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Overview

@ Cluster algebras in Mathematics

@ History

© Total positivity

@ Quivers, seeds, mutation and cluster algebras

© Some applications
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History

@ Cluster algebras were first introduced in 2001 by Sergei Fomin and
Andrei Zelevinsky.

@ They had observed a mathmatical structure (cluster structure) on
various objects related to the study of totally positive matrices,
quantum groups and Kashiwara/Lusztig's canonical basis.

@ Their work gained a lot of attention, first in representation theory, but
quickly grew beyond its origins.

@ Today Cluster algebras have their own MSC classifier 13F60, there are
690 papers on Mathscinet with this MSC classification and 1,645 on
the arxiv.

@ Since 2003 at least 139 international conferences have been organized
on this topic
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Total Positivity

Definition
A matrix M € R"*" is totally positive if all its minors (i.e. determinantes
of sub-squarematrices) are positive real numbers.

Example

a b
Take M = <c d
A =ad — cd € Rag.
Observe that d = (A + cd). Hence, it suffices to verify that
a,b,c, A € Ryg. The set {a, b, c, A} is a positivity test.

). Then M is totally positive if and only if a, b, ¢, d and

Question: How can we efficiently test for total positivity?
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Totally positive Grassmannian Gry(C")<

Grp(C") :={V Cc C" | dim V = 2} and its elements can be represented by

Vi Vo ... Vn:| E(C2><n

matrices: for V = (v, w) define My = [w " "
1 2 .. n

(unique up to rescaling of the rows).
Definition

For i,j € {1,2,...,n} with i < j define for V € Gry(C") with My, as
above

(V) — E
pij(V) = det |:Wi Wj] .

The totally positive Grassmannian Grp(C™)sq consist of those points
V € Gry(C") for which p;j(V) € Rxq for all i, ;.

Question: There are (3) Pliicker coordinates. How many do we have to
test to know that a given point lies in Gra(C")so?
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Ptolemy and Pliicker relations

Pliicker coordinates are not independent.
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Ptolemy and Pliicker relations

Pliicker coordinates are not independent. One verifies that for
i<j<k<le{l,...,n}: pipj = piiPki + PiIPjk-
Can vizualize the Pliicker relation:

Pjk

Pjk
i k PikPji = PijPki + PilPjk i k
Pij | Pik Pkl < > Pij Pjl | Pkl
i |

i |
Pil

— compare to the Ptolemy relation: AC - BD = AB - CD + BC - AD

N
=

B
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TP tests for Grp(C")

efficient TP } 1-1 {triangulations}
— .
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TP tests for Gry(C")
efficient TP =1 triangulations
tests for Gra(C") of an n-gon |~

— it suffices to check a set of 2(n — 2) +1 = dim Grp(C") + 1
independent Pliicker coordinates for positivity.

Consequence: {
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TP tests for Gry(C")
efficient TP =1 triangulations
tests for Gra(C") of an n-gon |~

— it suffices to check a set of 2(n — 2) +1 = dim Grp(C") + 1
independent Pliicker coordinates for positivity.

Consequence: {

1

P12 P15
2 p 5
P23 Pas
/ 5 \ \

P34

2@5 2@5
3 4 3 4

\2@5 2@/
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Quivers and mutation

A quiver Q is a directed graph, consisting of a finite set of vertices and
arrows between them.

Technical assumption: @ does not have any loops or 2-cycles.

We split the vertex set into mutable vertices {1,...,n} and frozen vertices
{n+1,....m} eg 1=22—3.

Definition (Quiver mutation)

Given a quiver @ and a mutable vertex k, the mutation in direction k
1k(Q) is a quiver obtained from Q in three steps:

O for every path i — k — j add an arrow i — J;

@ invert every arrow incident to k;

© remove a maximal set of 2-cycles.

— Quiver mutation is an involution: pk(pk(Q)) = Q.
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Example: quiver mutation in Keller's mutation app
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lteration of mutations: the n-regular tree




Seeds and mutation

A seed s is a pair (x, @), where x = (X1,. .., Xn, Xnt1y- -y Xntm) IS @
collection of variables called a cluster and Q a quiver with n mutable and
m frozen vertices.

Definition (Seed mutation)

Given a seed s = (x, Q) and a mutable vertex k of Q, the mutation in
direction k ux(s) is the pair (uk(x), pik(Q)), where
pr(x) = x\ {xx} U {x;} and

o HerQXi + HkHJGij
k «-— .

