Gröbner theory of Grassmannian cluster algebras

Lara Bossinger (jt. Fatemeh Mohammadi and Alfredo Nájera Chávez)

Universidad Nacional Autónoma de México, IM-Oaxaca

Lie Algebras and Applications, 25 January 2022

Motivation

X a projective variety, a toric degeneration of X is a flat morphism $\pi: \mathfrak{X} \rightarrow \mathbb{A}^{d}$ with generic fibre isomorphic to X and special fibre $\pi^{-1}(0)$ a toric variety.

Motivation

X a projective variety, a toric degeneration of X is a flat morphism $\pi: \mathfrak{X} \rightarrow \mathbb{A}^{d}$ with generic fibre isomorphic to X and special fibre $\pi^{-1}(0)$ a toric variety.
$\underline{\text { Example: }} \mathfrak{X}=V\left(x y-x^{2}+t y^{2}\right) \subset \mathbb{P}_{x, y}^{1} \times \mathbb{A}_{t}^{1}$

Motivation

X a projective variety, a toric degeneration of X is a flat morphism $\pi: \mathfrak{X} \rightarrow \mathbb{A}^{d}$ with generic fibre isomorphic to X and special fibre $\pi^{-1}(0)$ a toric variety.

Example: $\mathfrak{X}=V\left(x y-x^{2}+t y^{2}\right) \subset \mathbb{P}_{x, y}^{1} \times \mathbb{A}_{t}^{1}$
Question: How are different toric degenerations of X related?

Toric degenerations from valuations

$A=\bigoplus_{i \geq 0} A_{i}$ graded algebra and domain, $\mathfrak{v}: A \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ a valuation with image $S(A, \mathfrak{v})$ a finitely generated semigroup of rank $d:=\operatorname{dim}_{\text {Krull }} A$.

Toric degenerations from valuations

$A=\bigoplus_{i \geq 0} A_{i}$ graded algebra and domain, $\mathfrak{v}: A \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ a valuation with image $S(A, \mathfrak{v})$ a finitely generated semigroup of rank $d:=\operatorname{dim}_{\text {Krull }} A$.
[Anderson] Exists a toric degeneration of $\operatorname{Proj}(A)$ with special fibre a projective toric variety whose normalization is $\operatorname{TV}(\Delta(A, \mathfrak{v}))$, where

$$
\Delta(A, \mathfrak{v}):=\overline{\operatorname{conv}\left(\bigcup_{i \geq 1}\left\{\frac{\mathfrak{v}(f)}{i}: f \in A_{i}\right\}\right)} \quad \text { Newton-Okounkov polytope }
$$

Toric degenerations from valuations

$A=\bigoplus_{i \geq 0} A_{i}$ graded algebra and domain, $\mathfrak{v}: A \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ a valuation with image $S(A, \mathfrak{v})$ a finitely generated semigroup of rank $d:=\operatorname{dim}_{\text {Krull }} A$.
[Anderson] Exists a toric degeneration of $\operatorname{Proj}(A)$ with special fibre a projective toric variety whose normalization is $\operatorname{TV}(\Delta(A, \mathfrak{v}))$, where

$$
\Delta(A, \mathfrak{v}):=\overline{\operatorname{conv}\left(\bigcup_{i \geq 1}\left\{\frac{\mathfrak{v}(f)}{i}: f \in A_{i}\right\}\right)} \quad \text { Newton-Okounkov polytope }
$$

A set $\left\{b_{1}, \ldots, b_{n}\right\} \subset A$ of algebra generators is a Khovanskii basis for \mathfrak{v} if $\mathfrak{v}\left(b_{1}\right), \ldots, \mathfrak{v}\left(b_{n}\right)$ generate image (\mathfrak{v}).

Gröbner toric degenerations

Reminder: $f=x^{2}+y \in \mathbb{C}[x, y]$ and $w=(1,1)$, then $i_{w}(f)=y$ and for $J \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ ideal $i n_{w}(J):=\left(i n_{w}(f): f \in J\right)$

Gröbner toric degenerations

Reminder: $f=x^{2}+y \in \mathbb{C}[x, y]$ and $w=(1,1)$, then $i_{w}(f)=y$ and for $J \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ ideal $i n_{w}(J):=\left(i n_{w}(f): f \in J\right)$

$$
\operatorname{Trop}(J):=\left\{w \in \mathbb{R}^{n}: i n_{w}(J) \not \supset \text { monomials }\right\}
$$

Gröbner toric degenerations

Reminder: $f=x^{2}+y \in \mathbb{C}[x, y]$ and $w=(1,1)$, then $i_{w}(f)=y$ and for $J \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ ideal $i n_{w}(J):=\left(i n_{w}(f): f \in J\right)$

$$
\operatorname{Trop}(J):=\left\{w \in \mathbb{R}^{n}: i n_{w}(J) \not \supset \text { monomials }\right\}
$$

Let $A:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / J$ with J homogeneous prime ideal and $w \in \operatorname{Trop}(J)$ such that $i n_{w}(J)$ is binomial and prime (i.e. toric).

Gröbner toric degenerations

Reminder: $f=x^{2}+y \in \mathbb{C}[x, y]$ and $w=(1,1)$, then $i_{w}(f)=y$ and for $J \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ ideal $i n_{w}(J):=\left(i n_{w}(f): f \in J\right)$

$$
\operatorname{Trop}(J):=\left\{w \in \mathbb{R}^{n}: i_{w}(J) \not \ngtr \text { monomials }\right\}
$$

Let $A:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / J$ with J homogeneous prime ideal and $w \in \operatorname{Trop}(J)$ such that $i n_{w}(J)$ is binomial and prime (i.e. toric).

Then exists a flat family with generic fibre $\operatorname{Proj}(A)$ and special fibre the toric variety $\operatorname{Proj}\left(\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / i n_{w}(J)\right)$, called a Gröbner toric degeneration.

Motivating result

Theorem (Kaveh-Manon, B.)

Let A be a positively graded algebra and domain, $\mathfrak{v}: A \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ full rank valuation with finitely generated value semigroup.

Motivating result

Theorem (Kaveh-Manon, B.)

Let A be a positively graded algebra and domain, $\mathfrak{v}: A \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ full rank valuation with finitely generated value semigroup. Then there exists an isomorphism of graded algebras

$$
\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / J \cong A
$$

such that the toric variety of the Newton-Okounkov polytope is isomorphic to the toric variety of a Gröbner toric degeneration for some $w \in \operatorname{Trop}(J)$:

$$
T V(\Delta(A, \mathfrak{v})) \cong \operatorname{Proj}\left(\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / i n_{w}(J)\right)^{n o r}
$$

Motivating result

Idea of Proof: Choose a finite Khovanskii basis $b_{1}, \ldots, b_{n} \in A$. Take

$$
\pi: \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \rightarrow A, \quad x_{i} \mapsto b_{i}
$$

and $J:=\operatorname{ker}(\pi)$.
${ }^{1} W_{\mathfrak{v}}$ is obtained from $M_{\mathfrak{v}}:=\left(\mathfrak{v}\left(b_{i}\right)\right)_{i \in[n]} \in \mathbb{Z}^{d \times n}$ by an order preserving projection $e: \mathbb{Z}^{d} \rightarrow \mathbb{Z}$, i.e. $w_{\mathfrak{v}}:=e\left(M_{\mathfrak{v}}\right)$ and $\mathrm{in}_{w_{\mathfrak{v}}}(J)=\operatorname{in}_{M_{\mathfrak{v}}}(J)$.

Motivating result

Idea of Proof: Choose a finite Khovanskii basis $b_{1}, \ldots, b_{n} \in A$. Take

$$
\pi: \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \rightarrow A, \quad x_{i} \mapsto b_{i}
$$

and $J:=\operatorname{ker}(\pi)$. Then algorithmically we construct $w_{\mathfrak{v}} \in \operatorname{Trop}(J):^{1}$ $i n_{w_{\mathfrak{v}}}(J)$ is toric $\Leftrightarrow S(A, \mathfrak{v})$ is finitely generated.

Moreover, $\mathbb{C}[S(A, \mathfrak{v})] \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / i n_{w_{\mathfrak{v}}}(J)$.

[^0]
Motivating result

Idea of Proof: Choose a finite Khovanskii basis $b_{1}, \ldots, b_{n} \in A$. Take

$$
\pi: \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \rightarrow A, \quad x_{i} \mapsto b_{i}
$$

and $J:=\operatorname{ker}(\pi)$. Then algorithmically we construct $w_{\mathfrak{v}} \in \operatorname{Trop}(J):^{1}$

$$
i n_{w_{\mathfrak{v}}}(J) \text { is toric } \Leftrightarrow S(A, \mathfrak{v}) \text { is finitely generated. }
$$

Moreover, $\mathbb{C}[S(A, \mathfrak{v})] \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / i n_{w_{\mathfrak{v}}}(J)$.
Question: Given a family of full rank valuations with finitely generated value semigroups, can we find one ideal J that works for all valuations?

[^1]
Motivating result

Idea of Proof: Choose a finite Khovanskii basis $b_{1}, \ldots, b_{n} \in A$. Take

$$
\pi: \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] \rightarrow A, \quad x_{i} \mapsto b_{i}
$$

and $J:=\operatorname{ker}(\pi)$. Then algorithmically we construct $w_{\mathfrak{v}} \in \operatorname{Trop}(J):^{1}$

$$
i n_{w_{\mathfrak{v}}}(J) \text { is toric } \Leftrightarrow S(A, \mathfrak{v}) \text { is finitely generated. }
$$

Moreover, $\mathbb{C}[S(A, \mathfrak{v})] \cong \mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / i n_{w_{\mathfrak{v}}}(J)$.
Question: Given a family of full rank valuations with finitely generated value semigroups, can we find one ideal J that works for all valuations?

