Newton-Okounkov bodies for cluster varieties

Lara Bossinger

Universidad Nacional Autónoma de México, Oaxaca

NOB and Fanosearch October 5-8 2021

Valuations

$A=\bigoplus_{i \geq 0} A_{i}$ a graded k-algebra and domain. A map $\nu: A \backslash\{0\} \rightarrow\left(\mathbb{Z}^{d},<\right)$ is a (Krull) valuation if

$$
\nu(f g)=\nu(f)+\nu(g), \quad \nu(c f)=\nu(f), \quad \nu(f+g) \geq \min _{<}\{\nu(f), \nu(g)\}
$$

for all $f, g \in R \backslash\{0\}$ and $c \in k$.
(1) $S(A, \nu):=\operatorname{im}(\nu)$ is the value semigroup.
(2) ν induces a filtration on A, for $m \in \mathbb{Z}^{d}$

$$
F_{m}:=\{f \in A: \nu(f) \leq m\} \quad \text { and } \quad F_{<m}:=\{f \in A: \nu(f)<m\} .
$$

(3) $\operatorname{dim}\left(F_{m} / F_{<m}\right) \leq 1 \forall m^{1} \Rightarrow \operatorname{gr}_{\nu}(R) \cong k[S(R, \nu)]$
(9) \mathbb{B} vector space basis of A is adapted to ν if $\mathbb{B} \cap F_{m}$ is a vector space basis for all m.
${ }^{1}$ e.g. if ν is full-rank, i.e. $\operatorname{rank}(S(A, \nu))=\operatorname{dim}_{\text {Krull }}(A)$ by Abhyankar's inequality

Toric degenerations and the Newton-Okounkov polytope

Theorem (Anderson 2013)

Let $\nu: A \backslash\{0\} \rightarrow \mathbb{Z}^{d}$ be a full-rank valuation with $S(A, \nu)$ finitely generated. Then there exists a toric degeneration of $X=\operatorname{Proj}(A)$ to the (not necessarily normal) toric variety $X_{0}=\operatorname{Proj}(k[S(A, \nu)])$.
X_{0} is toric and projective, its normalization \bar{X}_{0} is defined by the Newton-Okounkov body ${ }^{2}$ of ν

$$
\Delta(A, \nu):=\operatorname{conv}\left(\bigcup_{i>0}\left\{\frac{\nu(f)}{i}: f \in A_{i}\right\}\right) \subset \mathbb{R}^{d}
$$

Question: How can we compute $\Delta(A, \nu)$? What are its vertices?

[^0]
Grassmannian $\mathrm{Gr}_{2}\left(\mathbb{C}^{5}\right)$

The homogeneous coordinate ring of $\operatorname{Gr}_{2}\left(\mathbb{C}^{5}\right)$ with its Plücker embedding:

$$
A_{2,5}:=\mathbb{C}\left[p_{i j}: 1 \leq i<j \leq 5\right] /\left(p_{i j} p_{k l}-p_{i k} p_{j l}+p_{i l} p_{j k}\right)_{1 \leq i<j<k<l \leq 5}
$$

can be constructed recursively from triangulations of a 5-gon (seeds):

This is the prototype of a cluster algebra!

Cluster variety inside $\mathrm{Gr}_{2}\left(\mathbb{C}^{5}\right)$

For every seed we get a torus chart: $\left(\mathbb{C}^{*}\right)_{p_{13}, p_{14}, p_{12}, p_{15}, p_{23}, p_{34}, p_{45}}^{7} \hookrightarrow \widetilde{\mathrm{Gr}_{2}\left(\mathbb{C}^{5}\right)}$ and they glue along mutations:

$$
\begin{aligned}
& \left(\mathbb{C}^{*}\right)_{p_{13}, p_{14}, p_{12}, \ldots, p_{45}}^{7} \quad \bigcup \quad\left(\mathbb{C}^{*}\right)_{p_{24}, p_{14}, p_{12}, \ldots, p_{45}}^{7} \\
& \mu^{*}\left(p_{24}\right)=\frac{p_{12} p_{34}+p_{23} p_{14}}{p_{13}}
\end{aligned}
$$

Recursively we obtain a cluster variety

$$
\mathcal{A}_{2,5}:=\bigcup_{s \text { triang. of } 5 \text {-gon }}\left(\mathbb{C}^{*}\right)_{p_{i j i}: \overline{i j} \in s}^{7} \hookrightarrow \widetilde{\mathrm{Gr}_{2}\left(\mathbb{C}^{5}\right)}
$$

