Álgebra moderna III: tarea 4

Fecha de entrega: 25 de septiembre, 2017

EJERCICIO 1

Sea C una circunferencia de radio 1. Construir la línea tangente a C en un punto dado $p \in C$ con regla y compás.

EJERCICIO 2

Construir polígonos regulares de 4,5,6,8,10 y 12 lados con regla y compás.

EJERCICIO 3

Sea $\zeta_5=e^{2\pi/5}$ raíz de $\Phi_5(x)=x^4+x^3+x^2+x+1$ polinomio ciclotómico. Mostrar que Φ_5 es soluble por radicales. Es decir,

$$\zeta_5 = \cos(2\pi/5) + i\sin(2\pi/5)$$
$$= \frac{\sqrt{5} - 1}{4} + \frac{i}{2}\sqrt{\frac{5 + \sqrt{5}}{2}}.$$

EJERCICIO 4

Sea ζ_5 como en el ejercicio anterior. Mostrar que $\mathbb{Q}(\zeta_5) = \mathbb{Q}(\xi)$, donde $\xi = \frac{i}{2}\sqrt{10 + 2\sqrt{5}}$. ¿ Cuál es el polinomio minimal de ξ ?

UN POLINOMIO DE GRADO 6 SOLUBLE POR RADICALES

Sea ζ_7 raíz del polinomio $\Phi_7(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$. Dividiendo Φ_7 por x^3 , tenemos

$$x^3 + x^2 + x + 1 + x^{-1} + x^{-2} + x^{-3}$$
.

Usar esto para demostrar que $\eta=\zeta_7+\zeta_7^{-1}=2\cos(2\pi/7)$ satisface la ecuación

$$y^3 + y^2 - 2y - 1$$
.

Concluir que $[\mathbb{Q}(\eta):\mathbb{Q}]=3$.

Aplicar la formular de Cardano para η y deducir que

$$\eta = \frac{1}{3} \left(-1 + \sqrt[3]{\frac{7}{2}(1 + 3i\sqrt{3})} + \sqrt[3]{\frac{7}{2}(1 - 3i\sqrt{3})} \right).$$

CONTINUACIÓN DEL EJERCICIO ANTERIOR

Mostrar que ζ_7 es raíz de $x^2 - \eta x + 1 \in \mathbb{Q}(\eta)[x]$ y deducir que $\zeta_7 = 1/2(\eta + \sqrt{\eta^2 - 4})$. Usando la expresión de η del ejercicio anterior deducir que ζ_7 se puede escribir con radicales como ¹

 $\zeta_7 = \cos(2\pi/7) + i\sin(2\pi/7)$

$$=\frac{1}{6}\left(-1+\sqrt[3]{\frac{7}{2}(1+3i\sqrt{3})}+\sqrt[3]{\frac{7}{2}(1-3i\sqrt{3})}\right)+\frac{i}{2}\sqrt{1-\left(\frac{1}{3}-\frac{1}{3}\sqrt[3]{\frac{7}{2}(1+3i\sqrt{3})}-\frac{1}{3}\sqrt[3]{\frac{7}{2}(1-3i\sqrt{3})}\right)^{2}}$$

Con esto acabamos de escribir una solución al polinomio $\Phi_7(x) = x^6 + x^5 + x^4 + x^3 + x^2 + x + 1$ usando radicales.

EXPOSICIONES

Sea n un número para el cual sabemos construir un polígono regular de n lados con regla y compás (eg. $n = 3, 4, 5, 6, _, 8, _, 10,$, etc).

• ¿Cuál es el grado de la extensión $[\mathbb{Q}(\zeta_n) : \mathbb{Q}]$, donde ζ_n es una n-ésima raíz de la unidad.

 $^{^{1}\}cos(2\pi/7)$ es aproximadamente 0.623489.