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Families of Gröbner degenerations Lara Bossinger 1/ 23



Overview

1 Motivation

2 Review on Gröbner theory
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Motivation

Understand how different toric degenerations of a projective variety
are related.

Slogan: Knowing all possible toric degenerations of a variety is
equivalent to knowing its mirror dual variety.

Today: understand those toric degenerations of a polarized
projective variety that “share a common basis”.
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Initial ideals

Let f =
∑

cαxα ∈ C[x1, . . . , xn] with cα ∈ C, α ∈ Zn
≥0 and

xα := xα1
1 · · · · · xαn

n .

For w ∈ Rn we define its initial form with respect to w as

inw (f ) :=
∑

w ·β=mincα 6=0{w ·α}

cβx
β.

For J ⊂ C[x1, . . . , xn] an ideal we define its initial ideal with
respect to w as inw (J) := 〈inw (f ) : f ∈ J〉.

Example

For f = x1x
2
2 + x2

1 + x2 ∈ C[x1, x2] and w = (1, 0) we compute

inw (f ) = x2.
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Gröbner fan and Gröbner degenerations

Definition

For an ideal J ⊂ C[x1, . . . , xn] its Gröbner fan GF (J) is Rn with
fan structure defined by

v ,w ∈ C ◦ ⇔ inv (J) = inw (J).

Notation: inC (J) := inw (J) for any w ∈ C ◦.

Every open cone C ◦ ∈ GF (J) defines a Gröbner degeneration

π : V → A1

with π−1(t) ∼= V (J) for t 6= 0 and π−1(0) = V (inC (J)).
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Example

Take I = 〈x1x
2
2 + x2

1 + x2〉 ⊂ C[x1, x2]. Then GF (I ) is R2 with the
fan structure:

〈x2
1 〉

〈x2〉

〈x1x
2
2 〉〈x1x

2
2 + x2

1 〉

〈x1x
2
2 + x2〉

〈x2
1 + x2〉
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Standard monomial basis

Let A := C[x1, . . . , xn]/J and Aτ := C[x1, . . . , xn]/inτ (J) for
τ ∈ GF (J).

Fix a maximal cone C ∈ GF (J), then the ideal inC (J) is generated
by monomials. For every face τ ⊆ C we define

BC ,τ := {x̄α ∈ Aτ | xα 6∈ inC (J)}.

Then BC ,τ is a vector space basis for Aτ called standard monomial
basis.

In particular, BC := BC ,{0} is a vector space basis for A = A{0}.

 All degenerations {V (inτ (J)) : τ ⊆ C} share one
standard monomial basis!
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by monomials. For every face τ ⊆ C we define

BC ,τ := {x̄α ∈ Aτ | xα 6∈ inC (J)}.

Then BC ,τ is a vector space basis for Aτ called standard monomial
basis1.

In particular, BC := BC ,{0} is a vector space basis for A = A{0}.

 All degenerations {V (inτ (J)) : τ ⊆ C} share one
standard monomial basis!

1Due to Lakshmibai–Seshadri, generalized by Sturmfels–White
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Family of ideals

Let C ∈ GF (J) be a maximal cone and choose r1, . . . , rm ray
generators of C . Let r be the matrix with rows r1, . . . , rm. Define
for f =

∑
α∈Zn

≥0
cαxα ∈ J its lift

f̃ := f (tr·e1x1, . . . , t
r·enxn)

m∏
i=1

t
−min{ri ·α|cα 6=0}
i .

Definition/Proposition

We define the lifted ideal

JC (t) := 〈g̃1, . . . , g̃s〉 ⊂ C[t1, . . . , tm][x1, . . . , xn]

where {g1, . . . , gs} is a reduced Gröbner basis for J and C .
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Example

r2

r1

〈x2〉

Take f = x1x
2
2 + x2

1 + x2 ∈ C[x1, x2] and consider
in GF (〈f 〉) the maximal cone C spanned by
r1 := ( 1 2 ) and r2 := ( 1 −1 ). We compute

f̃ (t1, t2) = f (t1t2x1, t
2
1 t
−1
2 x2)t−2

1 t1
2

= t3
1x1x

2
2 + t3

2x
2
1 + x2

f̃ (0, 0) = x2 = inC (f ),

f̃ (1, 0) = x1x
2
2 + x2 = inr1(f ),

f̃ (0, 1) = x2
1 + x2 = inr2(f ),

f̃ (1, 1) = f .
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Main result

Let AC := C[t1, . . . , tm][x1, . . . , xn]/JC (t).

Theorem (B.–Mohammadi–Nájera Chávez)

The algebra AC is a flat C[t1, . . . , tm]-module. Moreover,

πC : Spec(AC )→ Am

is a flat family with generic fiber V (J) and special fibers
isomorphic to V (inτ (J)) for every face τ ⊆ C.

Example

AC = C[t1, t2][x1, x2]/〈t3
1x1x

2
2 + t3

2x
2
1 + x2〉.
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Toric degenerations

GF (J) contains a subfan of dimension dimKrull A called the
tropicalization of J

Trop(J) := {w ∈ Rn | inw (J) 63 monomials}.