Consider the partial compactification $\overline{\mathcal{A}}_{2,5}:=\mathcal{A}_{2,5} \cup \bigcup_{i \in \mathbb{Z}_{5}}\left\{p_{i, i+1}=0\right\}$. Then:

$$
\mathcal{O}\left(\overline{\mathcal{A}}_{2,5}\right)=A_{2,5} \subset \mathbb{C}\left[p_{i j}^{ \pm 1}: \overline{i j} \in s\right] \forall s \text { triang. of 5-gon. }
$$

Grassmannian $\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right)$

Triangulations and flips generalize to quivers and quiver mutation:

For a general Grassmannian $\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right)$ seeds are represented by quivers: e.g. $s=(Q, \mathfrak{<})$ with $火=\left(x_{i \times j}\right)_{i, j}$ where $x_{i \times j}:=p_{[1, k-j] \cup[k-j+i+1, k+i]}$ and quiver Q :

Exercise: for $k=2$
Q corresponds to

g-vectors for cluster algebras

Theorem (Fomin-Zelevinsky 2005)

Given an initial seed $s=\left(Q,\left(p_{i \times j}\right)_{i \in[n-k], j \in[k]}\right)$ of $A_{k, n}$ there exists a corresponding cluster algebra with principal coefficients $A_{k, n}^{\text {prin, } s} \subset \mathbb{C}\left[t_{i \times j}\right]\left[p_{i \times j}^{ \pm 1}\right]_{i \in[n-k], j \in[k]}$ at s.
$A_{k, n}^{\text {prin,s }}$ is M_{s}-graded, where $M_{s}=\mathbb{Z}^{k(n-k)+1}$ with basis $\left\{f_{i \times j}\right\}_{i \in[n-k], j \in[k]}$:

$$
g_{s}\left(p_{i \times j}\right)=f_{i \times j}, \quad \text { and } \quad g_{s}\left(t_{i \times j}\right):=-\sum \#\left\{i \times j \rightarrow i^{\prime} \times j^{\prime}\right\} f_{i^{\prime} \times j^{\prime}}
$$

Every cluster variable x is homogeneous and its degree called g-vector.

Example:

Cluster variety with principal coefficients for $\mathrm{Gr}_{2}\left(\mathbb{C}^{5}\right)$

Geometrically we obtain a degeneration to a torus

Theorem (Gross-Hacking-Keel-Kontsevich)

The cluster variety $\mathcal{A}_{k, n}^{\text {prin,s }}$ with principal coefficients at a seed s induces a toric degeneration of the Grassmannian $\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right)$. Moreover, Fomin-Zelevinsky's g-vectors are characters of the torus in the central fibre.

Holds more generally for partial compactifications of cluster varieties that satisfy the full Fock-Goncharov conjecture.

g-vector valuation

Proposition (GHKK, Fujita-Oya, B-Cheung-Magee-Nájera Chávez)

Let s be an arbitrary seed of $A_{k, n}$ and x denote any cluster variable, then $x \mapsto g_{s}(x)$ extends to a (full-rank homogeneous) valuation with finitely generated value semigroup:

$$
g_{s}: A_{k, n} \backslash\{0\} \rightarrow M_{s} \cong \mathbb{Z}^{k(n-k)+1} \quad \text { with } \quad x \mapsto g_{s}(x)
$$

that defines the $\mathcal{A}_{k, n}^{\text {prin,s }}$-toric degeneration of $\operatorname{Gr}_{k}\left(\mathbb{C}^{n}\right)$. Moreover, $A_{k, n}$ has a \mathbb{C}-basis adapted to all $g_{s^{\prime}}$ simultaneously called the ϑ-basis.

Remark: The Proposition holds more generally for any cluster algebra that satisfies the full Fock-Goncharov conjecture.

