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Abstract. These are the lecture notes of the seminar talk delivered by Robin

Hartshorne at the “Seminario nacional de geometŕıa algebraica” in México,
October 13th 2021. In the talk, he discussed some open problems concerning

curves, together with examples, and ideas about how to study the problems.

1. Perrin’s problem

Problem 1.1. [Pe87] Given a family of curves in P3, how many points in
general position can we assign to a curve in the family?

Let us fix a degree d and a genus g. Given an irreducible component C of the
Hilbert scheme of degree d and genus g curves Hd,g, we can rephrase the problem
above as follows: find the maximum number m = m(C ) such that m general points
in P3 are contained in an element of C .

The analogous problem in P2 has a simple answer. Plane curves C ⊆ P2 of degree
d form a linear system |C| of dimension

dim H0(P2,OP2(d)) =

(
d+ 2

2

)
from which we conclude that

m(|C|) = dim |C| = d(d+ 3)

2
.

The situation in P3 is more delicate. Let us work out an example.

Example 1.2. If C ⊆ H3,0 is the component parametrizing twisted cubic
curves, then m(C ) = 6.

Proof. The dimension of the componenent C is 12; and each point imposes 2
conditions in the curves of C . Therefore, m(C ) ≤ 6.

Now consider 6 general points p1, . . . , p6 ∈ P3. Take a general point p7 in
the line L passing through p1 and p2. The linear system Q of quadric surfaces
containing p1, . . . , p7 has dimension 2. If we take Q1, Q2 ∈ Q then the intersection
Q1 ∩Q2 is the union of L and a twisted cubic curve C which contains p3, p4, p5, p6.

Claim: We can choose Q1 and Q2 so that p1, . . . , p6 ∈ C. �
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Example 1.3. Consider the Hilbert scheme H9,10. This scheme has two irre-
ducible components:

1) The family H ′ consisting of complete intersections of 2 cubic surfaces, of
dimension 36.

2) The family H ′′ consisting of curves of bi-degree (3, 6) on a nonsingular
quadric surface, of dimension 36.

It turns out that for the first family, m(H ′) = 18 is the expected number. How-
ever, 9 general points are contained in a unique quadric surface, which implies
that m(H ′′) = 9. This exhibits that the number m can vary depending on the
component of Hd,g.

In general Problem 1.1 is still open, even for families of ACM curves. Daniel Perrin
studied this problem in [Pe87] and solved it in some cases. One of such cases,
somewhat unintuituve, considers a cohomological property of the normal bundle.

Proposition 1.4. [Pe87, Prop. 5.6, Cor. 5.7] Let C ∈Hd,g be a smooth and
irreducible curve. If the normal bundle of the curve N = NC/P3 satisfies

H0(C,N(−2)) = 0,

then:

a) H1(N) = 0,
b) the component HC ⊂H containing C has the expected dimension 4d,
c) m(HC) = 2d.

sketch of the proof: If Z ⊂ C is the divisor cut out by a general quadric
surface, we get an exact sequence

0→ N(−2)→ N → NZ → 0.

If H0(C,N(−2)) = 0 then the deformations of C surject onto the deformations of
Z, which means that one can move the 2d points Z in general directions and there
will be a deformation of C following them. �

In proving the previous result, Perrin cites a result by Ellia which needs the following
result.

Theorem 1.5 (Kleppe). There is an isomorphism

H1(C,NC/P3) = Ext2(IC , IC).

The previous result by Kleppe is not obvious. However, in the case of ACM curves
of degree 6 and genus 3 and elementary proof of this result can be worked out.
These curves are included in the following.

Proposition 1.6. [Pe87, Prop. 5.11.bis] Let s be a positive integer. If C is a
smooth curve admitting a resolution

0→ OP3(−s− 1)s → OP3(−s)s+1 → IC → 0

then
H0(C,NC/P3(−2)) = 0.

