Álgebra moderna III: tarea 9

Fecha de entrega: 27 de noviembre, 2017

EJERCICIO 1

Considere la extensión ciclotómica $\mathbb{Q} \subset \mathbb{Q}(\zeta_7) = L$ y su grupo de Galois $G = \operatorname{Gal}(\mathbb{Q}(\zeta_7) \setminus \mathbb{Q})$. Sea $\tau \in G$ elemento de orden 3 y $\langle \tau \rangle = H \subset G$ el sub grupo que éste genera. Mostrar que $[L_H : \mathbb{Q}] = 2$, donde L_H denota el campo fijado por H. Esta igualdad nos dice que

$$L_H = \mathbb{Q}(\sqrt{d}).$$

¿Qué entero es d?

EJERCICIO 2

Considere la extensión ciclotómica $\mathbb{Q} \subset \mathbb{Q}(\zeta_{17})$. Denotanto $\zeta = \zeta_{17}$, escribimos

$$\gamma = \zeta + \zeta^2 + \zeta^4 + \zeta^8 + \zeta^{-1} + \zeta^{-2} + \zeta^{-4} + \zeta^{-8}.$$

Mostrar $\mathbb{Q} \subset \mathbb{Q}(\gamma) \subset \mathbb{Q}(\zeta)$, donde $[\mathbb{Q}(\gamma) : \mathbb{Q}] = 2$. Esto implica

$$\mathbb{Q}(\gamma) = \mathbb{Q}(\sqrt{d}).$$

¿Qué entero es d?

Pista: ¿Cuál es el polinomio minimal de γ?

EJERCIOCIO 3

Probar que $-(\zeta^3 + \zeta^2)$ es una unidad en el anillo

$$\mathbb{Z} + \mathbb{Z}\zeta_5 + \mathbb{Z}\zeta_5^2 + \mathbb{Z}\zeta_5^3 + \mathbb{Z}\zeta_5^4 \subset \mathbb{Q}(\zeta_5).$$

¿Qué relación hay entre esta unidad y las unidades de $\mathbb{Q}(\sqrt{5})$?

EJERCICIO 4

Sea ζ_p una p-ésima raíz primitiva de la unidad. Evaluar

$$\prod_{i=1}^{p-1} (1 - \zeta^i) = ?$$

EJERCICIO 5

Sea $G = (\mathbb{Z}/p)^*$ el grupo ciclíco de unidades de \mathbb{Z}/p . Mostrar que el sub conjunto H definido como

$$H = \{q \in G \mid q \text{ es residuo cuadrático}\}\$$

es un sub grupo de G. Para p = 5,7,17. ¿Cuál es el índice [G:H]?

EJERCICIO 5 BIS: PUNTO EXTRA

Sea $\mathbb{Q} \subset \mathbb{Q}(\zeta_{17}) = L$ extensión ciclotómica y $\mathbb{Q} \subset L_H \subset \mathbb{Q}(\zeta_{17})$, donde $H \subset (\mathbb{Z}/17)^*$ es como en el ejercicio anterior. Del ejercicio anterior se sigue que $L_H = \mathbb{Q}(\tau)$ para algún τ , ¿cuál? Mostrar¹ que $\sigma_q \tau \in \operatorname{Gal}(L \setminus L_H)$ si y solo si $\sigma_q(\tau) = \tau$ y esto es si y solo si $q \in (\mathbb{Z}/17)^*$ es residuo cuadrático.

¿Será cierto en general?: Sea p,q pimos distintos y $\mathbb{Q} \subset \mathbb{Q}(\tau) \subset \mathbb{Q}(\zeta_p)$, tal que $[\mathbb{Q}(\tau):\mathbb{Q}]=2$. Entonces,

$$\sigma_q \tau = \left(\frac{q}{p}\right) \tau,$$

donde el coeficiente $\left(\frac{q}{p}\right) = \pm 1$, dependiendo de si q es residuo cuadrático o no, módulo p.

 $^{^1 \}mathrm{El}$ automorfismo $\sigma_q \in \mathrm{Gal}(L \backslash \mathbb{Q})$ está definido por mandar ζ a $\zeta^q.$