Recall: \mathfrak{v} defines a filtration on $A: F_{m ; \mathfrak{v}}:=\{f \in A: \mathfrak{v}(f) \leq m\}$ for all $m \in \mathbb{Z}^{d}$ and \leq a fixed total order. A vector space basis \mathbb{B} of A is adapted to \mathfrak{v} if $\mathbb{B} \cap F_{m ; \mathfrak{v}}$ is a vector space basis for each $F_{m ; \mathfrak{v}}$.

[^2]
Example: Grassmannian cluster algebra

Let $A_{k, n}$ be the homogeneous coordinate ring of $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$ under its Plücker embedding and $N:=k(n-k)+1$.

Example: Grassmannian cluster algebra

Let $A_{k, n}$ be the homogeneous coordinate ring of $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$ under its Plücker embedding and $N:=k(n-k)+1$.
[Scott] $A_{k, n}$ is a cluster algebra, i.e. recursively generated by
(1) seeds: maximal sets of algebraically independent algebra generators, its elements are called cluster variables (c.v. 's);

Example: Grassmannian cluster algebra

Let $A_{k, n}$ be the homogeneous coordinate ring of $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$ under its Plücker embedding and $N:=k(n-k)+1$.
[Scott] $A_{k, n}$ is a cluster algebra, i.e. recursively generated by
(1) seeds: maximal sets of algebraically independent algebra generators, its elements are called cluster variables (c.v. 's);
(2) mutation: an operation to create a new seed from a given one by replacing one element.

Example: Grassmannian cluster algebra

Let $A_{k, n}$ be the homogeneous coordinate ring of $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$ under its Plücker embedding and $N:=k(n-k)+1$.
[Scott] $A_{k, n}$ is a cluster algebra, i.e. recursively generated by
(1) seeds: maximal sets of algebraically independent algebra generators, its elements are called cluster variables (c.v. 's);
(2) mutation: an operation to create a new seed from a given one by replacing one element.

Example: $A_{2,4}=\mathbb{C}\left[p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}\right] /\left(p_{13} p_{24}=p_{12} p_{34}+p_{14} p_{23}\right)$

Example: Grassmannian cluster algebra

Let $A_{k, n}$ be the homogeneous coordinate ring of $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$ under its Plücker embedding and $N:=k(n-k)+1$.
[Scott] $A_{k, n}$ is a cluster algebra, i.e. recursively generated by
(1) seeds: maximal sets of algebraically independent algebra generators, its elements are called cluster variables (c.v. 's);
(2) mutation: an operation to create a new seed from a given one by replacing one element.

Example: $A_{2,4}=\mathbb{C}\left[p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}\right] /\left(p_{13} p_{24}=p_{12} p_{34}+p_{14} p_{23}\right)$

$$
\begin{gathered}
s=\left\{p_{12}, p_{23}, p_{34}, p_{14}, p_{13}\right\} \\
s_{\mathrm{mut}}=\left\{p_{13}\right\}
\end{gathered}
$$

Example: Grassmannian cluster algebra

Let $A_{k, n}$ be the homogeneous coordinate ring of $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$ under its Plücker embedding and $N:=k(n-k)+1$.
[Scott] $A_{k, n}$ is a cluster algebra, i.e. recursively generated by
(1) seeds: maximal sets of algebraically independent algebra generators, its elements are called cluster variables (c.v. 's);
(2) mutation: an operation to create a new seed from a given one by replacing one element.

Example: $A_{2,4}=\mathbb{C}\left[p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}\right] /\left(p_{13} p_{24}=p_{12} p_{34}+p_{14} p_{23}\right)$

$$
\begin{gathered}
s=\left\{p_{12}, p_{23}, p_{34}, p_{14}, p_{13}\right\} \\
s_{\mathrm{mut}}=\left\{p_{13}\right\}
\end{gathered}
$$

Example: Grassmannian cluster algebra

Let $A_{k, n}$ be the homogeneous coordinate ring of $\operatorname{Gr}\left(k, \mathbb{C}^{n}\right)$ under its Plücker embedding and $N:=k(n-k)+1$.
[Scott] $A_{k, n}$ is a cluster algebra, i.e. recursively generated by
(1) seeds: maximal sets of algebraically independent algebra generators, its elements are called cluster variables (c.v. 's);
(2) mutation: an operation to create a new seed from a given one by replacing one element.

Example: $A_{2,4}=\mathbb{C}\left[p_{12}, p_{13}, p_{14}, p_{23}, p_{24}, p_{34}\right] /\left(p_{13} p_{24}=p_{12} p_{34}+p_{14} p_{23}\right)$

$$
s=\left\{p_{12}, p_{23}, p_{34}, p_{14}, p_{13}\right\}
$$

$$
s^{\prime}=\left\{p_{12}, p_{23}, p_{34}, p_{14}, p_{24}\right\}
$$

$$
s_{\text {mut }}=\left\{p_{13}\right\}
$$

$$
s_{\text {mut }}^{\prime}=\left\{p_{24}\right\}
$$

Application: Toric degenerations via cluster algebras

Fix a seed s, then A can be endowed with principal coefficients at s
${ }^{2}$ Due to Gross-Hacking-Keel-Kontsevich.

Application: Toric degenerations via cluster algebras

Fix a seed s, then A can be endowed with principal coefficients at s

$$
A_{s}^{\text {prin }} \subset \mathbb{C}\left[t_{1}, \ldots, t_{n}\right]\left(x_{1}, \ldots, x_{n}\right) .
$$

${ }^{2}$ Due to Gross-Hacking-Keel-Kontsevich.

Application: Toric degenerations via cluster algebras

Fix a seed s, then A can be endowed with principal coefficients at s

$$
A_{s}^{\text {prin }} \subset \mathbb{C}\left[t_{1}, \ldots, t_{n}\right]\left(x_{1}, \ldots, x_{n}\right)
$$

Under some technical assumptions:
(1) $A_{s}^{\text {prin }}$ has a $\mathbb{C}\left[t_{1}, \ldots, t_{n}\right]$-basis called ϑ-basis ${ }^{2}$, which is independent of s;
${ }^{2}$ Due to Gross-Hacking-Keel-Kontsevich.

Application: Toric degenerations via cluster algebras

Fix a seed s, then A can be endowed with principal coefficients at s

$$
A_{s}^{\text {prin }} \subset \mathbb{C}\left[t_{1}, \ldots, t_{n}\right]\left(x_{1}, \ldots, x_{n}\right)
$$

Under some technical assumptions:
(1) $A_{s}^{\text {prin }}$ has a $\mathbb{C}\left[t_{1}, \ldots, t_{n}\right]$-basis called ϑ-basis ${ }^{2}$, which is independent of s;
(2) if A is the homogeneous coordinate ring of a projective variety X then $A_{s}^{\text {prin }}$ defines a toric degeneration of X to $X_{s, 0}$.

[^3]
Application: Toric degenerations via cluster algebras

Fix a seed s, then A can be endowed with principal coefficients at s

$$
A_{s}^{\text {prin }} \subset \mathbb{C}\left[t_{1}, \ldots, t_{n}\right]\left(x_{1}, \ldots, x_{n}\right)
$$

Under some technical assumptions:
(1) $A_{s}^{\text {prin }}$ has a $\mathbb{C}\left[t_{1}, \ldots, t_{n}\right]$-basis called ϑ-basis ${ }^{2}$, which is independent of s;
(2) if A is the homogeneous coordinate ring of a projective variety X then $A_{s}^{\text {prin }}$ defines a toric degeneration of X to $X_{s, 0}$.
\rightsquigarrow All these degenerations share the ϑ-basis, i.e. $A_{s}^{\text {prin }}=\bigoplus_{\vartheta \in \Theta} \vartheta$ for all s.

[^4]
Example: cluster algebra

$$
\begin{aligned}
& \frac{1+x_{2}}{x_{1}} \rightarrow \frac{1+x_{2}}{x_{1}} \leftarrow x_{2}^{x_{1} x_{2}} \\
& A_{x_{1} \rightarrow x_{2}}=\left\langle x_{1}, x_{2}, \frac{1+x_{2}}{x_{1}}, \frac{1+x_{1}+x_{2}}{x_{1} x_{2}}, \frac{1+x_{1}}{x_{2}}\right\rangle \subset \mathbb{C}\left(x_{1}, x_{2}\right) .
\end{aligned}
$$

Example: principal coefficients

Application: Universal coefficients for cluster algebras

Now assume A has finitely many seeds.

Application: Universal coefficients for cluster algebras

Now assume A has finitely many seeds.
Algebraically, we can endow A with universal coefficients:

Application: Universal coefficients for cluster algebras

Now assume A has finitely many seeds.
Algebraically, we can endow A with universal coefficients:

$$
A^{\text {univ }} \subset \mathbb{C}\left[t_{1}, \ldots, t_{N}\right]\left(x_{1}, \ldots, x_{n}\right)
$$

where N is the number of all cluster variables.