Newton-Okounkov bodies for Grassmannains

Proposition

For every seed s of $A_{2, n}$ the value semigroup $S\left(A_{2, n}, g_{s}\right)$ is generated by the g-vectors of Plücker coordinates and its Newton-Okounkov body is

$$
\Delta\left(A_{2, n}, g_{s}\right)=\operatorname{conv}\left(g_{s}\left(p_{i j}\right): 1 \leq i<j \leq n\right)
$$

Theorem (B.-Cheung-Magee-Nájera Chávez)
For arbitrary $\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right)$ Rietsch-Williams define a valuation $v_{s}: A_{k, n} \rightarrow \mathbb{Z}^{k(n-k)}$ for every plabic graph s (or more generally for every seed s of $\left.A_{k, n}\right)$. We can show that

$$
\Delta\left(A_{k, n}, g_{s}\right) \cong \Delta\left(A_{k, n}, v_{s}\right)
$$

Connections to Gröbner theory

For $A_{2, n}, A_{3,6}, A_{3,7}, A_{3,8}$ the ϑ-basis consists of all monomials in cluster variables of the same seed, called cluster monomials.

Proposition (B.-Mohammadi-Nájera Chávez)

For $(k, n) \in\{(2, n),(3,6)\}$ the ϑ-basis of $A_{k, n}$ is a standard monomial basis associated to a maximal cone C in the Gröbner fan of an ideal $J_{k, n}$ representing $A_{k, n}$.
Moreover, every $k(n-k)+1$-dimensional face of C lies inside the tropicalization of $J_{k, n}$ and induces a toric degeneration of $\mathrm{Gr}_{k}\left(\mathbb{C}^{n}\right)$ whose central fibre is

$$
T V\left(\Delta\left(A_{k, n}, g_{s}\right)\right)
$$

Tropical cluster dual \mathcal{X}-variety

There exists a tropical cluster variety $\mathcal{X}_{2,5}^{\text {trop }}(\mathbb{Z}):=\bigcup_{s \text { triang. of } 5 \text {-gon }} M_{s}$ where $M_{s}=\mathbb{Z}^{7}$ with free generating set $\left\{f_{i j}, \overline{i j} \in s\right\}$ and glued along bijections defined by certain shearing:

$$
M_{\left\{f_{13}, f_{14}, f_{12}, \ldots, f_{45}\right\}}^{\substack{\begin{subarray}{c}{f_{24}=f_{23}+f_{14}-f_{13} \\
T_{13}(m)=m+\max \left\{m_{13}, 0\right\}\left(f_{12}+f_{34}-f_{23}-f_{14}\right)} }}\end{subarray}} M_{\left\{f_{24}, f_{14}, f_{12}, \ldots, f_{45}\right\}}
$$

For each s we may identify non-canonically $\mathcal{X}_{2,5}^{\text {trop }}(\mathbb{Z}) \equiv{ }_{s} M$.
$\left[\right.$ GHKK]/[Marsh-Scott]/[Shen-Weng] Elements of the ϑ-basis for $A_{k, n}$ are indexed by points in a "cone" $\equiv \subset \mathcal{X}_{k, n}^{\text {trop }}(\mathbb{Z})$:

$$
\begin{gathered}
\left(\overline{\mathcal{A}}_{k, n}, D\right) \\
\vartheta \text {-basis of } A_{k, n}
\end{gathered} \longleftrightarrow \quad \begin{aligned}
& \left(\mathcal{X}_{k, n}, W: \mathcal{X}_{k, n} \rightarrow \mathbb{C}\right) \\
& \left\{W^{\text {trop }}(x) \geq 0\right\} \subset \mathcal{X}_{k, n}^{\text {trop }}(\mathbb{Z})
\end{aligned}
$$

Wall\&chamber structure and the g-fan

Pulling back the positive orthants of each copy of $M_{\mathbb{R}}$ along the shears $T_{i j}^{\prime} \mathrm{s}$ yields a wall and chamber structure in $\mathcal{X}_{2,5}^{\text {trop }}(\mathbb{R})$:

It contains a full-dimensional simplicial fan known as the g-fan:

$$
\begin{aligned}
& \text { maximal simplicial cones } \leftrightarrow \\
& \text { seeds } \\
& \text { primitive ray generators } \leftrightarrow g \text {-vectors of cluster variables }
\end{aligned}
$$

NO bodies for compactificatins of cluster varieties

Theorem (B.-Cheung-Magee-Nájera Chávez)
There exists a "convex" set $\Delta_{B L}\left(A_{k, n}\right) \subset \mathcal{X}_{k, n}^{\text {trop }}(\mathbb{R})$ independent of s :

$$
\Delta_{B L}\left(A_{k, n}\right) \equiv_{s} \Delta\left(A_{k, n}, g_{s}\right) .
$$

Proposition (Escobar-Harada, B.-Mohammadi-Nájera Chávez)

The piecewise-linear maps between two Newton-Okounkov polytopes $\Delta\left(A_{2, n}, g_{s}\right)$ and $\Delta\left(A_{2, n}, g_{s^{\prime}}\right)$ coincide with Escobar-Harada's algebraic wall-crossing for Newton-Okounkov polytopes arising from adjacent maximal prime cones in the tropicalization of $\mathrm{Gr}_{2}\left(\mathbb{C}^{n}\right)$.

