}*p_{3, 5, 6}, p_{2, 5, 6}*p_{3, 4, 6} - p_{2, 4, 6}*p_{3, 5, 6}, p_{1, 4, 6}*p_{2, 5, 6} - p_{1, 2, 6}*p_{4, 5, 6}, p_{2, 3, 5}*p_{2, 4, 6} - p_{2, 3, 4}*p_{2, 5, 6}, p_{1, 3, 6}*p_{2, 4, 6} - p_{1, 2, 6}*p_{3, 4, 6}, p_{1, 2, 5}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 5, 6}, p_{2, 4, 5}*p_{3, 5, 6} - p_{2, 3, 5}*p_{4, 5, 6}, p_{1, 4, 6}*p_{3, 5, 6} - p_{1, 3, 6}*p_{4, 5, 6}, p_{2, 3, 5}*p_{3, 4, 6} - p_{2, 3, 4}*p_{3, 5, 6}, p_{1, 3, 6}*p_{2, 4, 5} - x, p_{1, 3, 5}*p_{2, 3, 6} - p_{1, 2, 3}*p_{3, 5, 6}, p_{1, 2, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 4, 6}, p_{1, 4, 6}*p_{2, 3, 5} - x, p_{2, 4, 5}*p_{3, 4, 6} - p_{2, 3, 4}*p_{4, 5, 6}, p_{1, 3, 5}*p_{2, 5, 6} - p_{1, 2, 5}*p_{3, 5, 6}, p_{1, 2, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{2, 5, 6}, p_{1, 4, 5}*p_{2, 3, 6} - p_{1, 2, 3}*p_{4, 5, 6}, p_{1, 3, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{3, 4, 6}, p_{1, 2, 6}*p_{1, 3, 5} - p_{1, 2, 5}*p_{1, 3, 6}, p_{1, 2, 4}*p_{3, 5, 6} - y, p_{1, 2, 5}*p_{3, 4, 6} - y, p_{1, 4, 5}*p_{2, 5, 6} - p_{1, 2, 5}*p_{4, 5, 6}, p_{1, 3, 4}*p_{2, 5, 6} - y, p_{1, 3, 5}*p_{2, 4, 6} - y, p_{1, 2, 5}*p_{2, 3, 4} - p_{1, 2, 4}*p_{2, 3, 5}, p_{1, 2, 6}*p_{1, 4, 5} - p_{1, 2, 5}*p_{1, 4, 6}, p_{1, 2, 6}*p_{1, 3, 4} - p_{1, 2, 4}*p_{1, 3, 6}, p_{1, 4, 5}*p_{3, 5, 6} - p_{1, 3, 5}*p_{4, 5, 6}, p_{1, 3, 5}*p_{3, 4, 6} - p_{1, 3, 4}*p_{3, 5, 6}, p_{1, 4, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{4, 5, 6}, p_{1, 3, 4}*p_{2, 4, 6} - p_{1, 2, 4}*p_{3, 4, 6}, p_{1, 4, 5}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 4, 5}, p_{1, 3, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 5}, p_{1, 3, 6}*p_{1, 4, 5} - p_{1, 3, 5}*p_{1, 4, 6}, p_{1, 4, 5}*p_{3, 4, 6} - p_{1, 3, 4}*p_{4, 5, 6}, p_{1, 4, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 4, 5}, p_{1, 2, 5}*p_{1, 3, 4} - p_{1, 2, 4}*p_{1, 3, 5}, p_{1, 2, 4}*p_{2, 5, 6}*x - p_{1, 2, 6}*p_{2, 4, 5}*y, p_{1, 2, 4}*p_{4, 5, 6}*x - p_{1, 4, 6}*p_{2, 4, 5}*y, p_{1, 2, 4}*p_{3, 4, 6}*x - p_{1, 4, 6}*p_{2, 3, 4}*y); P39=ideal( p_{1, 4, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 4, 5}, p_{1, 2, 6}*p_{1, 4, 5} - p_{1, 2, 5}*p_{1, 4, 6}, p_{1, 2, 4}*p_{1, 3, 5} - p_{1, 2, 3}*p_{1, 4, 5}, p_{1, 2, 4}*p_{3, 5, 6} - p_{1, 2, 3}*p_{4, 5, 6}, p_{1, 4, 6}*p_{3, 4, 5} - p_{1, 4, 5}*p_{3, 4, 6}, p_{1, 2, 6}*p_{3, 4, 5} - p_{1, 2, 5}*p_{3, 4, 6}, p_{1, 5, 6}*p_{2, 4, 5} - p_{1, 4, 5}*p_{2, 5, 6}, p_{1, 4, 6}*p_{2, 4, 5} - p_{1, 4, 5}*p_{2, 4, 6}, p_{1, 2, 6}*p_{2, 4, 5} - p_{1, 2, 5}*p_{2, 4, 6}, p_{1, 2, 4}*p_{2, 3, 5} - p_{1, 2, 3}*p_{2, 4, 5}, p_{1, 5, 6}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 5, 6}, p_{1, 4, 6}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 4, 6}, p_{1, 2, 4}*p_{1, 3, 6} - p_{1, 2, 3}*p_{1, 4, 6}, p_{1, 4, 5}*p_{3, 5, 6} - p_{1, 3, 5}*p_{4, 5, 6}, p_{1, 4, 5}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 4, 5}, p_{1, 3, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 5}, p_{1, 3, 6}*p_{1, 4, 5} - p_{1, 3, 5}*p_{1, 4, 6}, p_{1, 2, 6}*p_{1, 3, 5} - p_{1, 2, 5}*p_{1, 3, 6}, p_{2, 4, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 4, 6}, p_{1, 5, 6}*p_{2, 4, 6} - p_{1, 4, 6}*p_{2, 5, 6}, p_{1, 2, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 4, 6}, p_{2, 4, 5}*p_{3, 5, 6} - p_{2, 3, 5}*p_{4, 5, 6}, p_{1, 4, 6}*p_{3, 5, 6} - p_{1, 3, 6}*p_{4, 5, 6}, p_{1, 3, 6}*p_{3, 4, 5} - p_{1, 3, 5}*p_{3, 4, 6}, p_{1, 3, 5}*p_{2, 