Question 1.7. The number m(HC) is subject to two restrictions:
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(a) m(HC) is less than half the dimension of HC ; and
(b) m(HC) is restricted by the maximum number of general points that a surface

(containing C) of low degree can pass through.

Are these the only restrictions?

It would be interesting to answer Question 1.7 in the case of ACM curves.

Definition 1.8. (Joe Harris) Let C ⊂ P3 be a smooth, irreducible curve of
degree d and genus g. We denote the component of the Hilbert scheme Hd,g that
contains C by HC and we say that HC parametrizes flexible curves if

1) dim HC = 4d, and
2) m(HC) = 2d.

Example 1.9. Let C be a curve of degree d = 12 and genus g = 17 with the
following pure quadratic minimal resolution

0→ OP3(−6)2 → OP3(−4)3 → IC → 0.

It follows that h0(N) = 48 and also that HC is generically smooth. Notice that
h0(N(−2)) = 6. Are the curves of HC flexible?

2. Normal bundle of space curves

Problem 2.1. Let C ⊂ P3 be a smooth and irreducible curve and N = NC/P3

be its a normal bundle. When is N (semi-)stable? When is H1(C,N(−2)) = 0?

The normal bundle N of a (locally complete intersection) curve C is important for
many reasons. For example, H0(C,N) can be identified with the Zariski tangent
space at [C] of the Hilbert scheme HC ; whereas H1(C,N) is the space of obstruc-
tions. Furthermore, if H1(C,N) = 0 then HC will be smooth at [C]; and by the
Riemann-Roch theorem, one can compute that h0(C,N) = 4 · deg C.

Proposition 1.4 concludes the flexibility of the family in which a curve C sits as long
as its normal bundle satisfies h0(N(−2)) = 0. Since such a proposition depends on
a non trivial result by Kleppe, let us work out an example for which we can show
the vanishing of h0 directly.

Example 2.2. Consider an ACM curve C ∈H6,3, whose ideal sheaf has mini-
mal free resolution

0→ OP3(−4)3 → OP3(−3)4 → IC → 0.

Taking Hom(−,OC(−2)) we get an exact sequence

(2.1) 0→ N(−2)→ OC(1)4 → OC(2)3.

By the Riemann-Roch theorem we get

h0(C,OC(1)) = 4

h0(C,OC(2)) = 10.
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Since C is ACM, the following diagram is commutative and has isomorphisms in
the vertical arrows:

H0(C,OC(1))4 // H0(C,OC(2))3

H0(P3,OP3(1))4

OO

// H0(P3,OP3(2))3

OO

The bottom arrow is injective (this can easily be verified). Therefore, by the exact
sequence (2.1) we get that

H0(C,N(−2)) = 0.

Proposition 2.3. Let C be a smooth, irreducible curve. If

H0(C,N(−2)) = 0

then N is semi-stable.

Proof. Suppose there is a line bundle L ⊂ N with

deg(L) >
1

2
deg(N) = 2d+ g − 1.

Applying the Riemann-Roch formula to L(−2) we get

h0(C,L(−2)) ≥ deg(L(−2)) + 1− g
> 2d+ g − 1− 2d+ 1− g
= 0.

Thus

0 6= H0(C,L(−2)) ⊂ H0(C,N(−2)).

�

The previous proposition provides a sufficient condition for the stability of N . Note
that a necessary condition for N to be stable is the inequality

g < d(s− 2) + 1,

where s is the minimal degree of a surface containing C. Indeed, if Y is a degree s
surface containing C, we have an injective morphism C

OP3(−s) = IY → IC/I2C .

Dualizing this inclusion yields a surjection

N → OP3(s)

and the inequality guarantees that this surjection does not destabilize N . One
could ask when is this condition sufficient for N to be stable.

Problem 2.4. If C is an ACM curve and g < d(s− 2) + 1, is N stable?

For a low degree ACM curve, one may compute its h-vector and try to figure it out
component by component.
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3. Peskine’s problem

Problem 3.1. Consider a family of irreducible, smooth curves Ct in P3
k. If for

all t 6= 0, the curve Ct is a complete intersection, is C0 a complete intersection too?
Assume char(k) = 0.