Application: Universal coefficients for cluster algebras

Now assume A has finitely many seeds.
Algebraically, we can endow A with universal coefficients:

$$
A^{\text {univ }} \subset \mathbb{C}\left[t_{1}, \ldots, t_{N}\right]\left(x_{1}, \ldots, x_{n}\right)
$$

where N is the number of all cluster variables. Moreover, we have a unique specialization map for every seed s :

Application: Universal coefficients for cluster algebras

Now assume A has finitely many seeds.
Algebraically, we can endow A with universal coefficients:

$$
A^{\text {univ }} \subset \mathbb{C}\left[t_{1}, \ldots, t_{N}\right]\left(x_{1}, \ldots, x_{n}\right)
$$

where N is the number of all cluster variables. Moreover, we have a unique specialization map for every seed s :

$$
A^{\text {univ }} \rightarrow A_{s}^{\text {prin }}
$$

Application: Universal coefficients for cluster algebras

Now assume A has finitely many seeds.
Algebraically, we can endow A with universal coefficients:

$$
A^{\text {univ }} \subset \mathbb{C}\left[t_{1}, \ldots, t_{N}\right]\left(x_{1}, \ldots, x_{n}\right)
$$

where N is the number of all cluster variables. Moreover, we have a unique specialization map for every seed s :

$$
A^{\text {univ }} \rightarrow A_{s}^{\text {prin }}
$$

$\oplus A^{\text {univ }}$ knows all toric degenerations $X_{s, 0}$,

Application: Universal coefficients for cluster algebras

Now assume A has finitely many seeds.
Algebraically, we can endow A with universal coefficients:

$$
A^{\text {univ }} \subset \mathbb{C}\left[t_{1}, \ldots, t_{N}\right]\left(x_{1}, \ldots, x_{n}\right)
$$

where N is the number of all cluster variables. Moreover, we have a unique specialization map for every seed s :

$$
A^{\text {univ }} \rightarrow A_{s}^{\text {prin }}
$$

$\oplus A^{\text {univ }}$ knows all toric degenerations $X_{s, 0}$,
$\ominus A^{\text {univ }}$ is defined only recursively.

Example: Grassmannian cluster algebra

For all seeds s of $A_{k, n}$ exists a full rank valuation $g_{s}: A_{k, n} \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ and a basis called ϑ-basis adapted to all of them simultaneously. The cluster algebra with principal coefficients at $s A_{k, n}^{\text {prin,s }}$ is a flat $\mathbb{C}\left[t_{x}: x \in s_{\text {mut }}\right]$-algebra defining the toric degeneration.

Example: Grassmannian cluster algebra

For all seeds s of $A_{k, n}$ exists a full rank valuation $g_{s}: A_{k, n} \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ and a basis called ϑ-basis adapted to all of them simultaneously. The cluster algebra with principal coefficients at $s A_{k, n}^{\text {prin,s }}$ is a flat $\mathbb{C}\left[t_{x}: x \in s_{\text {mut }}\right]$-algebra defining the toric degeneration.
[Fomin-Zelevinsky]/[Reading]: \exists flat $\mathbb{C}\left[t_{x}: x\right.$ m.c.v.]-algebra $A_{k, n}^{\text {univ }}$ and projections $p r_{s}: \mathbb{C}\left[t_{x}: x\right.$ m.c.v $] \rightarrow \mathbb{C}\left[t_{x}: x \in s_{\text {mut }}\right]$ for all seeds s that extend to

$$
p r_{s}: A_{k, n}^{\text {univ }} \rightarrow A_{k, n}^{\text {prin }, s}
$$

called coefficient specialization.

Example: Grassmannian cluster algebra

For all seeds s of $A_{k, n}$ exists a full rank valuation $g_{s}: A_{k, n} \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ and a basis called ϑ-basis adapted to all of them simultaneously. The cluster algebra with principal coefficients at $s A_{k, n}^{\text {prin,s }}$ is a flat $\mathbb{C}\left[t_{x}: x \in s_{\text {mut }}\right]$-algebra defining the toric degeneration.
[Fomin-Zelevinsky]/[Reading]: \exists flat $\mathbb{C}\left[t_{x}: x\right.$ m.c.v.]-algebra $A_{k, n}^{\text {univ }}$ and projections $p r_{s}: \mathbb{C}\left[t_{x}: x\right.$ m.c.v $] \rightarrow \mathbb{C}\left[t_{x}: x \in s_{\text {mut }}\right]$ for all seeds s that extend to

$$
p r_{s}: A_{k, n}^{\text {univ }} \rightarrow A_{k, n}^{\text {prin }, s}
$$

called coefficient specialization.
Example: $A_{2,4}^{\text {prin,s }}=\mathbb{C}\left[t_{13}\right]\left[p_{12}, p_{23}, p_{34}, p_{14}, p_{13}, p_{24}\right] /\left(p_{13} p_{24}=t_{13} p_{12} p_{34}+p_{14} p_{23}\right)$, $A_{2,4}^{\text {univ }}=\mathbb{C}\left[t_{13}, t_{24}\right]\left[p_{12}, p_{23}, p_{34}, p_{14}, p_{13}, p_{24}\right] /\left(p_{13} p_{24}=t_{13} p_{12} p_{34}+t_{24} p_{14} p_{23}\right)$.

Example: Grassmannian cluster algebra

For all seeds s of $A_{k, n}$ exists a full rank valuation $g_{s}: A_{k, n} \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ and a basis called ϑ-basis adapted to all of them simultaneously. The cluster algebra with principal coefficients at $s A_{k, n}^{\text {prin,s }}$ is a flat $\mathbb{C}\left[t_{x}: x \in s_{\text {mut }}\right]$-algebra defining the toric degeneration.
[Fomin-Zelevinsky]/[Reading]: \exists flat $\mathbb{C}\left[t_{x}: x\right.$ m.c.v.]-algebra $A_{k, n}^{\text {univ }}$ and projections pr $: \mathbb{C}\left[t_{x}: x\right.$ m.c.v $] \rightarrow \mathbb{C}\left[t_{x}: x \in s_{\text {mut }}\right]$ for all seeds s that extend to

$$
p r_{s}: A_{k, n}^{\text {univ }} \rightarrow A_{k, n}^{\text {prin }, s}
$$

called coefficient specialization.
Example: $\boldsymbol{A}_{2,4}^{\text {prin,s }}=\mathbb{C}\left[t_{13}\right]\left[p_{12}, p_{23}, p_{34}, p_{14}, p_{13}, p_{24}\right] /\left(p_{13} p_{24}=t_{13} p_{12} p_{34}+p_{14} p_{23}\right)$, $A_{2,4}^{\text {univ }}=\mathbb{C}\left[t_{13}, t_{24}\right]\left[p_{12}, p_{23}, p_{34}, p_{14}, p_{13}, p_{24}\right] /\left(p_{13} p_{24}=t_{13} p_{12} p_{34}+t_{24} p_{14} p_{23}\right)$.

For each seed s we can apply the Motivating Theorem and get an ideal J_{s} and a Gröbner toric degeneration of J_{s} corresponding to $A_{k, n}^{\text {prin,s }}$.

Example: Grassmannian cluster algebra

For all seeds s of $A_{k, n}$ exists a full rank valuation $g_{s}: A_{k, n} \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ and a basis called ϑ-basis adapted to all of them simultaneously. The cluster algebra with principal coefficients at $s A_{k, n}^{\text {prin,s }}$ is a flat $\mathbb{C}\left[t_{x}: x \in s_{\text {mut }}\right]$-algebra defining the toric degeneration.
[Fomin-Zelevinsky]/[Reading]: \exists flat $\mathbb{C}\left[t_{x}: x\right.$ m.c.v.]-algebra $A_{k, n}^{\text {univ }}$ and projections pr $: \mathbb{C}\left[t_{x}: x\right.$ m.c.v $] \rightarrow \mathbb{C}\left[t_{x}: x \in s_{\text {mut }}\right]$ for all seeds s that extend to

$$
p r_{s}: A_{k, n}^{\text {univ }} \rightarrow A_{k, n}^{\text {prin }, s}
$$

called coefficient specialization.
Example: $A_{2,4}^{\text {prin,s }}=\mathbb{C}\left[t_{13}\right]\left[p_{12}, p_{23}, p_{34}, p_{14}, p_{13}, p_{24}\right] /\left(p_{13} p_{24}=t_{13} p_{12} p_{34}+p_{14} p_{23}\right)$, $A_{2,4}^{\text {univ }}=\mathbb{C}\left[t_{13}, t_{24}\right]\left[p_{12}, p_{23}, p_{34}, p_{14}, p_{13}, p_{24}\right] /\left(p_{13} p_{24}=t_{13} p_{12} p_{34}+t_{24} p_{14} p_{23}\right)$.

For each seed s we can apply the Motivating Theorem and get an ideal J_{s} and a Gröbner toric degeneration of J_{s} corresponding to $A_{k, n}^{\text {prin,s }}$.
Question: How are different J_{s} related and what is $A_{k, n}^{\text {univ }}$ in this context?

Gröbner fan and standard monomial bases

Definition/Proposition (Mora-Robbiano)

For a homogeneous ideal $J \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ its Gröbner fan $G F(J)$ is \mathbb{R}^{n} with fan structure defined by

$$
v, w \in C^{\circ} \Leftrightarrow \operatorname{in}_{v}(J)=\operatorname{in}_{w}(J)
$$

Gröbner fan and standard monomial bases

Definition/Proposition (Mora-Robbiano)

For a homogeneous ideal $J \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ its Gröbner fan $G F(J)$ is \mathbb{R}^{n} with fan structure defined by

$$
v, w \in C^{\circ} \Leftrightarrow \operatorname{in}_{v}(J)=\operatorname{in}_{w}(J) .
$$

Notation: $\operatorname{in}_{C}(J):=\operatorname{in}_{w}(J), w \in C^{\circ}$ and $A_{C}:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / i n_{w}(J)$

Gröbner fan and standard monomial bases

Definition/Proposition (Mora-Robbiano)

For a homogeneous ideal $J \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ its Gröbner fan $G F(J)$ is \mathbb{R}^{n} with fan structure defined by

$$
v, w \in C^{\circ} \quad \Leftrightarrow \quad \operatorname{in}_{v}(J)=\operatorname{in}_{w}(J)
$$

Notation: $\operatorname{in}_{C}(J):=\operatorname{in}_{w}(J), w \in C^{\circ}$ and $A_{C}:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / i n_{w}(J)$
For $C \in G F(J)$ a maximal cone $\operatorname{in}_{C}(J)$ is generated by monomials. For every face $\tau \subseteq C$ we define

$$
\mathbb{B}_{C, \tau}:=\left\{\overline{\mathbf{x}}^{\alpha} \in A_{\tau} \mid \mathbf{x}^{\alpha} \notin \mathrm{in}_{C}(J)\right\} .
$$

Gröbner fan and standard monomial bases

Definition/Proposition (Mora-Robbiano)

For a homogeneous ideal $J \subset \mathbb{C}\left[x_{1}, \ldots, x_{n}\right]$ its Gröbner fan $G F(J)$ is \mathbb{R}^{n} with fan structure defined by

$$
v, w \in C^{\circ} \quad \Leftrightarrow \quad \operatorname{in}_{v}(J)=\operatorname{in}_{w}(J)
$$

Notation: $\operatorname{in}_{C}(J):=\operatorname{in}_{w}(J), w \in C^{\circ}$ and $A_{C}:=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / i n_{w}(J)$
For $C \in G F(J)$ a maximal cone $\operatorname{in}_{C}(J)$ is generated by monomials. For every face $\tau \subseteq C$ we define

$$
\mathbb{B}_{C, \tau}:=\left\{\overline{\mathbf{x}}^{\alpha} \in A_{\tau} \mid \mathbf{x}^{\alpha} \notin \operatorname{in}_{C}(J)\right\} .
$$

Then $\mathbb{B}_{C, \tau}$ is a vector space basis for A_{τ} called standard monomial basis.

