Cluster Algebras

Lara Bossinger

Universidad Nacional Autónoma de México, Unidad Oaxaca

Pittsburgh September 25 2020, 55 minutes

Overview

- Oluster algebras in Mathematics
- History
- Total positivity
- Quivers, seeds, mutation and cluster algebras
- Some applications

Algebra: total positivity, quantum groups, representation theory, homological algebra, categorification, Gröbner theory Cluster algebras Combinatorics/Polyhedral geometry: root systems, Stasheff polytopes, associahedra, Newton-Okounkov polytopes, Geometry: scattering diagrams, dimer models/ tropical and toric geometry, log Calabi-Yau plabic graphs varieties, Donaldson-Thomas theory, Teichmüller theory, quantization, integrable systems, symplectic and Poisson geometry, triangulated surfaces

Algebra: total positivity, quantum groups, representation theory, homological algebra, categorification, Gröbner theory Cluster algebras Topology: knot theory, Jones polynomial, braid groups, Combinatorics/Polyhedral geometry: Lie groups root systems, Stasheff polytopes, associahedra, Newton-Okounkov polytopes, Geometry: scattering diagrams, dimer models/ tropical and toric geometry, log Calabi-Yau plabic graphs varieties, Donaldson-Thomas theory, Teichmüller theory, quantization, integrable systems, symplectic and Poisson geometry, triangulated surfaces

Theoretical Physics:

string theory, mirror symmetry, scattering amplitudes, Conformal field theory, Bethe Ansatz in Theoremodynamics

Topology:

knot theory, Jones polynomial, braid groups, Lie groups

Geometry:

tropical and toric geometry, log Calabi–Yau varieties, Donaldson–Thomas theory, Teichmüller theory, quantization, integrable systems, symplectic and Poisson geometry, triangulated surfaces

Cluster algebras

Algebra:

total positivity, quantum groups, representation theory, homological algebra, categorification, Gröbner theory

Combinatorics/Polyhedral geometry:

root systems, Stasheff polytopes, associahedra, Newton-Okounkov polytopes, scattering diagrams, dimer models/ plabic graphs

Theoretical Physics:

string theory, mirror symmetry, scattering amplitudes, Conformal field theory, Bethe Ansatz in Theoremodynamics

Analysis:

Algebra:

total positivity, quantum groups, representation theory, homological algebra, categorification, Gröbner theory

Topology:

knot theory, Jones polynomial, braid groups, Lie groups

Cluster algebras

Geometry:

tropical and toric geometry, log Calabi-Yau varieties, Donaldson-Thomas theory, Teichmüller theory, quantization, integrable systems, symplectic and Poisson geometry, triangulated surfaces

Combinatorics/Polyhedral geometry: root systems, Stasheff polytopes,

associahedra, Newton–Okounkov polytopes, scattering diagrams, dimer models/ plabic graphs

Cluster Algebras Lara Bossinger 3/ 22

Theoretical Physics:

string theory, mirror symmetry, scattering amplitudes, Conformal field theory, Bethe Ansatz in Theoremodynamics

Analysis:

ordinary/partial differential equations, KP solitons

Algebra:

total positivity, quantum groups, representation theory, homological algebra, categorification, Gröbner theory

Topology:

knot theory, Jones polynomial, braid groups, Lie groups

Cluster algebras

Geometry:

tropical and toric geometry, log Calabi–Yau varieties, Donaldson–Thomas theory, Teichmüller theory, quantization, integrable systems, symplectic and Poisson geometry, triangulated surfaces

Combinatorics/Polyhedral geometry: root systems, Stasheff polytopes,

associahedra, Newton-Okounkov polytopes, scattering diagrams, dimer models/plabic graphs

History

- Cluster algebras were first introduced in 2001 by Sergei Fomin and Andrei Zelevinsky.
- They had observed a mathmatical structure (cluster structure) on various objects related to the study of totally positive matrices, quantum groups and Kashiwara/Lusztig's canonical basis.
- Their work gained a lot of attention, first in representation theory, but quickly grew beyond its origins.
- Today Cluster algebras have their own MSC classifier 13F60, there are 690 papers on Mathscinet with this MSC classification and 1,645 on the arxiv.
- Since 2003 at least 139 international conferences have been organized on this topic

Total Positivity

Definition

A matrix $M \in \mathbb{R}^{n \times n}$ is *totally positive* if all its minors (i.e. determinantes of sub-squarematrices) are positive real numbers.

Example

Take $M = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$. Then M is totally positive if and only if a, b, c, d and

 $\Delta = ad - cd \in \mathbb{R}_{>0}$.