Broken line convexity

In $\mathcal{X}_{k, n}^{\text {trop }}(\mathbb{R})$ we don't
have straight lines, but piece-wise linear broken lines.
[Cheung-Magee-Nájera Chávez] introduce broken line convexity: a closed set $S \subset \mathcal{X}_{k, n}^{\text {trop }}(\mathbb{R})$ is broken line convex iff $\forall a, b \in S$ and any broken line segment ℓ between a, b we have $\ell \subset S$.

Lemma (Cheung-Magee-Nájera Chávez)

Under the identification $\mathcal{X}_{k, n}^{\text {trop }}(\mathbb{R}) \equiv_{s} M_{\mathbb{R}}$ every broken line convex set is a convex set.

Intrinsic Newton-Okounkov body

For $f \in A_{k, n}$ we have $f=\sum c_{m} \vartheta_{m}$. Define

$$
\operatorname{New}_{\vartheta}(f):=\operatorname{conv}_{B L}\left(m \in \mathcal{X}_{k, n}^{\text {trop }}(\mathbb{Z}): c_{m} \neq 0\right) \subset \mathcal{X}_{k, n}^{\text {trop }}(\mathbb{R})
$$

Then the intrinsic Newton-Okounkov body is

$$
\Delta_{B L}\left(A_{k, n}\right)=\operatorname{conv}_{B L}\left(\bigcup_{i \geq 1} \frac{\operatorname{New}_{\vartheta}(f)}{i}: f \in\left(A_{k, n}\right)_{i}\right) .
$$

Corollary (B.-Cheung-Magee-Nájera Chávez)

For every seed s we have

$$
\Delta\left(A_{k, n}, g_{s}\right)=\operatorname{conv}_{B L}\left(g_{s}\left(p_{l}\right): l \in\binom{[n]}{k}\right)
$$

In particular, $\Delta\left(A_{k, n}, g_{s}\right)$ is a rational polytope with integral vertices of form $g_{s}\left(p_{l}\right)$, and (depending on s) additional rational vertices in walls.

References

A D. Anderson. Okounkov bodies and toric degenerations. Math. Ann. 356, No. 3, 1183-1202 (2013).
BCMN L. Bossinger, M. Cheung, T. Magee, A. Nájera Chávez. On cluster duality fo Grassmannians, in preparation (2021)
BMN L. Bossinger, F. Mohammadi, A. Nájera Chávez. Gröbner degenerations of Grassmannians and universal cluster algebras. SIGMA 17, 059 (2021)
CMN M. Cheung, T. Magee, A. Nájera Chávez. Compactifications of cluster varieties and convexity. Int. Mat. Res. Not., rnab030 (2021)
EH L. Escobar, M. Harada. Wall-crossing for Newton-Okounkov bodies and the tropical Grass- mannian, Int. Math. Research Notices, rnaa230 (2020)
GHKK M. Gross, P. Hacking, S. Keel, M. Kontsevich. Canonical bases for cluster algebras. J. Amer. Math. Soc. 31, 2 497-608 (2018)
KM Kiumars Kaveh and Christopher Manon. Khovanskii bases, higher rank valuations, and tropical geometry. SIAM J.Appl. Algebra Geom., 3(2):292-336 (2019)
MS B. Marsh, J. Scott. Twists of Plucker Coordinates as Dimer Partition Functions. Commun. Math. Phys. 341, 821-884 (2016)
Scott J. Scott. Grassmannians and cluster algebras. Proc. London Math. Soc. (3) 92 (2006), no. 2, 345-380.
SW L. Shen, D. Weng. Cyclic Sieving and Cluster Duality of Grassmannian SIGMA 16, 067 (2020)

[^0]: ${ }^{2}$ in this case a rational polytope