Example

Take $J=\left(x_{1}^{2} x_{2}^{2}+x_{1}^{4}-x_{2} x_{3}^{3}\right) \subset \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$. Then $G F(J)$ is \mathbb{R}^{3} with the fan structure:

Example

Take $J=\left(x_{1}^{2} x_{2}^{2}+x_{1}^{4}-x_{2} x_{3}^{3}\right) \subset \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$. Then $G F(J)$ is \mathbb{R}^{3} with the fan structure:

Example

Take $J=\left(x_{1}^{2} x_{2}^{2}+x_{1}^{4}-x_{2} x_{3}^{3}\right) \subset \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$. Then $G F(J)$ is \mathbb{R}^{3} with the fan structure:

Example

Take $J=\left(x_{1}^{2} x_{2}^{2}+x_{1}^{4}-x_{2} x_{3}^{3}\right) \subset \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$. Then $G F(J)$ is \mathbb{R}^{3} with the fan structure:

Example

Take $J=\left(x_{1}^{2} x_{2}^{2}+x_{1}^{4}-x_{2} x_{3}^{3}\right) \subset \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$. Then $G F(J)$ is \mathbb{R}^{3} with the fan structure:

Example

Take $J=\left(x_{1}^{2} x_{2}^{2}+x_{1}^{4}-x_{2} x_{3}^{3}\right) \subset \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$. Then $G F(J)$ is \mathbb{R}^{3} with the fan structure:

Example

Take $J=\left(x_{1}^{2} x_{2}^{2}+x_{1}^{4}-x_{2} x_{3}^{3}\right) \subset \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$. Then $G F(J)$ is \mathbb{R}^{3} with the fan structure:

E.g. $\mathbb{B}_{\left\langle r_{1}, r_{2}\right\rangle}=\left\{\overline{\mathbf{x}}^{a}: x_{2} x_{3}^{3} \nmid \mathbf{x}^{a}\right\}$ gives a basis for $A, A_{r_{1}}, A_{r_{2}}$ and $A_{\left\langle r_{1}, r_{2}\right\rangle}$.

Family of ideals

Let $C \in G F(J)$ be a maximal cone and choose r_{1}, \ldots, r_{m} representatives of primitive ray generators of $\bar{C} \in \mathrm{GF}(J) / \mathcal{L}$. Let \mathbf{r} be the matrix with rows r_{1}, \ldots, r_{m}.

Family of ideals

Let $C \in G F(J)$ be a maximal cone and choose r_{1}, \ldots, r_{m} representatives of primitive ray generators of $\bar{C} \in \mathrm{GF}(J) / \mathcal{L}$. Let \mathbf{r} be the matrix with rows r_{1}, \ldots, r_{m}. Define for $f=\sum_{\alpha \in \mathbb{Z}_{\geq 0}^{n}} c_{\alpha} \mathbf{x}^{\alpha} \in J$

$$
\mu(f):=\left(\min _{c_{\alpha} \neq 0}\left\{r_{1} \cdot \alpha\right\}, \ldots, \min _{c_{\alpha} \neq 0}\left\{r_{m} \cdot \alpha\right\}\right) \in \mathbb{Z}^{m} .
$$

Family of ideals

Let $C \in G F(J)$ be a maximal cone and choose r_{1}, \ldots, r_{m} representatives of primitive ray generators of $\bar{C} \in \mathrm{GF}(J) / \mathcal{L}$. Let \mathbf{r} be the matrix with rows r_{1}, \ldots, r_{m}. Define for $f=\sum_{\alpha \in \mathbb{Z}_{\geq 0}^{n}} c_{\alpha} \mathbf{x}^{\alpha} \in J$

$$
\mu(f):=\left(\min _{c_{\alpha} \neq 0}\left\{r_{1} \cdot \alpha\right\}, \ldots, \min _{c_{\alpha} \neq 0}\left\{r_{m} \cdot \alpha\right\}\right) \in \mathbb{Z}^{m} .
$$

In $\mathbb{C}\left[t_{1}, \ldots, t_{m}\right]\left[x_{1}, \ldots, x_{n}\right]$ the lift of f is

$$
\tilde{f}:=f\left(\mathbf{t}^{r \cdot e_{1}} x_{1}, \ldots, \mathbf{r}^{r \cdot e_{n}} x_{n}\right) \mathbf{t}^{-\mu(f)}=\sum_{\alpha \in \mathbb{Z}_{\geq 0}^{n}} c_{\alpha} \mathbf{x}^{\alpha} \mathbf{t}^{\mathbf{r} \cdot \alpha-\mu(f)} .
$$

Family of ideals

Let $C \in G F(J)$ be a maximal cone and choose r_{1}, \ldots, r_{m} representatives of primitive ray generators of $\bar{C} \in \operatorname{GF}(J) / \mathcal{L}$. Let \mathbf{r} be the matrix with rows r_{1}, \ldots, r_{m}. Define for $f=\sum_{\alpha \in \mathbb{Z}_{\geq 0}^{n}} c_{\alpha} \mathbf{x}^{\alpha} \in J$

$$
\mu(f):=\left(\min _{c_{\alpha} \neq 0}\left\{r_{1} \cdot \alpha\right\}, \ldots, \min _{c_{\alpha} \neq 0}\left\{r_{m} \cdot \alpha\right\}\right) \in \mathbb{Z}^{m} .
$$

$\ln \mathbb{C}\left[t_{1}, \ldots, t_{m}\right]\left[x_{1}, \ldots, x_{n}\right]$ the lift of f is

$$
\tilde{f}:=f\left(\mathbf{t}^{r \cdot e_{1}} x_{1}, \ldots, \mathbf{r}^{r \cdot e_{n}} x_{n}\right) \mathbf{t}^{-\mu(f)}=\sum_{\alpha \in \mathbb{Z}_{\geq 0}^{n}} c_{\alpha} \mathbf{x}^{\alpha} \mathbf{t}^{\mathbf{r} \cdot \alpha-\mu(f)} .
$$

Definition/Proposition

The lifted ideal $\tilde{J}:=(\tilde{f}: f \in J) \subset \mathbb{C}\left[t_{1}, \ldots, t_{m}\right]\left[x_{1}, \ldots, x_{n}\right]$ is generated by $\{\tilde{g}: g \in \mathcal{G}\}$, where \mathcal{G} is a Gröbner basis for J and C.

Example

Take $f=x_{1}^{2} x_{2}^{2}+x_{1}^{4}+x_{2} x_{3}^{3} \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$ and consider in $G F((f))$ the maximal cone C spanned by the rows of $r:=\left(\begin{array}{ccc}1 & 4 & 0 \\ 1 & -2 & 0\end{array}\right)$ and \mathcal{L}.

Example

Take $f=x_{1}^{2} x_{2}^{2}+x_{1}^{4}+x_{2} x_{3}^{3} \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$ and consider in $G F((f))$ the maximal cone C spanned by the rows of $r:=\left(\begin{array}{ccc}1 & 4 & 0 \\ 1 & -2 & 0\end{array}\right)$ and \mathcal{L}. We compute

$$
\tilde{f}\left(t_{1}, t_{2}\right)=f\left(t_{1} t_{2} x_{1}, t_{1}^{4} t_{2}^{-2} x_{2}, x_{3}\right) t_{1}^{-4} t_{2}^{2}
$$

Example

Take $f=x_{1}^{2} x_{2}^{2}+x_{1}^{4}+x_{2} x_{3}^{3} \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$ and consider in $G F((f))$ the maximal cone C spanned by the rows of $r:=\left(\begin{array}{ccc}1 & 4 & 0 \\ 1 & -2 & 0\end{array}\right)$ and \mathcal{L}. We compute

$$
\begin{aligned}
\tilde{f}\left(t_{1}, t_{2}\right) & =f\left(t_{1} t_{2} x_{1}, t_{1}^{4} t_{2}^{-2} x_{2}, x_{3}\right) t_{1}^{-4} t_{2}^{2} \\
& =t_{1}^{6} x_{1}^{2} x_{2}^{2}+t_{2}^{6} x_{1}^{4}-x_{2} x_{3}^{3}
\end{aligned}
$$

Example

Take $f=x_{1}^{2} x_{2}^{2}+x_{1}^{4}+x_{2} x_{3}^{3} \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$ and consider in $G F((f))$ the maximal cone C spanned by the rows of $r:=\left(\begin{array}{ccc}1 & 4 & 0 \\ 1 & -2 & 0\end{array}\right)$ and \mathcal{L}. We compute

$$
\begin{aligned}
\tilde{f}\left(t_{1}, t_{2}\right) & =f\left(t_{1} t_{2} x_{1}, t_{1}^{4} t_{2}^{-2} x_{2}, x_{3}\right) t_{1}^{-4} t_{2}^{2} \\
& =t_{1}^{6} x_{1}^{2} x_{2}^{2}+t_{2}^{6} x_{1}^{4}-x_{2} x_{3}^{3}
\end{aligned}
$$