4, 6} - x, p_{1, 3, 6}*p_{2, 4, 5} - x, p_{1, 4, 5}*p_{2, 3, 6} - x, p_{1, 5, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 5, 6}, p_{1, 4, 6}*p_{2, 3, 5} - x, p_{1, 2, 6}*p_{2, 3, 5} - p_{1, 2, 5}*p_{2, 3, 6}, p_{1, 3, 6}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 6}, p_{2, 4, 6}*p_{3, 5, 6} - p_{2, 3, 6}*p_{4, 5, 6}, p_{2, 3, 6}*p_{3, 4, 5} - p_{2, 3, 5}*p_{3, 4, 6}, p_{2, 3, 6}*p_{2, 4, 5} - p_{2, 3, 5}*p_{2, 4, 6}, p_{1, 5, 6}*p_{2, 3, 6} - p_{1, 3, 6}*p_{2, 5, 6}, p_{1, 4, 6}*p_{2, 3, 6} - p_{1, 3, 6}*p_{2, 4, 6}, p_{1, 3, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 3, 6}, p_{1, 2, 4}*p_{1, 5, 6}*p_{3, 4, 5} - p_{1, 4, 5}*y, p_{1, 2, 4}*p_{1, 5, 6}*p_{3, 4, 6} - p_{1, 4, 6}*y, p_{1, 2, 4}*p_{2, 5, 6}*p_{3, 4, 5} - p_{2, 4, 5}*y, p_{1, 2, 3}*p_{1, 5, 6}*p_{3, 4, 5} - p_{1, 3, 5}*y, p_{1, 2, 4}*p_{2, 5, 6}*p_{3, 4, 6} - p_{2, 4, 6}*y, p_{1, 2, 3}*p_{1, 5, 6}*p_{3, 4, 6} - p_{1, 3, 6}*y, p_{1, 2, 3}*p_{2, 5, 6}*p_{3, 4, 5} - p_{2, 3, 5}*y, p_{1, 2, 3}*p_{2, 5, 6}*p_{3, 4, 6} - p_{2, 3, 6}*y); P40=ideal( p_{1, 4, 5}*p_{3, 4, 6} - p_{1, 3, 4}*p_{4, 5, 6}, p_{2, 4, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 4, 6}, p_{1, 4, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{4, 5, 6}, p_{1, 3, 4}*p_{2, 4, 5} - p_{1, 2, 4}*p_{3, 4, 5}, p_{1, 4, 5}*p_{2, 3, 6} - x, p_{1, 4, 6}*p_{2, 3, 5} - x, p_{1, 4, 6}*p_{3, 5, 6} - p_{1, 3, 6}*p_{4, 5, 6}, p_{1, 4, 5}*p_{3, 5, 6} - p_{1, 3, 5}*p_{4, 5, 6}, p_{2, 3, 5}*p_{3, 4, 6} - p_{2, 3, 4}*p_{3, 5, 6}, p_{2, 5, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 5, 6}, p_{1, 4, 6}*p_{2, 5, 6} - p_{1, 2, 6}*p_{4, 5, 6}, p_{1, 4, 5}*p_{2, 5, 6} - p_{1, 2, 5}*p_{4, 5, 6}, p_{2, 3, 5}*p_{2, 4, 6} - p_{2, 3, 4}*p_{2, 5, 6}, p_{1, 3, 4}*p_{2, 4, 6} - p_{1, 2, 4}*p_{3, 4, 6}, p_{1, 3, 6}*p_{2, 4, 5} - p_{1, 2, 6}*p_{3, 4, 5}, p_{1, 3, 5}*p_{2, 4, 5} - p_{1, 2, 5}*p_{3, 4, 5}, p_{1, 3, 6}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 6}, p_{1, 3, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 5}, p_{1, 2, 6}*p_{2, 3, 4} - p_{1, 2, 4}*p_{2, 3, 6}, p_{1, 2, 5}*p_{2, 3, 4} - p_{1, 2, 4}*p_{2, 3, 5}, p_{1, 3, 6}*p_{1, 4, 5} - p_{1, 3, 5}*p_{1, 4, 6}, p_{1, 2, 6}*p_{1, 4, 5} - p_{1, 2, 5}*p_{1, 4, 6}, p_{1, 2, 4}*p_{3, 5, 6} - y, p_{2, 5, 6}*p_{3, 4, 6} - p_{2, 4, 6}*p_{3, 5, 6}, p_{1, 3, 5}*p_{3, 4, 6} - p_{1, 3, 4}*p_{3, 5, 6}, p_{1, 2, 5}*p_{3, 4, 6} - y, p_{1, 3, 4}*p_{2, 5, 6} - y, p_{1, 3, 6}*p_{2, 4, 6} - p_{1, 2, 6}*p_{3, 4, 6}, p_{1, 3, 5}*p_{2, 4, 6} - y, p_{1, 2, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{2, 5, 6}, p_{1, 3, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 3, 6}, p_{1, 2, 6}*p_{2, 3, 5} - p_{1, 2, 5}*p_{2, 3, 6}, p_{1, 2, 6}*p_{1, 3, 4} - p_{1, 2, 4}*p_{1, 3, 6}, p_{1, 2, 5}*p_{1, 3, 4} - p_{1, 2, 4}*p_{1, 3, 5}, p_{1, 3, 6}*p_{2, 5, 6} - p_{1, 2, 6}*p_{3, 5, 6}, p_{1, 3, 5}*p_{2, 5, 6} - p_{1, 2, 5}*p_{3, 5, 6}, p_{1, 2, 6}*p_{1, 3, 5} - p_{1, 2, 5}*p_{1, 3, 6}, p_{1, 2, 4}*p_{3, 4, 6}*x - p_{1, 4, 6}*p_{2, 3, 4}*y, p_{2, 4, 6}*p_{3, 5, 6}*x - p_{2, 3, 6}*p_{4, 5, 6}*y, p_{1, 2, 6}*p_{3, 4, 6}*x - p_{1, 4, 6}*p_{2, 3, 6}*y); P41=ideal( p_{1, 2, 6}*p_{1, 4, 5} - p_{1, 2, 5}*p_{1, 4, 6}, p_{1, 2, 4}*p_{1, 3, 5} - p_{1, 2, 3}*p_{1, 4, 5}, p_{1, 5, 6}*p_{2, 4, 5} - p_{1, 4, 5}*p_{2, 5, 6}, p_{1, 3, 4}*p_{2, 4, 5} - p_{1, 2, 4}*p_{3, 4, 5}, p_{1, 4, 5}*p_{3, 5, 6} - p_{1, 3, 5}*p_{4, 5, 6}, p_{1, 3, 4}*p_{2, 5, 6} - y, p_{1, 4, 