Xk

— Seed mutation is an involution: pg(pk(s)) = s.
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Example: seed mutation

X1 — X2

Cluster Algebras Lara Bossinger



Example: seed mutation

X1 — X2

e

Cluster Algebras Lara Bossinger



Example: seed mutation
X1 — X2

'

1+x
B — X2

Cluster Algebras Lara Bossinger



Example: seed mutation
X1 — X2

'

1+x
B — X2

2

Cluster Algebras Lara Bossinger



Example: seed mutation

X1 — X2
4
1+x
B — X2

2

14+x 1+x14+x
X1 - X1X2

Cluster Algebras Lara Bossinger



Example: seed mutation

X1 — X2
4
1+x
B — X2

2

14+x 1+x14+x
X1 - X1X2

N

Cluster Algebras Lara Bossinger



Example: seed mutation

X1 — X2
4
1+x
B — X2

2

14+x 1+x14+x
X1 - X1X2

N

(1+ 1+X1-|—X2) - 1+x
X1X2 X1

Cluster Algebras Lara Bossinger



Example: seed mutation

X1 — X2
4
1+x
B — X2

2

14+x 1+x14+x
X1 - X1X2

N

cluster magic!
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Example: seed mutation
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Example: seed mutation

X1 — X2
/ \g
1+x
BN — X2 X2 < X1
2 1
14+x 1+x14+x 14+x
X1 - X1X2 X2 - Xl

N A
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Cluster algebra

Let F = C(x1,...,Xn+m) be the field of rational functions in the variables
XL,y Xngm-
If s = (x,Q) is a seed with x = (x1,...,X,+m) and let s’ = (x', Q') be a
seed obtained from s by a sequence of mutations, then the cluster
X' = (X{,. oy Xy Xp 10 - s Xpy ) Satisfies

C(XLy e s Xpyy Xy s+« o s Xpgem) = F-
Definition

The cluster algebra defined by the initial quiver @ is the F-subalgebra

A¢ = (Uw.e)~ @) X) € F-

Theorem (Fomin—Zelevinsky 2001)
The cluster algebra Agq only depends on the mutation class of Q.
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Example: cluster algebra

X1 — X2

1
1+x
Y <— X2

2

14+x 1+x1+x

X1 X1X2

N

14+x1
X2

"

X2 < X1

ﬂ%x
X2 1

A

14x1+x
X1X2

_ 1+x 14+x1+x
AQ - <X17X27 X1 7 x1xo

Cluster Algebras

x2

R 1+X1> C (C(Xl,Xg).
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Structure Theorems

Theorem (Fomin—Zelevinsky 2001)

All cluster variables are Laurent polynomials in the cluster variables of the
initial seed with integer coefficients. More precisely, they are contained in

2E +
Z[Xl yoo s Xn s Xntly - - ,Xn+m]-

Positivity Conjecture (Fomin—Zelevinsky 2001)

All cluster variables are contained in N[xli, ey X Xna 1y ey Xnam)

Theorem (Gross—Hacking—Keel-Kontsevich 2014)

The positivity conjecture is true.

v

Gross—Hacking—Keel-Kontsevich view cluster algebras as rings of functions
on certain log Calabi-Yau varieties (cluster varieties) and use tools from
birational geometry and mirror symmetry.
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Finite type classification

Theorem (Fomin—Zelevinsky 2003)
A cluster algebra Agq is of finite type (i.e. the set of its cluster variables is
finite) if and only if (the mutable part of) Q is mutation equivalent to an
orientation of a type ADE Dynkin diagram:

Ap . . a0 .

Dy : . . oco . / ’

\ .

Es : .

E7: .

Eg : .
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Grassmannian Grp(C") and Ptolemy
Recall the (g) Pliicker coordinates pj; for Gra(C") and the correspondence:
efficient TP 1-1 [triangulations
tests for Gra(C") of an n-gon [~
We can pass from a triangulation T to a quiver Q1 as follows:
© mutable vertices of Q7 > diagonals;

@ frozen vertices of Q7 <> boundary edges;

© add arrows inside every triangle:

@ forget arrows between frozen vertices.
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Example: Gry(C>)
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Example: Gry(C>)

T s oo Qr
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Example: Gry(C>)

e
e

fllp13 T) @5 ____}

Qtlipys(T)
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Example: Grp(C®)

T o s - Qr

ﬂip13l J/M13

flip13(T) -2 5o---- Qflipy(T) = H13(QT)
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Example: cluster algebra for Gro(C")
We have a bijection

triangulations . | 1-1 [seeds of the cluster
, flipy

mutation ; .
of an n-gon algebra Ag, '’ }

In particular: {seeds} & {efficient TP tests}.

The corresponding cluster algebra is

Ag; = Clpjj : 1 <i < j < n]/Pliicker relations.

Remark

Similar results hold for Gry(C"), GL,, SL,, (partial) flag varieties,
Schubert varieties, double Bruhat cells, ...

Remark

The cluster structure can be used to get (for example) Landau—Ginzburg
models, toric degenerations and Newton—Okounkov bodies.
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More cluster structures

@ Marked bordered surfaces:

» fix a triangulation — coordinates for the Teichmiiller space,
> triangulation <> quiver,
» flip of triangulation <> quiver mutation <> Ptolemy relation.

@ 2-bridge knots and links:

» 2-bridge link <> continued fraction <> snake graph <> cluster variable
of some cluster algebra,

> Jones polynomial = specialization of the Laurent polynomial of the
cluster variable.

© Markov equation: X12 + x22 + x32 = 3x1x2X3,
» solutions are called Markov triples,

> take Q = ) and (x1, x2, x3) = (1,1,1),
AN

» (X, Q) ~ (x, Q) then x" = (x, x5, x}) is a Markov triple.
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