- $\tilde{f}(0,0)=x_{2} x_{3}^{3}=\operatorname{in}_{C}(f)$,

Example

Take $f=x_{1}^{2} x_{2}^{2}+x_{1}^{4}+x_{2} x_{3}^{3} \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$ and consider in $G F((f))$ the maximal cone C spanned by the rows of $r:=\left(\begin{array}{ccc}1 & 4 & 0 \\ 1 & -2 & 0\end{array}\right)$ and \mathcal{L}. We compute

$$
\begin{aligned}
\tilde{f}\left(t_{1}, t_{2}\right) & =f\left(t_{1} t_{2} x_{1}, t_{1}^{4} t_{2}^{-2} x_{2}, x_{3}\right) t_{1}^{-4} t_{2}^{2} \\
& =t_{1}^{6} x_{1}^{2} x_{2}^{2}+t_{2}^{6} x_{1}^{4}-x_{2} x_{3}^{3}
\end{aligned}
$$

- $\tilde{f}(0,0)=x_{2} x_{3}^{3}=\operatorname{in}_{C}(f)$,
- $\tilde{f}(0,1)=x_{1}^{4}-x_{2} x_{3}^{3}=\operatorname{in}_{r_{1}}(f)$,

- $\tilde{f}(1,0)=x_{1}^{2} x_{2}^{2}-x_{2} x_{3}^{3}=\operatorname{in}_{r_{2}}(f)$,

Example

Take $f=x_{1}^{2} x_{2}^{2}+x_{1}^{4}+x_{2} x_{3}^{3} \in \mathbb{C}\left[x_{1}, x_{2}, x_{3}\right]$ and consider in $G F((f))$ the maximal cone C spanned by the rows of $r:=\left(\begin{array}{ccc}1 & 4 & 0 \\ 1 & -2 & 0\end{array}\right)$ and \mathcal{L}. We compute

$$
\begin{aligned}
\tilde{f}\left(t_{1}, t_{2}\right) & =f\left(t_{1} t_{2} x_{1}, t_{1}^{4} t_{2}^{-2} x_{2}, x_{3}\right) t_{1}^{-4} t_{2}^{2} \\
& =t_{1}^{6} x_{1}^{2} x_{2}^{2}+t_{2}^{6} x_{1}^{4}-x_{2} x_{3}^{3}
\end{aligned}
$$

- $\tilde{f}(0,0)=x_{2} x_{3}^{3}=\operatorname{in}_{C}(f)$,
- $\tilde{f}(0,1)=x_{1}^{4}-x_{2} x_{3}^{3}=\operatorname{in}_{r_{1}}(f)$,

- $\tilde{f}(1,0)=x_{1}^{2} x_{2}^{2}-x_{2} x_{3}^{3}=\operatorname{in}_{r_{2}}(f)$,
- $\tilde{f}(1,1)=f$.

Theorem

Let $\tilde{A}:=\mathbb{C}\left[t_{1}, \ldots, t_{m}\right]\left[x_{1}, \ldots, x_{n}\right] / \tilde{J}$ and recall $A_{\tau}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / \mathrm{in}_{\tau}(J)$.

Theorem

Let $\tilde{A}:=\mathbb{C}\left[t_{1}, \ldots, t_{m}\right]\left[x_{1}, \ldots, x_{n}\right] / \tilde{J}$ and recall $A_{\tau}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / \mathrm{in}_{\tau}(J)$.

Theorem (B.-Mohammadi-Nájera Chávez)

\tilde{A} is a free $\mathbb{C}\left[t_{1}, \ldots, t_{m}\right]$-module with basis \mathbb{B}_{C} and so the morphism

$$
\pi: \operatorname{Spec}(\tilde{A}) \rightarrow \mathbb{A}^{m}
$$

is flat. In particular, π defines a flat family with generic fiber $\operatorname{Spec}(A)$ and for every face $\tau \subseteq C$ there exists $\mathbf{a}_{\tau} \in \mathbb{A}^{m}$ and a special fiber $\pi^{-1}\left(\mathbf{a}_{\tau}\right) \cong \operatorname{Spec}\left(A_{\tau}\right)$.

Theorem

Let $\tilde{A}:=\mathbb{C}\left[t_{1}, \ldots, t_{m}\right]\left[x_{1}, \ldots, x_{n}\right] / \tilde{J}$ and recall $A_{\tau}=\mathbb{C}\left[x_{1}, \ldots, x_{n}\right] / \mathrm{in}_{\tau}(J)$.

Theorem (B.-Mohammadi-Nájera Chávez)

\tilde{A} is a free $\mathbb{C}\left[t_{1}, \ldots, t_{m}\right]$-module with basis \mathbb{B}_{C} and so the morphism

$$
\pi: \operatorname{Spec}(\tilde{A}) \rightarrow \mathbb{A}^{m}
$$

is flat. In particular, π defines a flat family with generic fiber $\operatorname{Spec}(A)$ and for every face $\tau \subseteq C$ there exists $\mathbf{a}_{\tau} \in \mathbb{A}^{m}$ and a special fiber $\pi^{-1}\left(\mathbf{a}_{\tau}\right) \cong \operatorname{Spec}\left(A_{\tau}\right)$.

Example: $\tilde{A}=\mathbb{C}\left[t_{1}, t_{2}\right]\left[x_{1}, x_{2}, x_{3}\right] /\left(t_{1}^{6} x_{1}^{2} x_{2}^{2}+t_{2}^{6} x_{1}^{4}-x_{2} x_{3}^{3}\right)$.

Toric degenerations

The tropicalization $\operatorname{Trop}(J)$ is a subfan of $G F(J)$ of dimension $\operatorname{dim}_{\text {Krull }} A$.

Toric degenerations

The tropicalization $\operatorname{Trop}(J)$ is a subfan of $G F(J)$ of dimension $\operatorname{dim}_{\text {Krull }} A$.

Corollary (B.-Mohammadi-Nájera Chávez)

Consider the fan $\Sigma:=C \cap \operatorname{Trop}(J)$. If there exists $\tau \in \Sigma$ with $i_{\tau}(J)$ binomial and prime, then the family

$$
\pi: \operatorname{Spec}(\tilde{A}) \rightarrow \mathbb{A}^{m}
$$

contains toric fibers isomorphic to $\operatorname{Spec}\left(A_{\tau}\right)$ (affine toric scheme) and the standard monomials \mathbb{B}_{C} are a basis for A_{τ}.

Toric degenerations

The tropicalization $\operatorname{Trop}(J)$ is a subfan of $G F(J)$ of dimension $\operatorname{dim}_{\text {Krull }} A$.

Corollary (B.-Mohammadi-Nájera Chávez)

Consider the fan $\Sigma:=C \cap \operatorname{Trop}(J)$. If there exists $\tau \in \Sigma$ with $i_{\tau}(J)$ binomial and prime, then the family

$$
\pi: \operatorname{Spec}(\tilde{A}) \rightarrow \mathbb{A}^{m}
$$

contains toric fibers isomorphic to $\operatorname{Spec}\left(A_{\tau}\right)$ (affine toric scheme) and the standard monomials \mathbb{B}_{C} are a basis for A_{τ}.

Question: How are \tilde{A} and $A_{k, n}^{\text {univ }}$ related?

Back to cluster algebras

A cluster algebra A is of finite type if it has finitely many seeds.

Back to cluster algebras

A cluster algebra A is of finite type if it has finitely many seeds. Such A has finitely many cluster variables x_{1}, \ldots, x_{N} and a presentation

$$
\mathbb{C}\left[x_{1}, \ldots, x_{N}\right] / J \cong A
$$

where J is the saturation of the ideal generated by exchange relations.
[Fomin-Williams-Zelevinsky, §6.8]

Back to cluster algebras

A cluster algebra A is of finite type if it has finitely many seeds. Such A has finitely many cluster variables x_{1}, \ldots, x_{N} and a presentation

$$
\mathbb{C}\left[x_{1}, \ldots, x_{N}\right] / J \cong A
$$

where J is the saturation of the ideal generated by exchange relations. [Fomin-Williams-Zelevinsky, §6.8]

Grassmannians: $A_{k, n}$ is of finite type for $k=2$ or $k=3$ and $n \in\{6,7,8\}$. For $A_{2, n}$ all cluster variables are Plücker coordinates and $J=J_{2, n}$ is the Plücker ideal.

Back to cluster algebras

A cluster algebra A is of finite type if it has finitely many seeds. Such A has finitely many cluster variables x_{1}, \ldots, x_{N} and a presentation

$$
\mathbb{C}\left[x_{1}, \ldots, x_{N}\right] / J \cong A
$$

where J is the saturation of the ideal generated by exchange relations. [Fomin-Williams-Zelevinsky, §6.8]

Grassmannians: $A_{k, n}$ is of finite type for $k=2$ or $k=3$ and $n \in\{6,7,8\}$. For $A_{2, n}$ all cluster variables are Plücker coordinates and $J=J_{2, n}$ is the Plücker ideal.
The cluster variables of $A_{3,6}$ are Plücker coordinates and two more, so

$$
A_{3,6} \cong \mathbb{C}\left[X, Y, p_{123}, \ldots, p_{456}\right] / J_{3,6}
$$

and $J_{3,6} \cap \mathbb{C}\left[p_{123}, \ldots, p_{456}\right]$ is the Plücker ideal $I_{3,6}$.