Observe that $d=\frac{1}{a}(\Delta+cd)$. Hence, it suffices to verify that $a,b,c,\Delta\in\mathbb{R}_{>0}$. The set $\{a,b,c,\Delta\}$ is a *positivity test*.

Question: How can we efficiently test for total positivity?

Totally positive Grassmannian $Gr_2(\mathbb{C}^n)_{>0}$

 $\operatorname{Gr}_2(\mathbb{C}^n):=\{V\subset\mathbb{C}^n\mid \dim V=2\}$ and its elements can be represented by matrices: for $V=\langle v,w\rangle$ define $M_V=egin{bmatrix} v_1&v_2&\dots&v_n\\w_1&w_2&\dots&w_n \end{bmatrix}\in\mathbb{C}^{2 imes n}$ (unique up to rescaling of the rows).

Definition

For $i, j \in \{1, 2, \dots, n\}$ with i < j define for $V \in \operatorname{Gr}_2(\mathbb{C}^n)$ with M_V as above

$$p_{ij}(V) := \det egin{bmatrix} v_i & v_j \ w_i & w_j \end{bmatrix}.$$

The totally positive Grassmannian $Gr_2(\mathbb{C}^n)_{>0}$ consist of those points $V \in Gr_2(\mathbb{C}^n)$ for which $p_{ij}(V) \in \mathbb{R}_{>0}$ for all i, j.

Question: There are $\binom{n}{2}$ Plücker coordinates. How many do we have to test to know that a given point lies in $Gr_2(\mathbb{C}^n)_{>0}$?

Plücker coordinates are not independent.

Plücker coordinates are not independent. One verifies that for $i < j < k < l \in \{1, ..., n\} : p_{ik}p_{jl} = p_{ij}p_{kl} + p_{il}p_{jk}$.

Plücker coordinates are not independent. One verifies that for $i < j < k < l \in \{1, ..., n\} : p_{ik}p_{jl} = p_{ij}p_{kl} + p_{il}p_{jk}$.

Can vizualize the *Plücker relation*:

Plücker coordinates are not independent. One verifies that for $i < j < k < l \in \{1, ..., n\} : p_{ik}p_{jl} = p_{ij}p_{kl} + p_{il}p_{jk}$.

Can vizualize the *Plücker relation*:

Plücker coordinates are not independent. One verifies that for $i < j < k < l \in \{1, ..., n\} : p_{ik}p_{jl} = p_{ij}p_{kl} + p_{il}p_{jk}$.

Can vizualize the *Plücker relation*:

 \rightarrow compare to the *Ptolemy relation*:

Plücker coordinates are not independent. One verifies that for $i < j < k < l \in \{1, ..., n\} : p_{ik}p_{jl} = p_{ij}p_{kl} + p_{il}p_{jk}$.

Can vizualize the *Plücker relation*:

ightarrow compare to the *Ptolemy relation*: $\overline{AC} \cdot \overline{BD} = \overline{AB} \cdot \overline{CD} + \overline{BC} \cdot \overline{AD}$

Consequence:
$$\begin{cases} efficient TP \\ tests for Gr_2(\mathbb{C}^n) \end{cases} \xrightarrow{1-1} \begin{cases} triangulations \\ of an n-gon \end{cases}.$$

 \rightarrow it suffices to check a set of $2(n-2)+1=\dim \operatorname{Gr}_2(\mathbb{C}^n)+1$ independent Plücker coordinates for positivity.

 \rightarrow it suffices to check a set of $2(n-2)+1=\dim \operatorname{Gr}_2(\mathbb{C}^n)+1$ independent Plücker coordinates for positivity.

 \to it suffices to check a set of $2(n-2)+1=\dim \operatorname{Gr}_2(\mathbb{C}^n)+1$ independent Plücker coordinates for positivity.

 \rightarrow it suffices to check a set of $2(n-2)+1=\dim \operatorname{Gr}_2(\mathbb{C}^n)+1$ independent Plücker coordinates for positivity.

 \rightarrow it suffices to check a set of $2(n-2)+1=\dim \operatorname{Gr}_2(\mathbb{C}^n)+1$ independent Plücker coordinates for positivity.

 \rightarrow it suffices to check a set of $2(n-2)+1=\dim \operatorname{Gr}_2(\mathbb{C}^n)+1$ independent Plücker coordinates for positivity.

Quivers and mutation

A *quiver* Q is a directed graph, consisting of a finite set of vertices and arrows between them.

Technical assumption: Q does not have any loops or 2-cycles.

We split the vertex set into *mutable vertices* $\{1, ..., n\}$ and *frozen vertices* $\{n+1, ..., m\}$, e.g. $1 \Rightarrow 2 \rightarrow 3$.