5}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 4, 5}, p_{1, 3, 6}*p_{1, 4, 5} - p_{1, 3, 5}*p_{1, 4, 6}, p_{1, 2, 6}*p_{1, 3, 5} - p_{1, 2, 5}*p_{1, 3, 6}, p_{1, 2, 4}*p_{3, 5, 6} - p_{1, 2, 3}*p_{4, 5, 6}, p_{1, 4, 6}*p_{3, 4, 5} - p_{1, 4, 5}*p_{3, 4, 6}, p_{1, 2, 6}*p_{3, 4, 5} - p_{1, 2, 5}*p_{3, 4, 6}, p_{1, 4, 6}*p_{2, 4, 5} - p_{1, 4, 5}*p_{2, 4, 6}, p_{1, 2, 6}*p_{2, 4, 5} - p_{1, 2, 5}*p_{2, 4, 6}, p_{1, 5, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 5, 6}, p_{1, 3, 4}*p_{2, 3, 5} - p_{1, 2, 3}*p_{3, 4, 5}, p_{1, 2, 4}*p_{2, 3, 5} - p_{1, 2, 3}*p_{2, 4, 5}, p_{1, 2, 4}*p_{1, 3, 6} - p_{1, 2, 3}*p_{1, 4, 6}, p_{1, 5, 6}*p_{2, 4, 6} - p_{1, 4, 6}*p_{2, 5, 6}, p_{1, 3, 4}*p_{2, 4, 6} - p_{1, 2, 4}*p_{3, 4, 6}, p_{2, 4, 5}*p_{3, 5, 6} - p_{2, 3, 5}*p_{4, 5, 6}, p_{1, 4, 6}*p_{3, 5, 6} - p_{1, 3, 6}*p_{4, 5, 6}, p_{1, 3, 6}*p_{3, 4, 5} - p_{1, 3, 5}*p_{3, 4, 6}, p_{1, 3, 5}*p_{2, 4, 6} - x, p_{1, 3, 6}*p_{2, 4, 5} - x, p_{1, 4, 5}*p_{2, 3, 6} - x, p_{1, 4, 6}*p_{2, 3, 5} - x, p_{1, 2, 6}*p_{2, 3, 5} - p_{1, 2, 5}*p_{2, 3, 6}, p_{2, 4, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 4, 6}, p_{1, 5, 6}*p_{2, 3, 6} - p_{1, 3, 6}*p_{2, 5, 6}, p_{1, 3, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{3, 4, 6}, p_{1, 2, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 4, 6}, p_{1, 3, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 3, 6}, p_{2, 4, 6}*p_{3, 5, 6} - p_{2, 3, 6}*p_{4, 5, 6}, p_{2, 3, 6}*p_{3, 4, 5} - p_{2, 3, 5}*p_{3, 4, 6}, p_{2, 3, 6}*p_{2, 4, 5} - p_{2, 3, 5}*p_{2, 4, 6}, p_{1, 4, 6}*p_{2, 3, 6} - p_{1, 3, 6}*p_{2, 4, 6}, p_{1, 3, 4}*p_{1, 5, 6}*x - p_{1, 3, 5}*p_{1, 4, 6}*y); P42=ideal( p_{1, 4, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 4, 5}, p_{1, 2, 4}*p_{1, 3, 5} - p_{1, 2, 3}*p_{1, 4, 5}, p_{1, 2, 6}*p_{1, 4, 5} - p_{1, 2, 5}*p_{1, 4, 6}, p_{1, 4, 6}*p_{3, 4, 5} - p_{1, 4, 5}*p_{3, 4, 6}, p_{1, 4, 6}*p_{2, 4, 5} - p_{1, 4, 5}*p_{2, 4, 6}, p_{1, 2, 4}*p_{2, 3, 5} - p_{1, 2, 3}*p_{2, 4, 5}, p_{1, 4, 6}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 4, 6}, p_{1, 2, 4}*p_{1, 3, 6} - p_{1, 2, 3}*p_{1, 4, 6}, p_{1, 2, 4}*p_{3, 5, 6} - y, p_{1, 4, 5}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 4, 5}, p_{1, 3, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 5}, p_{1, 3, 6}*p_{1, 4, 5} - p_{1, 3, 5}*p_{1, 4, 6}, p_{1, 5, 6}*p_{3, 4, 5} - p_{1, 4, 5}*p_{3, 5, 6}, p_{1, 2, 6}*p_{3, 4, 5} - p_{1, 2, 5}*p_{3, 4, 6}, p_{1, 5, 6}*p_{2, 4, 5} - p_{1, 4, 5}*p_{2, 5, 6}, p_{1, 2, 6}*p_{2, 4, 5} - p_{1, 2, 5}*p_{2, 4, 6}, p_{1, 5, 6}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 5, 6}, p_{2, 4, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 4, 6}, p_{1, 2, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 4, 6}, p_{1, 2, 6}*p_{1, 3, 5} - p_{1, 2, 5}*p_{1, 3, 6}, p_{1, 3, 6}*p_{3, 4, 5} - p_{1, 3, 5}*p_{3, 4, 6}, p_{1, 3, 5}*p_{2, 4, 6} - x, p_{1, 3, 6}*p_{2, 4, 5} - x, p_{1, 4, 5}*p_{2, 3, 6} - x, p_{1, 4, 6}*p_{2, 3, 5} - x, p_{1, 3, 6}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 6}, p_{1, 5, 6}*p_{3, 4, 6} - p_{1, 4, 6}*p_{3, 5, 6}, p_{2, 5, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 5, 6}, p_{1, 5, 6}*p_{2, 4, 6} - p_{1, 4, 6}*p_{2, 5, 6}, p_{1, 5, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 5, 6}, p_{1, 2, 6}*p_{2, 3, 5} - p_{1, 2, 5}*p_{2, 3, 6}, p_{2, 3, 6}*p_{3, 4, 5} - p_{2, 3, 5}*p_{3, 4, 6}, p_{2, 3, 6}*p_{2, 4, 5} - p_{2, 3, 5}*p_{2, 4, 6}, p_{1, 4, 6}*p_{2, 