A minimal generating set of $J_{3,6} \subset \mathbb{C}\left[p_{123}, \ldots, p_{456}, X, Y\right]$:

$$
\begin{aligned}
& p_{145} p_{236}-p_{123} p_{456}-X, \\
& p_{136} p_{245}-p_{126} p_{345}-X, \\
& p_{146} p_{235}-p_{156} p_{234}-X, \\
& p_{246} p_{356}-p_{346} p_{256}-p_{236} p_{456}, \\
& p_{146} p_{356}-p_{346} p_{156}-p_{136} p_{456}, \\
& p_{245} p_{346}-p_{345} p_{246}-p_{234} p_{456}, \\
& p_{145} p_{346}-p_{345} p_{146}-p_{134} p_{456}, \\
& p_{146} p_{256}-p_{246} p_{156}-p_{126} p_{456}, \\
& p_{136} p_{256}-p_{236} p_{156}-p_{126} p_{356}, \\
& p_{235} p_{246}-p_{245} p_{236}-p_{234} p_{256}, \\
& p_{136} p_{246}-p_{236} p_{146}-p_{126} p_{346}, \\
& p_{125} p_{246}-p_{245} p_{126}-p_{124} p_{256}, \\
& p_{135} p_{245}-p_{235} p_{145}-p_{125} p_{345} \text {, } \\
& p_{134} p_{236}-p_{234} p_{136}-p_{123} p_{346}, \\
& p_{124} p_{236}-p_{234} p_{126}-p_{123} p_{246}, \\
& p_{124} p_{235}-p_{234} p_{125}-p_{123} p_{245}, \\
& p_{125} p_{146}-p_{145} p_{126}-p_{124} p_{156}, \\
& p_{124} p_{136}-p_{134} p_{126}-p_{123} p_{146}, \\
& f=p_{135} p_{246}-p_{156} p_{234}-Y-p_{123} p_{456}-X-p_{126} p_{345} .
\end{aligned}
$$

Totally positive ideals

Reminder: $J \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is totally positive if $J \cap \mathbb{R}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]=\varnothing$. The totally positive part of $\operatorname{Trop}(J)$ is

$$
\operatorname{Trop}^{+}(J):=\left\{w \in \operatorname{Trop}(J): i n_{w}(J) \text { totally positive }\right\} .
$$

[Einsiedler-Tuncel '01, Handelman '85] $J \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is totally positive $\Leftrightarrow\left(\mathbb{R}_{>0}\right)^{n} \cap V\left(\mathrm{in}_{w}(I)\right) \neq \varnothing$ for some $w \in \mathbb{R}^{n}$.

Totally positive ideals

Reminder: $J \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is totally positive if $J \cap \mathbb{R}_{\geq 0}\left[x_{1}, \ldots, x_{n}\right]=\varnothing$. The totally positive part of $\operatorname{Trop}(J)$ is

$$
\operatorname{Trop}^{+}(J):=\left\{w \in \operatorname{Trop}(J): i n_{w}(J) \text { totally positive }\right\}
$$

[Einsiedler-Tuncel '01, Handelman '85] $J \subset \mathbb{R}\left[x_{1}, \ldots, x_{n}\right]$ is totally positive $\Leftrightarrow\left(\mathbb{R}_{>0}\right)^{n} \cap V\left(\mathrm{in}_{w}(I)\right) \neq \varnothing$ for some $w \in \mathbb{R}^{n}$.

Hence, $\operatorname{Trop}^{+}(J) \subset \operatorname{Trop}(J) \subset G F(J)$ are closed subfans.
Example: The initial ideal $\left(x_{1}^{2} x_{2}^{2}+x_{1}^{4}\right)$ is not totally positive, but $\left(x_{1}^{2} x_{2}^{2}-x_{2} x_{3}^{3}\right)$ and $\left(x_{1}^{4}-x_{2} x_{3}^{3}\right)$ are.

Theorem (B.-Mohammadi-Nájera Chávez)

For $(k, n) \in\{(2, n),(3,6)\}$ there exists a unique maximal cone C in the Gröbner fan of $J_{k, n}$ such that

Theorem (B.-Mohammadi-Nájera Chávez)

For $(k, n) \in\{(2, n),(3,6)\}$ there exists a unique maximal cone C in the Gröbner fan of $J_{k, n}$ such that
(1) $\operatorname{in}_{C}\left(J_{k, n}\right)$ is generated by products of non-compatible cluster variables (i.e. it's the Stanley-Reisner ideal of the cluster complex);

Theorem (B.-Mohammadi-Nájera Chávez)

For $(k, n) \in\{(2, n),(3,6)\}$ there exists a unique maximal cone C in the Gröbner fan of $J_{k, n}$ such that
(1) $\operatorname{in}_{C}\left(J_{k, n}\right)$ is generated by products of non-compatible cluster variables (i.e. it's the Stanley-Reisner ideal of the cluster complex);
(2) canonically $\tilde{A}_{k, n} \cong A_{k, n}^{\text {univ }}$ where universal coefficients $\stackrel{1: 1}{\leftrightarrow}$ rays of C;

Theorem (B.-Mohammadi-Nájera Chávez)

For $(k, n) \in\{(2, n),(3,6)\}$ there exists a unique maximal cone C in the Gröbner fan of $J_{k, n}$ such that
(1) $\operatorname{in}_{C}\left(J_{k, n}\right)$ is generated by products of non-compatible cluster variables (i.e. it's the Stanley-Reisner ideal of the cluster complex);
(2) canonically $\tilde{A}_{k, n} \cong A_{k, n}^{\text {univ }}$ where universal coefficients $\stackrel{1: 1}{\leftrightarrow}$ rays of C;
(3) standard monomial basis $\mathbb{B}_{C}=$ basis of cluster monomials;

Theorem (B.-Mohammadi-Nájera Chávez)

For $(k, n) \in\{(2, n),(3,6)\}$ there exists a unique maximal cone C in the Gröbner fan of $J_{k, n}$ such that
(1) $\operatorname{in}_{C}\left(J_{k, n}\right)$ is generated by products of non-compatible cluster variables (i.e. it's the Stanley-Reisner ideal of the cluster complex);
(2) canonically $\tilde{A}_{k, n} \cong A_{k, n}^{\text {univ }}$ where universal coefficients $\stackrel{1: 1}{\leftrightarrow}$ rays of C;
(3) standard monomial basis $\mathbb{B}_{C}=$ basis of cluster monomials;
(1) $C \cap \operatorname{Trop}\left(J_{k, n}\right)=\operatorname{Trop}^{+}\left(J_{k, n}\right)$ which is a geometric realization of the cluster complex:

$$
\begin{array}{rll}
\text { rays of } \operatorname{Trop}^{+}\left(J_{k, n}\right) & \stackrel{1: 1}{\longleftrightarrow} & \text { cluster variables } \\
\max \text { cones } \tau_{s} \in \operatorname{Trop}^{+}\left(J_{k, n}\right) & \stackrel{1: 1}{\longleftrightarrow} & \text { seeds } s \text { of } A_{k, n}
\end{array}
$$

Theorem (B.-Mohammadi-Nájera Chávez)

For $(k, n) \in\{(2, n),(3,6)\}$ there exists a unique maximal cone C in the Gröbner fan of $J_{k, n}$ such that
(1) $\operatorname{in}_{C}\left(J_{k, n}\right)$ is generated by products of non-compatible cluster variables (i.e. it's the Stanley-Reisner ideal of the cluster complex);
(2) canonically $\tilde{A}_{k, n} \cong A_{k, n}^{\text {univ }}$ where universal coefficients $\stackrel{1: 1}{\leftrightarrow}$ rays of C;
(3) standard monomial basis $\mathbb{B}_{C}=$ basis of cluster monomials;
(1) $C \cap \operatorname{Trop}\left(J_{k, n}\right)=\operatorname{Trop}^{+}\left(J_{k, n}\right)$ which is a geometric realization of the cluster complex:

$$
\begin{array}{rll}
\text { rays of } \operatorname{Trop}^{+}\left(J_{k, n}\right) & \stackrel{1: 1}{\longleftrightarrow} & \text { cluster variables } \\
\max \text { cones } \tau_{s} \in \operatorname{Trop}^{+}\left(J_{k, n}\right) & \stackrel{1: 1}{\longleftrightarrow} & \text { seeds } s \text { of } A_{k, n}
\end{array}
$$ where the toric variety $\operatorname{TV}\left(\Delta\left(A_{k, n}, g_{s}\right)\right)$ is $\operatorname{Proj}\left(A_{\tau_{s}}\right)$.

Theorem (B.-Mohammadi-Nájera Chávez)

For $(k, n) \in\{(2, n),(3,6)\}$ there exists a unique maximal cone C in the Gröbner fan of $J_{k, n}$ such that
(1) $\operatorname{in}_{C}\left(J_{k, n}\right)$ is generated by products of non-compatible cluster variables (i.e. it's the Stanley-Reisner ideal of the cluster complex);
(2) canonically $\tilde{A}_{k, n} \cong A_{k, n}^{\text {univ }}$ where universal coefficients $\stackrel{1: 1}{\leftrightarrow}$ rays of C;
(3) standard monomial basis $\mathbb{B}_{C}=$ basis of cluster monomials;
(1) $C \cap \operatorname{Trop}\left(J_{k, n}\right)=\operatorname{Trop}^{+}\left(J_{k, n}\right)$ which is a geometric realization of the cluster complex:

$$
\begin{array}{rll}
\text { rays of } \operatorname{Trop}^{+}\left(J_{k, n}\right) & \stackrel{1: 1}{\longleftrightarrow} & \text { cluster variables } \\
\max \text { cones } \tau_{s} \in \operatorname{Trop}^{+}\left(J_{k, n}\right) & \stackrel{1: 1}{\longleftrightarrow} & \text { seeds } s \text { of } A_{k, n}
\end{array}
$$

where the toric variety $T V\left(\Delta\left(A_{k, n}, g_{s}\right)\right)$ is $\operatorname{Proj}\left(A_{\tau_{s}}\right)$.
> [Ilten-Nájera Chávez-Treffinger]: generalized (1) for graded cluster algebras of finte type and (2)/(3) for ADE types.

