Álgebra moderna III: tarea 5

Fecha de entrega: 2 de octubre, 2017

EIERCICIO 1

Construir un pentágono regular con regla y compás. Localizar en dicha construcción el momento en que se tiene que considerar extensiones de campo de $\mathbb Q$ para construirlo.

EJERCICIO 2

Graficar en el plano complejo los números constructibles involucrados en la construcción del pentágono y exágono.

EJERCICIO 3

Sea $\zeta_5 = e^{2\pi i/5}$. Escribir una base de $V = \mathbb{Q}(\zeta_5)$ si se le considera un espacio vectorial sobre \mathbb{Q} . Considere la función $T: V \to V$ definida por $z \mapsto \overline{z}$. Con respecto a la base de arriba, escriba la matriz de T. ¿Es T un homomorfismo de campo?

EJERCICIO 4

Sea ζ_5 y V como en el ejercicio anterior. Mostrar que $T_r: V \to V$, definido como $\zeta_5 \to \zeta_5^r$, con $1 \le r < 5$, es un homomorfismo de campo. Si T es el homomorfismo del ejercicio anterior, ¿es $T = T_r$ para algún r?.

CAMPOS FIJOS

Sean $T_r: V \to V$ como en el ejercicio anterior. Considerar el campo $\mathbb{Q}(\cos(2\pi i/5)) \subset V$. ¿Existe r, tal que T_r restringido al campo $\mathbb{Q}(\cos(2\pi i/5))$ es la identidad? ¿cuáles?

EJERCICIO 6

Mostrar de dos maneras que $\zeta_3 = e^{2\pi i/3}$ es constructible: dar la prueba geométrica directa y la prueba usando el teorema de la clase del 19 de septiembre.

EXPOSICIONES

Demostrar o refutar las siguientes afirmaciones:

- El triángulo de máxima área inscrito en la circunferencia unitaria es equilatero.
- Sea $\Phi_9(x) = x^6 + x^3 + 1$ el noveno polinomio ciclotómico. Si ζ_9 es una raíz de Φ_9 , ésta se puede escribir con radicales.
- El triángulo inscrito en la circunferencia unitaria formado por ABC, donde A y B están diametralmente opuestos y C distinto de A y B, es triángulo rectángulo.
- Sean C y C' dos círculos tangentes con punto de tangencia x. Denotemos con $p,q \in C$ dos puntos distintos entre sí y distintos a x. Dibujar la línea $L = \overline{px}$ y la línea $L' = \overline{qx}$. Si denotamos $L \cap C' = P$ y además $L' \cap C' = Q$, entonces las líneas \overline{PQ} y \overline{pq} son paralelas.