3, 6} - p_{1, 3, 6}*p_{2, 4, 6}, p_{2, 5, 6}*p_{3, 4, 6} - p_{2, 4, 6}*p_{3, 5, 6}, p_{1, 3, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 3, 6}, p_{1, 5, 6}*p_{2, 3, 6} - p_{1, 3, 6}*p_{2, 5, 6}, p_{1, 2, 3}*p_{3, 5, 6}*x - p_{1, 3, 5}*p_{2, 3, 6}*y); P43=ideal( p_{1, 4, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 4, 5}, p_{1, 2, 4}*p_{1, 3, 5} - p_{1, 2, 3}*p_{1, 4, 5}, p_{1, 2, 5}*p_{1, 4, 6} - p_{1, 2, 4}*p_{1, 5, 6}, p_{1, 4, 6}*p_{3, 4, 5} - p_{1, 4, 5}*p_{3, 4, 6}, p_{1, 4, 6}*p_{2, 4, 5} - p_{1, 4, 5}*p_{2, 4, 6}, p_{1, 2, 4}*p_{2, 3, 5} - p_{1, 2, 3}*p_{2, 4, 5}, p_{1, 4, 6}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 4, 6}, p_{1, 2, 4}*p_{1, 3, 6} - p_{1, 2, 3}*p_{1, 4, 6}, p_{1, 2, 4}*p_{3, 5, 6} - y, p_{1, 2, 5}*p_{3, 4, 6} - y, p_{1, 2, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{2, 5, 6}, p_{1, 4, 5}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 4, 5}, p_{1, 3, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 5}, p_{1, 3, 6}*p_{1, 4, 5} - p_{1, 3, 5}*p_{1, 4, 6}, p_{2, 4, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 4, 6}, p_{1, 5, 6}*p_{3, 4, 5} - p_{1, 4, 5}*p_{3, 5, 6}, p_{1, 5, 6}*p_{2, 4, 5} - p_{1, 4, 5}*p_{2, 5, 6}, p_{1, 2, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 4, 6}, p_{1, 5, 6}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 5, 6}, p_{1, 2, 5}*p_{1, 3, 6} - p_{1, 2, 3}*p_{1, 5, 6}, p_{1, 3, 6}*p_{3, 4, 5} - p_{1, 3, 5}*p_{3, 4, 6}, p_{1, 3, 5}*p_{2, 4, 6} - x, p_{1, 3, 6}*p_{2, 4, 5} - x, p_{1, 4, 5}*p_{2, 3, 6} - x, p_{1, 4, 6}*p_{2, 3, 5} - x, p_{1, 3, 6}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 6}, p_{1, 5, 6}*p_{3, 4, 6} - p_{1, 4, 6}*p_{3, 5, 6}, p_{2, 5, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 5, 6}, p_{1, 5, 6}*p_{2, 4, 6} - p_{1, 4, 6}*p_{2, 5, 6}, p_{1, 2, 5}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 5, 6}, p_{2, 3, 6}*p_{3, 4, 5} - p_{2, 3, 5}*p_{3, 4, 6}, p_{2, 3, 6}*p_{2, 4, 5} - p_{2, 3, 5}*p_{2, 4, 6}, p_{1, 4, 6}*p_{2, 3, 6} - p_{1, 3, 6}*p_{2, 4, 6}, p_{1, 5, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 5, 6}, p_{2, 5, 6}*p_{3, 4, 6} - p_{2, 4, 6}*p_{3, 5, 6}, p_{1, 3, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 3, 6}, p_{1, 5, 6}*p_{2, 3, 6} - p_{1, 3, 6}*p_{2, 5, 6}, p_{1, 2, 5}*p_{3, 4, 5}*x - p_{1, 3, 5}*p_{2, 4, 5}*y, p_{1, 2, 5}*p_{3, 5, 6}*x - p_{1, 3, 5}*p_{2, 5, 6}*y, p_{1, 2, 3}*p_{3, 5, 6}*x - p_{1, 3, 5}*p_{2, 3, 6}*y); P44=ideal( p_{1, 4, 6}*p_{2, 3, 5} - x, p_{1, 4, 6}*p_{3, 5, 6} - p_{1, 3, 6}*p_{4, 5, 6}, p_{2, 3, 5}*p_{3, 4, 6} - p_{2, 3, 4}*p_{3, 5, 6}, p_{2, 5, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 5, 6}, p_{1, 4, 6}*p_{2, 5, 6} - p_{1, 2, 6}*p_{4, 5, 6}, p_{1, 3, 6}*p_{2, 5, 6} - p_{1, 2, 6}*p_{3, 5, 6}, p_{2, 3, 5}*p_{2, 4, 6} - p_{2, 3, 4}*p_{2, 5, 6}, p_{1, 3, 6}*p_{2, 4, 5} - p_{1, 2, 6}*p_{3, 4, 5}, p_{1, 4, 5}*p_{2, 3, 6} - p_{1, 2, 3}*p_{4, 5, 6}, p_{1, 3, 5}*p_{2, 3, 6} - p_{1, 2, 3}*p_{3, 5, 6}, p_{1, 2, 5}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 5, 6}, p_{1, 4, 5}*p_{3, 5, 6} - p_{1, 3, 5}*p_{4, 5, 6}, p_{2, 5, 6}*p_{3, 4, 6} - p_{2, 4, 6}*p_{3, 5, 6}, p_{2, 4, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 4, 6}, p_{1, 4, 5}*p_{2, 5, 6} - p_{1, 2, 5}*p_{4, 5, 6}, p_{1, 3, 5}*p_{2, 5, 6} - p_{1, 2, 5}*p_{3, 5, 6}, p_{1, 3, 6}*p_{2, 4, 6} - p_{1, 2, 6}*p_{3, 4, 6}, p_{1, 3, 5}*p_{2, 4, 5} - p_{1, 2, 5}*p_{3, 4, 5}, p_{1, 3, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{3, 4, 6}, p_{1, 2, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 4, 6}, p_{1, 3, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 5}, p_{1, 2, 5}*p_{2, 3, 4} - p_{1, 2, 4}*p_{2, 3, 5}, p_{1, 3, 6}*p_{1, 4, 5} - p_{1, 3, 5}*p_{1, 4, 6}, p_{1, 2, 6}*p_{1, 4, 5} - p_{1, 2, 5}*p_{1, 4, 6}, p_{1, 2, 6}*p_{1, 3, 5} - p_{1, 2, 5}*p_{1, 3, 6}, p_{1, 2, 4}*p_{3, 5, 6} - y, p_{1, 4, 5}*p_{3, 4, 6} - p_{1, 3, 4}*p_{4, 5, 6}, p_{1, 3, 5}*p_{3, 4, 6} - p_{1, 3, 4}*p_{3, 5, 6}, p_{1, 2, 5}*p_{3, 4, 6} - y, p_{1, 3, 4}*p_{2, 5, 6} - y, p_{1, 4, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{4, 5, 6}, p_{1, 3, 5}*p_{2, 4, 6} - y, p_{1, 2, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{2, 5, 6}, p_{1, 3, 4}*p_{2, 4, 5} - p_{1, 2, 4}*p_{3, 4, 5}, p_{1, 2, 6}*p_{1, 3, 4} - p_{1, 2, 4}*p_{1, 3, 6}, p_{1, 3, 4}*p_{2, 4, 6} - p_{1, 2, 4}*p_{3, 4, 6}, p_{1, 2, 5}*p_{1, 3, 4} - p_{1, 2, 4}*p_{1, 3, 5}, p_{1, 2, 4}*p_{3, 4, 6}*x - p_{1, 4, 6}*p_{2, 3, 4}*y); P45= ideal( p_{1, 4, 5}*p_{3, 4, 6} - p_{1, 3, 4}*p_{4, 5, 6}, p_{2, 4, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 4, 6}, p_{1, 4, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{4, 5, 6}, p_{1, 3, 4}*p_{2, 4, 5} - p_{1, 2, 4}*p_{3, 4, 5}, p_{1, 4, 5}*p_{2, 3, 6} - x, p_{1, 3, 4}*p_{2, 4, 6} - p_{1, 2, 4}*p_{3, 4, 6}, p_{1, 3, 6}*p_{2, 4, 5} - p_{1, 2, 6}*p_{3, 4, 5}, p_{1, 5, 6}*p_{2, 3, 4} - p_{1, 4, 6}*p_{2, 3, 5}, p_{1, 3, 6}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 6}, p_{1, 2, 6}*p_{2, 3, 4} - p_{1, 2, 4}*p_{2, 3, 6}, p_{1, 4, 5}*p_{3, 5, 6} - p_{1, 3, 5}*p_{4, 5, 6}, p_{2, 3, 5}*p_{3, 4, 6} - p_{2, 3, 4}*p_{3, 5, 6}, p_{1, 5, 6}*p_{3, 4, 6} - p_{1, 4, 6}*p_{3, 5, 6}, p_{2, 5, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 5, 6}, p_{1, 4, 5}*p_{2, 5, 6} - p_{1, 2, 5}*p_{4, 5, 6}, p_{2, 3, 5}*p_{2, 4, 6} - p_{2, 3, 4}*p_{2, 5, 6}, p_{1, 5, 6}*p_{2, 4, 6} - p_{1, 4, 6}*p_{2, 5, 6}, p_{1, 3, 6}*p_{2, 4, 6} - p_{1, 2, 6}*p_{3, 4, 6}, p_{1, 3, 5}*p_{2, 4, 5} - p_{1, 2, 5}*p_{3, 4, 5}, p_{1, 3, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 5}, p_{1, 2, 5}*p_{2, 3, 4} - p_{1, 2, 4}*p_{2, 3, 5}, p_{1, 3, 5}*p_{1, 4, 6} - p_{1, 3, 4}*p_{1, 5, 6}, p_{1, 2, 5}*p_{1, 4, 6} - p_{1, 2, 4}*p_{1, 5, 6}, p_{1, 2, 6}*p_{1, 3, 4} - p_{1, 2, 4}*p_{1, 3, 6}, p_{1, 2, 4}*p_{3, 5, 6} - y, p_{2, 5, 6}*p_{3, 4, 6} - p_{2, 4, 6}*p_{3, 5, 6}, p_{1, 3, 5}*p_{3, 4, 6} - p_{1, 3, 4}*p_{3, 5, 6}, p_{1, 2, 5}*p_{3, 4, 6} - y, p_{1, 3, 4}*p_{2, 5, 6} - y, p_{1, 3, 5}*p_{2, 4, 6} - y, p_{1, 2, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{2, 5, 6}, p_{1, 3, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 3, 6}, p_{1, 2, 6}*p_{2, 3, 5} - p_{1, 2, 5}*p_{2, 3, 6}, p_{1, 2, 5}*p_{1, 3, 4} - p_{1, 2, 4}*p_{1, 3, 5}, p_{1, 3, 6}*p_{2, 5, 6} - p_{1, 2, 6}*p_{3, 5, 6}, p_{1, 2, 6}*p_{1, 3, 5} - p_{1, 2, 5}*p_{1, 3, 6}, p_{1, 3, 5}*p_{2, 5, 6} - p_{1, 2, 5}*p_{3, 5, 6}, p_{2, 4, 6}*p_{3, 5, 6}*x - p_{2, 3, 6}*p_{4, 5, 6}*y); P46=ideal( p_{1, 3, 6}*p_{2, 4, 5} - p_{1, 2, 6}*p_{3, 4, 5}, p_{1, 4, 5}*p_{2, 3, 6} - p_{1, 2, 3}*p_{4, 5, 6}, p_{1, 5, 6}*p_{2, 3, 4} - p_{1, 4, 6}*p_{2, 3, 5}, p_{2, 3, 5}*p_{3, 4, 6} - p_{2, 3, 4}*p_{3, 5, 6}, p_{1, 5, 6}*p_{3, 4, 6} - p_{1, 4, 6}*p_{3, 5, 6}, p_{2, 5, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 5, 6}, p_{2, 4, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 4, 6}, p_{1, 3, 6}*p_{2, 5, 6} - p_{1, 