The reduced Gröbner basis of $J_{3,6}$ for C consists contains the above minimal generating set and additionally the following elements:

```
        \(p_{235} Y-p_{125} p_{234} p_{356}-p_{123} p_{256} p_{345}\),
        \(p_{146} Y-p_{124} p_{156} p_{346}-p_{126} p_{134} p_{456}\),
        \(p_{136} Y-p_{123} p_{156} p_{346}-p_{126} p_{134} p_{356}\),
        \(p_{245} Y-p_{125} p_{234} p_{456}-p_{124} p_{256} p_{345}\),
        \(p_{145} Y-p_{125} p_{134} p_{456}-p_{124} p_{156} p_{345}\),
        \(p_{236} Y-p_{126} p_{234} p_{356}-p_{123} p_{256} p_{346}\),
        \(p_{135} Y-p_{125} p_{134} p_{356}-p_{123} p_{156} p_{345}\),
        \(p_{246} Y-p_{124} p_{256} p_{346}-p_{126} p_{234} p_{456}\),
        \(p_{134} X-p_{136} p_{145} p_{234}-p_{123} p_{146} p_{345}\),
        \(p_{256} X-p_{156} p_{236} p_{245}-p_{126} p_{235} p_{456}\),
        \(p_{346} X-p_{136} p_{234} p_{456}-p_{146} p_{236} p_{345}\),
        \(p_{125} X-p_{123} p_{156} p_{245}-p_{126} p_{145} p_{235}\),
        \(p_{124} X-p_{126} p_{145} p_{234}-p_{123} p_{146} p_{245}\),
    \(p_{356} X-p_{136} p_{235} p_{456}-p_{156} p_{236} p_{345}\),
    \(p_{135} X-p_{136} p_{145} p_{235}-p_{123} p_{156} p_{345}\),
    \(p_{246} X-p_{146} p_{236} p_{245}-p_{126} p_{234} p_{456}\).
\(g=X Y-p_{123} p_{156} p_{246} p_{345}-p_{126} p_{135} p_{234} p_{456}-p_{126} p_{156} p_{234} p_{345}-p_{123} p_{156} p_{234} p_{456}-p_{123} p_{126} p_{345} p_{456}\).
```

The first monomial of each relation lies in $\operatorname{in}_{C}\left(J_{3,6}\right)$.

Arbitrary Grassmannians (in progress)

[GHKK 18]/[Fujita-Oya 20]/[B.-Cheung-Magee-Nájera Chávez]:
s seed \rightsquigarrow of $A_{k, n}$

$$
\begin{gathered}
\text { valuation } \\
g_{s}: A_{k, n} \backslash\{0\} \rightarrow \mathbb{Z}^{d}
\end{gathered}
$$

Arbitrary Grassmannians (in progress)

[GHKK 18]/[Fujita-Oya 20]/[B.-Cheung-Magee-Nájera Chávez]:

s seed
of $A_{k, n}$
:---:
of $\operatorname{Gr}(\mathrm{k}, \mathrm{n})$

[B.21]/[Kaveh-Manon 19]:
toric degenerations
of $\operatorname{Gr}(k, n)$ induced
by valuations on $A_{k, n}$
maximal cones in

$\operatorname{Trop}(J)$ for some J
$A_{k, n} \cong k\left[x_{1}, \ldots, x_{m}\right] / J$

Arbitrary Grassmannians (in progress)

[GHKK 18]/[Fujita-Oya 20]/[B.-Cheung-Magee-Nájera Chávez]:

[B.21]/[Kaveh-Manon 19]:
toric degenerations of $\operatorname{Gr}(k, n)$ induced by valuations on $A_{k, n}$

\longleftrightarrow| maximal cones in |
| :---: |
| $\operatorname{Trop}(J)$ for some J |
| $A_{k, n} \cong k\left[x_{1}, \ldots, x_{m}\right] / J$ |

Conjecture (B.)

For every seed s of $A_{k, n}$ exists a maximal prime cone τ_{s} in $\operatorname{Trop}^{+}(J)$ for an appropriate ideal J with $A_{k, n} \cong k\left[x_{1}, \ldots, x_{m}\right] / J$,

Arbitrary Grassmannians (in progress)

[GHKK 18]/[Fujita-Oya 20]/[B.-Cheung-Magee-Nájera Chávez]:
s seed valuation
of $A_{k, n} \leadsto g_{s}: A_{k, n} \backslash\{0\} \rightarrow \mathbb{Z}^{d}$
toric degeneration of $\operatorname{Gr}(\mathrm{k}, \mathrm{n})$
[B.21]/[Kaveh-Manon 19]:
toric degenerations of $\operatorname{Gr}(k, n)$ induced by valuations on $A_{k, n}$
maximal cones in
Trop(J) for some J $A_{k, n} \cong k\left[x_{1}, \ldots, x_{m}\right] / J$

Conjecture (B.)

For every seed s of $A_{k, n}$ exists a maximal prime cone τ_{s} in $\operatorname{Trop}^{+}(J)$ for an appropriate ideal J with $A_{k, n} \cong k\left[x_{1}, \ldots, x_{m}\right] / J$, s.t. if J is appropriate for two adjacent seeds s, s^{\prime} then τ_{s} and $\tau_{s^{\prime}}$ share a facet.

Remark: J is appropriate for s if $S\left(A_{k, n}, g_{s}\right)=\left\langle g_{s}\left(\bar{x}_{1}\right), \ldots, g_{s}\left(\bar{x}_{m}\right)\right\rangle$.

Examples

- For every seed s of $A_{2, n}$

$$
S\left(A_{2, n}, g_{s}\right)=\left\langle g_{s}\left(p_{i j}\right): 1 \leq i<j \leq n\right\rangle,
$$

so the Plücker ideal is appropriate for all seeds.

Examples

(1) For every seed s of $A_{2, n}$

$$
S\left(A_{2, n}, g_{s}\right)=\left\langle g_{s}\left(p_{i j}\right): 1 \leq i<j \leq n\right\rangle,
$$

so the Plücker ideal is appropriate for all seeds.
(2) For $A_{3,6}$ there exist seeds s for which $g_{s}(x)$ or $g_{s}(y)$ is not in $\left\langle g_{s}\left(p_{i j k}\right): 1 \leq i<j<k \leq 6\right\rangle$,

Examples

(1) For every seed s of $A_{2, n}$

$$
S\left(A_{2, n}, g_{s}\right)=\left\langle g_{s}\left(p_{i j}\right): 1 \leq i<j \leq n\right\rangle,
$$

so the Plücker ideal is appropriate for all seeds.
(2) For $A_{3,6}$ there exist seeds s for which $g_{s}(x)$ or $g_{s}(y)$ is not in $\left\langle g_{s}\left(p_{i j k}\right): 1 \leq i<j<k \leq 6\right\rangle$,e.g. seeds from the plabic graphs

so the Plücker ideal is not appropriate for all seeds.

Examples

(1) For every seed s of $A_{2, n}$

$$
S\left(A_{2, n}, g_{s}\right)=\left\langle g_{s}\left(p_{i j}\right): 1 \leq i<j \leq n\right\rangle
$$

so the Plücker ideal is appropriate for all seeds.
(2) For $A_{3,6}$ there exist seeds s for which $g_{s}(x)$ or $g_{s}(y)$ is not in $\left\langle g_{s}\left(p_{i j k}\right): 1 \leq i<j<k \leq 6\right\rangle$,e.g. seeds from the plabic graphs

so the Plücker ideal is not appropriate for all seeds.
(3) Conjecturally, the ideal J presenting a finite type cluster algebra A w.r.t all cluster variables is appropriate for all seeds.

Thank you!

References

BMN Lara Bossinger, Fatemeh Mohammadi, Alfredo Nájera Chávez. Families of Gröbner Degenerations, Grassmannians and Universal Cluster Algebras SIGMA 17 (2021), 59
$\operatorname{Gr}(3,6)$ Lara Bossinger. Grassmannians and universal coefficients for cluster algebras: computational data for $\operatorname{Gr}(3,6)$. https://www.matem.unam.mx/~1ara/clusterGr36

B21 Lara Bossinger. Full-Rank Valuations and Toric Initial Ideals. Int. Math. Res. Not. rnaa071 (2021) 10
FO20 Naoki Fujita and Hironori Oya: Newton-Okounkov polytopes of Schubert varieties arising from cluster structures. arXiv:2002.09912

FZ07 Sergey Fomin and Andrei Zelevinsky. Cluster algebras. IV. Coefficients. Compos. Math. 143, no. 1, 112-164 (2007)
FWZ20 Sergey Fomin, Lauren Williams and Andrei Zelevinsky.Introduction to Cluster Algebras Chapter 6 arxiv:2008.09189
GHKK18 Mark Gross, Paul Hacking, Sean Keel, and Maxim Kontsevich. Canonical bases for cluster algebras. J. Amer. Math. Soc., 31(2):497-608 (2018)
INT21 Nathan Ilten, Alfredo Nájera Chávez and Hipolito Treffinger. Deformation Theory for Finite Cluster Complexes. arXiv:2111.02566
KM19 Kiumars Kaveh and Christopher Manon. Khovanskii bases, higher rank valuations, and tropical geometry. SIAM J.Appl. Algebra Geom., 3(2):292-336 (2019)
MR88 Teo Mora and Lorenzo Robbiano. The Gröbner fan of an ideal. Computational aspects of commutative algebra. J. Symbolic Comput. 6 (1988), no. 2-3, 183-208

Reading Nathan Reading. Universal geometric cluster algebras. Math. Z. 277(1-2):499-547 (2014)
Scott Joshua S. Scott. Grassmannians and cluster algebras. Proc. London Math. Soc. (3) 92 (2006), no. 2, 345-380.
SS04 David Speyer and Bernd Sturmfels. The tropical Grassmannian. Adv. Geom. 4 (2004), no. 3, 389-411.
SW05 David Speyer and Lauren Williams. The tropical totally positive Grassmannian. J. Algebraic Combin. 22 (2005), no. 2, 189-210

Combinatorics of $C \in G F\left(J_{3,6}\right)$

Let $\left\{e_{123}, \ldots, e_{456}, e_{x}, e_{y}\right\}$ be the standard basis of \mathbb{R}^{22} and

$$
E_{i}:=\sum_{k, j \neq i} e_{i j k}+e_{x}+e_{y} .
$$

The lineality space of $\operatorname{GF}\left(J_{3,6}\right)$ is $\mathcal{L}=\left\langle E_{1}, \ldots, E_{6}\right\rangle$. Let $f_{i, j}:=\sum_{k \notin\{i, j\}} e_{i j k}$ and $\pi: \mathbb{R}^{22} \rightarrow \mathbb{R}^{20}$ away from e_{x}, e_{y}.