Definition (Quiver mutation)

Given a quiver Q and a mutable vertex k, the mutation in direction k $\mu_k(Q)$ is a quiver obtained from Q in three steps:

- ① for every path $i \to k \to j$ add an arrow $i \to j$;
- invert every arrow incident to k;
- remove a maximal set of 2-cycles.
- \rightarrow Quiver mutation is an *involution*: $\mu_k(\mu_k(Q)) = Q$.

Example: quiver mutation in Keller's mutation app

Iteration of mutations: the *n*-regular tree

Seeds and mutation

A seed s is a pair (\mathbf{x}, Q) , where $\mathbf{x} = (x_1, \dots, x_n, x_{n+1}, \dots, x_{n+m})$ is a collection of variables called a *cluster* and Q a quiver with n mutable and m frozen vertices.

Definition (Seed mutation)

Given a seed $s = (\mathbf{x}, Q)$ and a mutable vertex k of Q, the mutation in direction k $\mu_k(s)$ is the pair $(\mu_k(\mathbf{x}), \mu_k(Q))$, where $\mu_k(\mathbf{x}) = \mathbf{x} \setminus \{x_k\} \cup \{x_k'\}$ and

$$x'_{k} := \frac{\prod_{i \to k \in Q} x_{i} + \prod_{k \to j \in Q} x_{j}}{x_{k}}.$$

 \rightarrow Seed mutation is an *involution*: $\mu_k(\mu_k(s)) = s$.

Example: seed mutation

$$x_1 \rightarrow x_2$$

$$\left(1 + \frac{1 + x_1 + x_2}{x_1 x_2}\right) \div \frac{1 + x_2}{x_1}$$

cluster magic!

$$\left(1 + \frac{1 + x_1 + x_2}{x_1 x_2}\right) \div \frac{1 + x_2}{x_1} = \frac{x_1 x_2 + 1 + x_1 + x_2}{x_2 (1 + x_2)}$$

cluster magic!

$$\left(1 + \frac{1 + x_1 + x_2}{x_1 x_2}\right) \div \frac{1 + x_2}{x_1} = \frac{x_1 x_2 + 1 + x_1 + x_2}{x_2 (1 + x_2)} = \frac{1 + x_1}{x_2}$$

$$\left(1 + \frac{1 + x_1 + x_2}{x_1 x_2}\right) \div \frac{1 + x_2}{x_1} = \frac{x_1 x_2 + 1 + x_1 + x_2}{x_2 (1 + x_2)} = \frac{1 + x_1}{x_2}$$

Cluster algebra

Let $\mathcal{F} = \mathbb{C}(x_1, \dots, x_{n+m})$ be the field of rational functions in the variables x_1, \dots, x_{n+m} .

If $s = (\mathbf{x}, Q)$ is a seed with $\mathbf{x} = (x_1, \dots, x_{n+m})$ and let $s' = (\mathbf{x}', Q')$ be a seed obtained from s by a sequence of mutations, then the cluster $\mathbf{x}' = (x_1', \dots, x_n', x_{n+1}', \dots, x_{n+m}')$ satisfies

$$\mathbb{C}(x_1',\ldots,x_n',x_{n+1}',\ldots,x_{n+m}')=\mathcal{F}.$$

Definition

The *cluster algebra* defined by the initial quiver Q is the \mathcal{F} -subalgebra

$$\mathcal{A}_Q := \langle \bigcup_{(\mathbf{x}',Q')\sim(\mathbf{x},Q)} \mathbf{x}' \rangle \subset \mathcal{F}.$$

Theorem (Fomin-Zelevinsky 2001)

The cluster algebra A_Q only depends on the mutation class of Q.

Example: cluster algebra

$$A_Q = \left\langle x_1, x_2, \frac{1+x_2}{x_1}, \frac{1+x_1+x_2}{x_1x_2}, \frac{1+x_1}{x_2} \right\rangle \subset \mathbb{C}(x_1, x_2).$$

Structure Theorems

Theorem (Fomin–Zelevinsky 2001)

All cluster variables are Laurent polynomials in the cluster variables of the initial seed with integer coefficients. More precisely, they are contained in

$$\mathbb{Z}[x_1^{\pm},\ldots,x_n^{\pm},x_{n+1},\ldots,x_{n+m}].$$

Positivity Conjecture (Fomin-Zelevinsky 2001)

All cluster variables are contained in $\mathbb{N}[x_1^{\pm}, \dots, x_n^{\pm}, x_{n+1}, \dots, x_{n+m}]$.

Theorem (Gross-Hacking-Keel-Kontsevich 2014)

The positivity conjecture is true.

Gross-Hacking-Keel-Kontsevich view cluster algebras as rings of functions on certain log Calabi-Yau varieties (cluster varieties) and use tools from birational geometry and mirror symmetry.