2, 6}*p_{3, 5, 6}, p_{2, 3, 5}*p_{2, 4, 6} - p_{2, 3, 4}*p_{2, 5, 6}, p_{1, 5, 6}*p_{2, 4, 6} - p_{1, 4, 6}*p_{2, 5, 6}, p_{1, 3, 6}*p_{2, 4, 6} - p_{1, 2, 6}*p_{3, 4, 6}, p_{1, 3, 5}*p_{2, 3, 6} - p_{1, 2, 3}*p_{3, 5, 6}, p_{1, 3, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{3, 4, 6}, p_{1, 2, 5}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 5, 6}, p_{1, 2, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 4, 6}, p_{1, 4, 5}*p_{3, 5, 6} - p_{1, 3, 5}*p_{4, 5, 6}, p_{2, 5, 6}*p_{3, 4, 6} - p_{2, 4, 6}*p_{3, 5, 6}, p_{1, 4, 5}*p_{3, 4, 6} - p_{1, 3, 4}*p_{4, 5, 6}, p_{1, 4, 5}*p_{2, 5, 6} - p_{1, 2, 5}*p_{4, 5, 6}, p_{1, 4, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{4, 5, 6}, p_{1, 3, 5}*p_{2, 4, 5} - p_{1, 2, 5}*p_{3, 4, 5}, p_{1, 3, 4}*p_{2, 4, 5} - p_{1, 2, 4}*p_{3, 4, 5}, p_{1, 3, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 5}, p_{1, 2, 5}*p_{2, 3, 4} - p_{1, 2, 4}*p_{2, 3, 5}, p_{1, 3, 5}*p_{1, 4, 6} - p_{1, 3, 4}*p_{1, 5, 6}, p_{1, 2, 5}*p_{1, 4, 6} - p_{1, 2, 4}*p_{1, 5, 6}, p_{1, 2, 6}*p_{1, 3, 5} - p_{1, 2, 5}*p_{1, 3, 6}, p_{1, 2, 6}*p_{1, 3, 4} - p_{1, 2, 4}*p_{1, 3, 6}, p_{1, 2, 4}*p_{3, 5, 6} - y, p_{1, 3, 5}*p_{3, 4, 6} - p_{1, 3, 4}*p_{3, 5, 6}, p_{1, 2, 5}*p_{3, 4, 6} - y, p_{1, 3, 5}*p_{2, 5, 6} - p_{1, 2, 5}*p_{3, 5, 6}, p_{1, 3, 4}*p_{2, 5, 6} - y, p_{1, 3, 5}*p_{2, 4, 6} - y, p_{1, 3, 4}*p_{2, 4, 6} - p_{1, 2, 4}*p_{3, 4, 6}, p_{1, 2, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{2, 5, 6}, p_{1, 2, 5}*p_{1, 3, 4} - p_{1, 2, 4}*p_{1, 3, 5}, p_{1, 3, 6}*p_{2, 3, 5}*p_{4, 5, 6} - p_{3, 5, 6}*x, p_{1, 2, 6}*p_{2, 3, 5}*p_{4, 5, 6} - p_{2, 5, 6}*x, p_{1, 3, 6}*p_{2, 3, 4}*p_{4, 5, 6} - p_{3, 4, 6}*x, p_{1, 2, 6}*p_{2, 3, 4}*p_{4, 5, 6} - p_{2, 4, 6}*x, p_{1, 3, 6}*p_{1, 4, 5}*p_{2, 3, 5} - p_{1, 3, 5}*x, p_{1, 2, 6}*p_{1, 4, 5}*p_{2, 3, 5} - p_{1, 2, 5}*x, p_{1, 3, 6}*p_{1, 4, 5}*p_{2, 3, 4} - p_{1, 3, 4}*x, p_{1, 2, 6}*p_{1, 4, 5}*p_{2, 3, 4} - p_{1, 2, 4}*x); P47=ideal( p_{1, 2, 4}*p_{1, 3, 5} - p_{1, 2, 3}*p_{1, 4, 5}, p_{1, 3, 4}*p_{2, 4, 5} - p_{1, 2, 4}*p_{3, 4, 5}, p_{1, 2, 6}*p_{1, 4, 5} - p_{1, 2, 5}*p_{1, 4, 6}, p_{1, 4, 5}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 4, 5}, p_{1, 3, 6}*p_{1, 4, 5} - p_{1, 3, 5}*p_{1, 4, 6}, p_{1, 5, 6}*p_{3, 4, 5} - p_{1, 4, 5}*p_{3, 5, 6}, p_{1, 4, 6}*p_{3, 4, 5} - p_{1, 4, 5}*p_{3, 4, 6}, p_{1, 5, 6}*p_{2, 4, 5} - p_{1, 4, 5}*p_{2, 5, 6}, p_{1, 4, 6}*p_{2, 4, 5} - p_{1, 4, 5}*p_{2, 4, 6}, p_{1, 3, 4}*p_{2, 3, 5} - p_{1, 2, 3}*p_{3, 4, 5}, p_{1, 2, 4}*p_{2, 3, 5} - p_{1, 2, 3}*p_{2, 4, 5}, p_{1, 2, 4}*p_{1, 3, 6} - p_{1, 2, 3}*p_{1, 4, 6}, p_{1, 2, 4}*p_{3, 5, 6} - y, p_{1, 3, 4}*p_{2, 5, 6} - y, p_{1, 3, 4}*p_{2, 4, 6} - p_{1, 2, 4}*p_{3, 4, 6}, p_{1, 2, 6}*p_{1, 3, 5} - p_{1, 2, 5}*p_{1, 3, 6}, p_{1, 2, 6}*p_{3, 4, 5} - p_{1, 2, 5}*p_{3, 4, 6}, p_{1, 2, 6}*p_{2, 4, 5} - p_{1, 2, 5}*p_{2, 4, 6}, p_{1, 3, 6}*p_{3, 4, 5} - p_{1, 3, 5}*p_{3, 4, 6}, p_{1, 3, 5}*p_{2, 4, 6} - x, p_{1, 3, 6}*p_{2, 4, 5} - x, p_{1, 4, 5}*p_{2, 3, 6} - x, p_{1, 5, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 5, 6}, p_{1, 4, 6}*p_{2, 3, 5} - x, p_{1, 5, 6}*p_{3, 4, 6} - p_{1, 4, 6}*p_{3, 5, 6}, p_{2, 5, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 5, 6}, p_{2, 4, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 4, 6}, p_{1, 5, 6}*p_{2, 4, 6} - p_{1, 4, 6}*p_{2, 5, 6}, p_{1, 3, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{3, 4, 6}, p_{1, 2, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 4, 6}, p_{1, 2, 6}*p_{2, 3, 5} - p_{1, 2, 5}*p_{2, 3, 6}, p_{1, 3, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 3, 6}, p_{2, 3, 6}*p_{3, 4, 5} - p_{2, 3, 5}*p_{3, 4, 6}, p_{2, 3, 6}*p_{2, 4, 5} - p_{2, 3, 5}*p_{2, 4, 6}, p_{1, 5, 6}*p_{2, 3, 6} - p_{1, 3, 6}*p_{2, 5, 6}, p_{1, 4, 6}*p_{2, 3, 6} - p_{1, 3, 6}*p_{2, 4, 6}, p_{2, 5, 6}*p_{3, 4, 6} - p_{2, 4, 6}*p_{3, 5, 6}, p_{1, 3, 4}*p_{1, 5, 6}*x - p_{1, 3, 5}*p_{1, 4, 6}*y, p_{1, 3, 4}*p_{3, 5, 6}*x - p_{1, 3, 5}*p_{3, 4, 6}*y, p_{1, 2, 3}*p_{3, 5, 6}*x - p_{1, 3, 5}*p_{2, 3, 6}*y); P48=ideal( p_{1, 3, 6}*p_{2, 5, 6} - p_{1, 2, 6}*p_{3, 5, 6}, p_{1, 3, 6}*p_{2, 4, 6} - p_{1, 2, 6}*p_{3, 4, 6}, p_{2, 5, 6}*p_{3, 4, 6} - p_{2, 4, 6}*p_{3, 5, 6}, p_{2, 3, 5}*p_{2, 4, 6} - p_{2, 3, 4}*p_{2, 5, 6}, p_{1, 5, 6}*p_{2, 4, 6} - p_{1, 4, 6}*p_{2, 5, 6}, p_{1, 3, 6}*p_{2, 4, 5} - x, p_{1, 2, 5}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 5, 6}, p_{1, 2, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 4, 6}, p_{2, 4, 5}*p_{3, 5, 6} - p_{2, 3, 5}*p_{4, 5, 6}, p_{2, 4, 5}*p_{3, 4, 6} - p_{2, 3, 4}*p_{4, 5, 6}, p_{2, 3, 5}*p_{3, 4, 6} - p_{2, 3, 4}*p_{3, 5, 6}, p_{1, 5, 6}*p_{3, 4, 6} - p_{1, 4, 6}*p_{3, 5, 6}, p_{1, 4, 5}*p_{2, 3, 6} - p_{1, 2, 3}*p_{4, 5, 6}, p_{1, 3, 5}*p_{2, 3, 6} - p_{1, 2, 3}*p_{3, 5, 6}, p_{1, 3, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{3, 4, 6}, p_{1, 5, 6}*p_{2, 3, 4} - p_{1, 4, 6}*p_{2, 3, 5}, p_{1, 2, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{2, 5, 6}, p_{1, 2, 6}*p_{1, 3, 5} - p_{1, 2, 5}*p_{1, 3, 6}, p_{1, 2, 6}*p_{1, 3, 4} - p_{1, 2, 4}*p_{1, 3, 6}, p_{1, 2, 4}*p_{3, 5, 6} - y, p_{1, 2, 5}*p_{3, 4, 6} - y, p_{1, 4, 5}*p_{2, 5, 6} - p_{1, 2, 5}*p_{4, 5, 6}, p_{1, 3, 5}*p_{2, 5, 6} - p_{1, 2, 5}*p_{3, 5, 6}, p_{1, 3, 4}*p_{2, 5, 6} - y, p_{1, 4, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{4, 5, 6}, p_{1, 3, 5}*p_{2, 4, 6} - y, p_{1, 3, 4}*p_{2, 4, 6} - p_{1, 2, 4}*p_{3, 4, 6}, p_{1, 2, 5}*p_{2, 3, 4} - p_{1, 2, 4}*p_{2, 3, 5}, p_{1, 2, 5}*p_{1, 4, 6} - p_{1, 2, 4}*p_{1, 5, 6}, p_{1, 4, 5}*p_{3, 5, 6} - p_{1, 3, 5}*p_{4, 5, 6}, p_{1, 4, 5}*p_{3, 4, 6} - p_{1, 3, 4}*p_{4, 5, 6}, p_{1, 3, 5}*p_{3, 4, 6} - p_{1, 3, 4}*p_{3, 5, 6}, p_{1, 4, 5}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 4, 5}, p_{1, 4, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 4, 5}, p_{1, 3, 5}*p_{2, 3, 4} - p_{1, 3, 4}*p_{2, 3, 5}, p_{1, 3, 5}*p_{1, 4, 6} - p_{1, 3, 4}*p_{1, 5, 6}, p_{1, 2, 5}*p_{1, 3, 4} - p_{1, 2, 4}*p_{1, 3, 5}, p_{1, 2, 4}*p_{2, 5, 6}*x - p_{1, 2, 6}*p_{2, 4, 5}*y); P49=ideal( p_{1, 2, 4}*p_{1, 3, 5} - p_{1, 2, 3}*p_{1, 4, 5}, p_{1, 3, 4}*p_{2, 4, 5} - p_{1, 2, 4}*p_{3, 4, 5}, p_{1, 2, 5}*p_{1, 4, 6} - p_{1, 2, 4}*p_{1, 5, 6}, p_{1, 4, 5}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 4, 5}, p_{1, 3, 6}*p_{1, 4, 5} - p_{1, 3, 5}*p_{1, 4, 6}, p_{1, 5, 6}*p_{3, 4, 5} - p_{1, 4, 5}*p_{3, 5, 6}, p_{1, 4, 6}*p_{3, 4, 5} - p_{1, 4, 5}*p_{3, 4, 6}, p_{1, 5, 6}*p_{2, 4, 5} - p_{1, 4, 5}*p_{2, 5, 6}, p_{1, 4, 6}*p_{2, 4, 5} - p_{1, 4, 5}*p_{2, 4, 6}, p_{1, 3, 4}*p_{2, 3, 5} - p_{1, 2, 3}*p_{3, 4, 5}, p_{1, 2, 4}*p_{2, 3, 5} - p_{1, 2, 3}*p_{2, 4, 5}, p_{1, 2, 5}*p_{1, 3, 6} - p_{1, 2, 3}*p_{1, 5, 6}, p_{1, 2, 4}*p_{1, 3, 6} - p_{1, 2, 3}*p_{1, 4, 6}, p_{1, 2, 4}*p_{3, 5, 6} - y, p_{1, 2, 5}*p_{3, 4, 6} - y, p_{1, 3, 4}*p_{2, 5, 6} - y, p_{1, 3, 4}*p_{2, 4, 6} - p_{1, 2, 4}*p_{3, 4, 6}, p_{1, 2, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{2, 5, 6}, p_{1, 3, 6}*p_{3, 4, 5} - p_{1, 3, 5}*p_{3, 4, 6}, p_{1, 3, 5}*p_{2, 4, 6} - x, p_{1, 3, 6}*p_{2, 4, 5} - x, p_{1, 4, 5}*p_{2, 3, 6} - x, p_{1, 5, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 5, 6}, p_{1, 4, 6}*p_{2, 3, 5} - x, p_{1, 5, 6}*p_{3, 4, 6} - p_{1, 4, 6}*p_{3, 5, 6}, p_{2, 5, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 5, 6}, p_{2, 4, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 4, 6}, p_{1, 5, 6}*p_{2, 4, 6} - p_{1, 4, 6}*p_{2, 5, 6}, p_{1, 3, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{3, 4, 6}, p_{1, 2, 5}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 5, 6}, p_{1, 2, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 4, 6}, p_{1, 3, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 3, 6}, p_{2, 3, 6}*p_{3, 4, 5} - p_{2, 3, 5}*p_{3, 4, 6}, p_{2, 3, 6}*p_{2, 4, 5} - p_{2, 3, 5}*p_{2, 4, 6}, p_{1, 5, 6}*p_{2, 3, 6} - p_{1, 3, 6}*p_{2, 5, 6}, p_{1, 4, 6}*p_{2, 3, 6} - p_{1, 3, 6}*p_{2, 4, 6}, p_{2, 5, 6}*p_{3, 4, 6} - p_{2, 4, 6}*p_{3, 5, 6}, p_{1, 2, 5}*p_{1, 3, 4}*x - p_{1, 2, 3}*p_{1, 4, 5}*y, p_{1, 2, 5}*p_{3, 4, 5}*x - p_{1, 3, 5}*p_{2, 4, 5}*y, p_{1, 3, 4}*p_{1, 5, 6}*x - p_{1, 3, 5}*p_{1, 4, 6}*y, p_{1, 3, 4}*p_{3, 5, 6}*x - p_{1, 3, 5}*p_{3, 4, 6}*y, p_{1, 2, 5}*p_{3, 5, 6}*x - p_{1, 3, 5}*p_{2, 5, 6}*y, p_{1, 2, 3}*p_{3, 5, 6}*x - p_{1, 3, 5}*p_{2, 3, 6}*y); P50=ideal( p_{1, 2, 5}*p_{1, 4, 6} - p_{1, 2, 4}*p_{1, 5, 6}, p_{1, 5, 6}*p_{2, 4, 5} - p_{1, 4, 5}*p_{2, 5, 6}, p_{1, 2, 5}*p_{1, 3, 6} - p_{1, 2, 3}*p_{1, 5, 6}, p_{1, 2, 4}*p_{1, 3, 5} - p_{1, 2, 3}*p_{1, 4, 5}, p_{1, 4, 5}*p_{3, 5, 6} - p_{1, 3, 5}*p_{4, 5, 6}, p_{1, 2, 5}*p_{3, 4, 6} - y, p_{1, 3, 4}*p_{2, 5, 6} - y, p_{1, 2, 5}*p_{2, 4, 6} - p_{1, 2, 4}*p_{2, 5, 6}, p_{1, 3, 4}*p_{2, 4, 5} - p_{1, 2, 4}*p_{3, 4, 5}, p_{1, 5, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 5, 6}, p_{1, 4, 5}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 4, 5}, p_{1, 3, 6}*p_{1, 4, 5} - p_{1, 3, 5}*p_{1, 4, 6}, p_{1, 2, 4}*p_{3, 5, 6} - p_{1, 2, 3}*p_{4, 5, 6}, p_{1, 4, 6}*p_{3, 4, 5} - p_{1, 4, 5}*p_{3, 4, 6}, p_{1, 5, 6}*p_{2, 4, 6} - p_{1, 4, 6}*p_{2, 5, 6}, p_{1, 4, 6}*p_{2, 4, 5} - p_{1, 4, 5}*p_{2, 4, 6}, p_{1, 2, 5}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 5, 6}, p_{1, 3, 4}*p_{2, 3, 5} - p_{1, 2, 3}*p_{3, 4, 5}, p_{1, 2, 4}*p_{2, 3, 5} - p_{1, 2, 3}*p_{2, 4, 5}, p_{1, 2, 4}*p_{1, 3, 6} - p_{1, 2, 3}*p_{1, 4, 6}, p_{2, 4, 5}*p_{3, 5, 6} - p_{2, 3, 5}*p_{4, 5, 6}, p_{1, 4, 6}*p_{3, 5, 6} - p_{1, 3, 6}*p_{4, 5, 6}, p_{1, 3, 6}*p_{3, 4, 5} - p_{1, 3, 5}*p_{3, 4, 6}, p_{1, 3, 5}*p_{2, 4, 6} - x, p_{1, 3, 4}*p_{2, 4, 6} - p_{1, 2, 4}*p_{3, 4, 6}, p_{1, 3, 6}*p_{2, 4, 5} - x, p_{1, 5, 6}*p_{2, 3, 6} - p_{1, 3, 6}*p_{2, 5, 6}, p_{1, 4, 5}*p_{2, 3, 6} - x, p_{1, 4, 6}*p_{2, 3, 5} - x, p_{2, 4, 6}*p_{3, 4, 5} - p_{2, 4, 5}*p_{3, 4, 6}, p_{1, 3, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{3, 4, 6}, p_{1, 2, 4}*p_{2, 3, 6} - p_{1, 2, 3}*p_{2, 4, 6}, p_{1, 3, 6}*p_{2, 3, 5} - p_{1, 3, 5}*p_{2, 3, 6}, p_{2, 4, 6}*p_{3, 5, 6} - p_{2, 3, 6}*p_{4, 5, 6}, p_{2, 3, 6}*p_{3, 4, 5} - p_{2, 3, 5}*p_{3, 4, 6}, p_{2, 3, 6}*p_{2, 4, 5} - p_{2, 3, 5}*p_{2, 4, 6}, p_{1, 4, 6}*p_{2, 3, 6} - p_{1, 3, 6}*p_{2, 4, 6}, p_{1, 2, 5}*p_{1, 3, 4}*x - p_{1, 2, 3}*p_{1, 4, 5}*y, p_{1, 2, 5}*p_{3, 4, 5}*x - p_{1, 3, 5}*p_{2, 4, 5}*y, p_{1, 3, 4}*p_{1, 5, 6}*x - p_{1, 3, 5}*p_{1, 4, 6}*y);