Combinatorics of $C \in G F\left(J_{3,6}\right)$

Let $\left\{e_{123}, \ldots, e_{456}, e_{x}, e_{y}\right\}$ be the standard basis of \mathbb{R}^{22} and

$$
E_{i}:=\sum_{k, j \neq i} e_{i j k}+e_{x}+e_{y}
$$

The lineality space of $\operatorname{GF}\left(J_{3,6}\right)$ is $\mathcal{L}=\left\langle E_{1}, \ldots, E_{6}\right\rangle$. Let $f_{i, j}:=\sum_{k \notin\{i, j\}} e_{i j k}$ and $\pi: \mathbb{R}^{22} \rightarrow \mathbb{R}^{20}$ away from e_{x}, e_{y}.

$\#$	rays of C / \mathcal{L}	projections
6	$a_{i}:=e_{i, i+1, i+2}$	$e_{i, i+1, i+2}$
6	$b_{i}:=f_{i, i+1}+\delta_{i \text { odd }} e_{y}+\delta_{i \text { even }} e_{x}$	$f_{i, i+1}$
2	$c_{i}^{-}:=b_{i}+e_{i-2, i-1, i}+e_{i-2, i-1, i+1}$	$g_{i, i+1, i+2, i-3, i-2, i-1}$
2	$c_{i}^{+}:=b_{i}+e_{i, i+2, i+3}+e_{i+1, i+2, i+3}$	$g_{i+2, i+1, i, i-3, i-2, i-1}$

Combinatorics of $C \in G F\left(J_{3,6}\right)$

Let $\left\{e_{123}, \ldots, e_{456}, e_{x}, e_{y}\right\}$ be the standard basis of \mathbb{R}^{22} and

$$
E_{i}:=\sum_{k, j \neq i} e_{i j k}+e_{x}+e_{y}
$$

The lineality space of $\operatorname{GF}\left(J_{3,6}\right)$ is $\mathcal{L}=\left\langle E_{1}, \ldots, E_{6}\right\rangle$. Let $f_{i, j}:=\sum_{k \notin\{i, j\}} e_{i j k}$ and $\pi: \mathbb{R}^{22} \rightarrow \mathbb{R}^{20}$ away from e_{x}, e_{y}.

$\#$	rays of C / \mathcal{L}	projections
6	$a_{i}:=e_{i, i+1, i+2}$	$e_{i, i+1, i+2}$
6	$b_{i}:=f_{i, i+1}+\delta_{i \text { odd }} e_{y}+\delta_{i \text { even }} e_{x}$	$f_{i, i+1}$
2	$c_{i}^{-}:=b_{i}+e_{i-2, i-1, i}+e_{i-2, i-1, i+1}$	$g_{i, i+1, i+2, i-3, i-2, i-1}$
2	$c_{i}^{+}:=b_{i}+e_{i, i+2, i+3}+e_{i+1, i+2, i+3}$	$g_{i+2, i+1, i, i-3, i-2, i-1}$

Notice: $c_{i}^{ \pm}=c_{j}^{ \pm} \bmod \mathcal{L}$ if $i=j \bmod 2$ and
$g_{i, i+1, i+2, i-3, i-2, i-1}+g_{i+2, i+1, i, i-3, i-2, i-1}=f_{i+1, i+2}+f_{i-1, i}+f_{i-2, i-3}$

Combinatorics of $C \in G F\left(J_{3,6}\right)$

The ideal $J_{3,6}$ is invariant under the action of $G:=\left\langle(123456), w_{0}\right\rangle \subset \mathfrak{S}_{6}$, so $G F\left(J_{3,6}\right)$ has an induced G-action.
${ }^{3}$ FFFGG is a bipyramid in $\operatorname{Trop}\left(I_{3,6}\right)$ and each G-orbit maps onto one of the pyramids.

Combinatorics of $C \in G F\left(J_{3,6}\right)$

The ideal $J_{3,6}$ is invariant under the action of $G:=\left\langle(123456), w_{0}\right\rangle \subset \mathfrak{S}_{6}$, so $G F\left(J_{3,6}\right)$ has an induced G-action.

$\#$	G-orbit of max cone in $C \cap \operatorname{Trop}\left(J_{3,6}\right)$	type of projection	$\#$
18	$\left\{a_{i}, a_{i-2}, b_{i-2}, b_{i+3}\right\}$	EEFF	180
12	$\left\{a_{i}, c_{i}^{ \pm}, b_{i-2}, b_{i+4}\right\}$	EFFG	180
12	$\left\{a_{i}, a_{i+2}, b_{i}, c_{i}^{+}\right\}$or $\left\{a_{i}, a_{i-2}, b_{i+1}, c_{i+1}^{-}\right\}$	EEFG	360
4	$\left\{a_{i-2}, a_{i}, a_{i+2}, c_{i}^{ \pm}\right\}$	EEEG	240
4	$\left\{b_{i-2}, b_{i}, b_{i+2}, c_{i}^{ \pm}\right\}$	FFFGG 3	15

[^5]
Combinatorics of $C \in G F\left(J_{3,6}\right)$

The ideal $J_{3,6}$ is invariant under the action of $G:=\left\langle(123456), w_{0}\right\rangle \subset \mathfrak{S}_{6}$, so $G F\left(J_{3,6}\right)$ has an induced G-action.

$\#$	G-orbit of max cone in $C \cap \operatorname{Trop}\left(J_{3,6}\right)$	type of projection	$\#$
18	$\left\{a_{i}, a_{i-2}, b_{i-2}, b_{i+3}\right\}$	EEFF	180
12	$\left\{a_{i}, c_{i}^{ \pm}, b_{i-2}, b_{i+4}\right\}$	EFFG	180
12	$\left\{a_{i}, a_{i+2}, b_{i}, c_{i}^{+}\right\}$or $\left\{a_{i}, a_{i-2}, b_{i+1}, c_{i+1}^{-}\right\}$	EEFG	360
4	$\left\{a_{i-2}, a_{i}, a_{i+2}, c_{i}^{ \pm}\right\}$	EEEG	240
4	$\left\{b_{i-2}, b_{i}, b_{i+2}, c_{i}^{ \pm}\right\}$	FFFGG 3	15

The type of projected cone refers to the \mathfrak{S}_{6}-orbits in $\operatorname{Trop}\left(I_{3,6}\right)$, respectively $\operatorname{Trop}^{+}\left(I_{3,6}\right)$, as used [SS04]\&[BCL17], the number is the number of maximal cones in $\operatorname{Trop}\left(I_{3,6}\right)$ of this type.
${ }^{3}$ FFFGG is a bipyramid in $\operatorname{Trop}\left(I_{3,6}\right)$ and each G-orbit maps onto one of the pyramids.

[^0]: ${ }^{1} w_{v}$ is obtained from $M_{\mathfrak{v}}:=\left(\mathfrak{v}\left(b_{i}\right)\right)_{i \in[n]} \in \mathbb{Z}^{d \times n}$ by an order preserving projection $e: \mathbb{Z}^{d} \rightarrow \mathbb{Z}$, i.e. $w_{v}:=e\left(M_{\mathfrak{v}}\right)$ and $\mathrm{in}_{w_{v}}(J)=\operatorname{in}_{M_{v}}(J)$.

[^1]: ${ }^{1} w_{\mathfrak{v}}$ is obtained from $M_{\mathfrak{v}}:=\left(\mathfrak{v}\left(b_{i}\right)\right)_{i \in[n]} \in \mathbb{Z}^{d \times n}$ by an order preserving projection $e: \mathbb{Z}^{d} \rightarrow \mathbb{Z}$, i.e. $w_{\mathfrak{v}}:=e\left(M_{\mathfrak{v}}\right)$ and $\operatorname{in}_{w_{\mathfrak{v}}}(J)=\operatorname{in}_{M_{\mathfrak{v}}}(J)$.

[^2]: ${ }^{1} w_{\mathfrak{v}}$ is obtained from $M_{\mathfrak{v}}:=\left(\mathfrak{v}\left(b_{i}\right)\right)_{i \in[n]} \in \mathbb{Z}^{d \times n}$ by an order preserving projection $e: \mathbb{Z}^{d} \rightarrow \mathbb{Z}$, i.e. $w_{\mathfrak{v}}:=e\left(M_{\mathfrak{v}}\right)$ and $\operatorname{in}_{w_{\mathfrak{v}}}(J)=\operatorname{in}_{M_{\mathfrak{v}}}(J)$.

[^3]: ${ }^{2}$ Due to Gross-Hacking-Keel-Kontsevich.

[^4]: ${ }^{2}$ Due to Gross-Hacking-Keel-Kontsevich.

[^5]: ${ }^{3}$ FFFGG is a bipyramid in $\operatorname{Trop}\left(I_{3,6}\right)$ and each G-orbit maps onto one of the pyramids.