Corollary (B.–Mohammadi–Nájera Chávez)

Consider the fan Σ := C ∩ Trop(J). If there exists τ ∈ Σ with
inτ (J) binomial and prime, then the family

πC : Spec(AC )→ Am

contains toric fibers isomorphic to V (inτ (J)).
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Example

For J = 〈x1x
2
2 + x2

1 + x2〉 ⊂ C[x1, x2] the tropicalization Trop(J)
consists of three one-dimensional cones:

〈x1x
2
2 + x2

1 〉 〈x1x
2
2 + x2〉

〈x2
1 + x2〉

For C = 〈r1, r2〉 we have Σ = 〈r1〉 ∪ 〈r2〉 and V (in〈r1〉(J)) is toric.
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Application I: universal coefficients for cluster algebras

A cluster algebra2 A ⊂ C(x1, . . . , xn) is a commutative ring defined
recursively by

1 seeds: maximal sets of algebraically independent algebra
generators,
its elements are called cluster variables;

2 mutation: an operation to create a new seed from a given one
by replacing one element.

2Defined by Fomin–Zelevinsky.
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Application I: Grassmannians

Consider the Grassmannian Grk(Cn) with Plücker embedding3.
Then its homogeneous coordinate ring

Ak,n = C [pJ | J = {j1, . . . , jk} ⊂ [n]] /Ik,n

is a cluster algebra [Scott06].

k ≤ 2 Plücker coordinates = cluster variables.

k ≥ 3 Plücker coordinates ( cluster variables.

k = 2 or k = 3, n ∈ {6, 7, 8} finitely many seeds;

otherwise infinitely many seeds.

3Assume k ≤ b n
2
c.
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Application I: toric degenerations

Fix a seed s, then A can be endowed with principal coefficients at
the seed s

Aprin
s ⊂ C[t1, . . . , tn](x1, . . . , xn).

Under some technical assumptions:

1 Aprin
s has a C[t1, . . . , tn]-basis called ϑ-basis4, which is

independent of s;

2 if A is the homogeneous coordinate ring of a projective variety
X then Aprin

s defines a toric degeneration of X to Xs,0.

 all these degenerations share the ϑ-basis!

4Due to Gross–Hacking–Keel–Kontsevich.
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Application I: universal coefficients

Now assume A has finitely many seeds.

Algebraically, we can endow A with universal coefficients:

Auniv ⊂ C[t1, . . . , t#cv](x1, . . . , xn),

where #cv is the number of cluster variables.
Moreover, we have a unique specialization map for every seed s:

Auniv → Aprin
s .

⊕ Auniv! all toric degenerations Xs,0,

	 Auniv is defined only recursively.
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Application I: Grassmannians

Consider Grk(Cn) for (k, n) ∈ {(2, n), (3, 6)}.
Then there exists a presentation

Ak,n
∼= C[cluster variables]/Jk,n.

Gr2(Cn): {cluster variables} = {Plücker coordinates},
and J2,n = I2,n;

Gr3(C6): {cluster variables} = {Plücker coordinates, x , y},
and eliminating x and y from J3,6 gives I3,6.
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Application I: connection to our work

Theorem (B.–Mohammadi–Nájera Chávez)

There exists a unique maximal cone C in the Gröbner fan of Jk,n
such that

1 we have a canonical isomorphism AC
∼= Auniv

k,n ;

2 the standard monomial basis BC coincides with the ϑ-basis;

3 for every maximal cone τ ∈ C ∩ Trop(Jk,n) the variety
V (inτ (Jk,n)) is toric.
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Application II: Toric families

Let I ⊂ C[x1, . . . , xn] be a homogeneous prime ideal.
Assume there exits σ1, . . . , σs maximal cones in Trop(I ) with

inσi (I ) is toric for all i ,

σ1, . . . , σs are faces of one maximal cone C in GF (I ).

Denote by Σ the fan with maximal cones σ1, . . . , σs .

Theorem (Kaveh–Manon)

There exists a toric family ψΣ : Spec(RΣ)→ TV (Σ)
with generic fiber V (I )
and special fibers V (inσi (I )) over every torus fixed point.

Here RΣ is a flat sheaf of Rees algebras on TV (Σ)
and Spec(RΣ) a scheme glued from Spec(RΣ(U)) for
U ⊂ TV (Σ) open.
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Application II: Connection to our work

Can apply our construction to I and C  πC : Spec(AC )→ Am.

Corollary (B–Mohammadi–Nájera Chávez)

Let Σ be as above, then for every p ∈ TV (Σ) there exists a ∈ Am

such that
ψ−1

Σ (p) ∼= π−1
C (a) ∼= V (inτ (I ))

for some τ ∈ Σ ⊂ C ∩ Trop(I ). Moreover, if C is simplicial we
have a natural inclusion TV (Σ) ↪→ Am, so

Spec(RΣ) ψ−1
Σ (p) ∼= π−1

C (ι(p)) Spec(AC )

TV (Σ) Am

ψΣ πC

ι
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Application II: Summary

There are two flat families

ψΣ : Spec(RΣ)→ TV (Σ) and πC : Spec(AC )→ Am,

both degenerate V (I ) to toric varieties V (inσi (I )) that “share a
common basis”.

ψΣ has nice geometric properties (T -equivariant, reduced and
irreducible fibers), but the construction is not very explicit;

πC does not have as nice geometric properties, but the
construction is simple and well-adapted for computations.
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Thank you!
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