Finite type classification

Theorem (Fomin-Zelevinsky 2003)

A cluster algebra A_Q is of finite type (i.e. the set of its cluster variables is finite) if and only if (the mutable part of) Q is mutation equivalent to an orientation of a type ADE Dynkin diagram:

Grassmannian $Gr_2(\mathbb{C}^n)$ and Ptolemy

Recall the $\binom{n}{2}$ Plücker coordinates p_{ij} for $\operatorname{Gr}_2(\mathbb{C}^n)$ and the correspondence:

$$\begin{cases} \text{ efficient TP} \\ \text{tests for } \operatorname{Gr}_2(\mathbb{C}^n) \end{cases} \overset{1-1}{\longleftrightarrow} \begin{cases} \operatorname{triangulations} \\ \text{ of an } n\text{-gon} \end{cases}.$$

We can pass from a triangulation T to a quiver Q_T as follows:

- mutable vertices of $Q_T \leftrightarrow \text{diagonals}$;
- ② frozen vertices of $Q_T \leftrightarrow \text{boundary edges}$;
- add arrows inside every triangle:

forget arrows between frozen vertices.

Example: $\operatorname{Gr}_2(\mathbb{C}^5)$

Example: cluster algebra for $Gr_2(\mathbb{C}^n)$

We have a bijection

In particular: $\{\text{seeds}\} \stackrel{1-1}{\longleftrightarrow} \{\text{efficient TP tests}\}.$

The corresponding cluster algebra is

$$\mathcal{A}_{Q_T} = \mathbb{C}[p_{ij} : 1 \leq i < j \leq n]/\mathsf{Plücker}$$
 relations.

Remark

Similar results hold for $Gr_k(\mathbb{C}^n)$, GL_n , SL_n , (partial) flag varieties, Schubert varieties, double Bruhat cells, ...

Remark

The cluster structure can be used to get (for example) Landau–Ginzburg models, toric degenerations and Newton–Okounkov bodies.

More cluster structures

- Marked bordered surfaces:
 - fix a triangulation \rightarrow coordinates for the Teichmüller space,
 - ▶ triangulation ↔ quiver,
 - flip of triangulation \leftrightarrow quiver mutation \leftrightarrow Ptolemy relation.
- 2-bridge knots and links:
 - ▶ 2-bridge link ↔ continued fraction ↔ snake graph ↔ cluster variable of some cluster algebra,
 - Jones polynomial = specialization of the Laurent polynomial of the cluster variable.
- **3** Markov equation: $x_1^2 + x_2^2 + x_3^2 = 3x_1x_2x_3$,
 - solutions are called Markov triples,
 - take $Q = \int_{2}^{2} \text{ and } (x_1, x_2, x_3) = (1, 1, 1),$
 - $(\mathbf{x}', Q) \sim (\mathbf{x}, Q)$ then $\mathbf{x}' = (x'_1, x'_2, x'_3)$ is a Markov triple.
- 4 ...

References

- FZ02 Sergey Fomin and Andrei Zelevinsky. Cluster algebras. I. Foundations. J. Amer. Math. Soc., 15(2):497–529, 2002.
- FZ03 Sergey Fomin and Andrei Zelevinsky. Cluster algebras. II. Finite type classification. Invent. Math. 154 (2003), no. 1, 63–121.
- BFZ05 Arkady Berenstein, Sergey Fomin and Andrei Zelevinsky. Cluster algebras. III. Upper bounds and double Bruhat cells. Duke Math. J. 126 (2005), no. 1, 1–52.
- FZ07 Sergey Fomin and Andrei Zelevinsky. Cluster algebras. IV. Coefficients. Compos. Math. 143, no. 1, 112-164 (2007)
- FG07 Vladimir V. Fock and Alexander Goncharov. Dual Teichmüller and lamination spaces. Handbook of Teichmüller theory. Vol. 1, 647–684, IRMA Lect. Math. Theor. Phys., 11, Eur. Math. Soc., Zürich, (2007)
- GHKK18 Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich. Canonical bases for cluster algebras. J. Amer. Math. Soc., 31(2):497–608 (2018)
 - Pen87 Robert C. Penner. The decorated Teichmüller space of punctured surfaces. Comm. Math. Phys. Volume 113, Number 2 (1987), 299-339.
 - Sco06 Joshua S. Scott. Grassmannians and cluster algebras. Proc. London Math. Soc. (3) 92 (2006), no. 2, 345–380.
 - LS19 Kyungyong Lee and Ralf Schiffler. Cluster algebras and Jones polynomials. Selecta Math. (N.S.) 25 4 Paper No. 58, 41 (2019)