Notice that, a priori, we do not assume that the degrees of the defining equations
are constant.

Smoothness of the curves Ct (even for t = 0), the characteristic of the field as well
as the dimension of the projective space are all essential hypothesis. There are
counterexamples otherwise. For example, there are families of curves where Ct is a
smooth complete intersection of 2 quadrics for t 6= 0, and the central fiber C0 is a
plane cubic with an incident line; which not a complete intersection. Furthermore,
Kumar has given counterexamples to Problem 3.1 when the characteristic of the
field char(k) = p > 0 [Ku91].

Ellia and Hartshorne proved that for complete intersections of degrees a ≤ 4 and
b ≤ 5 the answer to Question 3.1 is affirmative [EllHa99]. In this paper, the
authors conjectured the following.

Conjecture 3.2. For any curve C ⊆ P3 let s(C) be the least degree of a
surface containing C. Assume that Ct is a flat family of smooth irreducible curves
such that s(Ct) = s for t 6= 0. If deg(Ct) ≥ s2, then s(C0) = s.

Example 3.3. The inequality deg(Ct) is necessary: the curves in Example 2.2
can be specialized to smooth curves of bi-degree (2, 4) on a smooth quadric surface
[Ha10, Ex. 8.8].

Remark 3.4. Conjecture 3.2 implies Peskine’s problem. In fact, if a curve C
is a complete intersection of surfaces of degrees a ≤ b then s(C) = a. If Ct is
a family as in Peskine’s problem, then deg(Ct) = ab ≥ a2; therefore, Conjecture
3.2 implies that a = s(C0). Let S be a degree a surface containing C0. By the
semicontinuity of h0(P3, ICt

(b)), there is a degree b surface containing C0 with
no common components with S as C0 was assumed to be smooth. Given that
deg(C0) = ab, it follows that C0 is the complete intersection of these surfaces.

Example 3.5. Consider smooth curves of degree d = 9 and genus g = 10. The
Hilbert scheme of such curves has two components parametrizing:

a) complete intersections of degrees a = b = 3, and
b) curves of bi-degree (3, 6) in smooth quadric surfaces.

In this context, Peskine’s problem asks whether or not there can be a family inside
the first component specializing to a point in the second one. This setting does not
provide a counterexample to Peskine’s problem as no such family exists.

One possible strategy to produce counterexamples to Conjecture 3.2 is to consider
rational curves. The locus of degree d rational curves inside its Hilbert scheme is
smooth and irreducible of dimension 4d. If d ≥ 9 then the general such curve is not
contained in a cubic surface. We could consider the family of curves contained in
cubics and try to produce specializations to a smooth curve contained in a quadric.
This would be a counterexample.
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4. Behaviour of Rao modules

Definition 4.1. The Rao module, or deficiency module, of a curve C ⊂ P3 is
the module

MC :=
⊕
n∈Z

H1(P3, IC(n)).

Question 4.2. How does the Rao module behave in a family?

It follows from semi-continuity that the dimensions in each degree can only increase.
But what about the module structure? For example, is there any limitation on the
Rao module of a curve that is a limit of ACM curves? (see [HaDesPe97]).

Theorem 4.3 (Rao). [Ra79, Proposition 2.3, Theorem 2.6] Two locally Cohen-
Macaulay curves in P3 are (evenly) linked if and only if their Rao modules are
isomorphic, up to a shift. Furthermore, given any finite-length module M there is
a smooth curve with Rao module isomorphic to (a shift of) M .

One way to study Question 4.2 is to find a relative version of the previous theorem.
However, the definition of Rao modules for families of curves is not straightforward.
For example, one can consider the functor that associates to T the function F : t 7→
MCt

and try to invetigate if two families of curves Ct and C ′t parametrized by T

C ′t, Ct // P3 × T

π

��
T,

are evenly linked (by a family of liasons) if and only if the F(π(C ′t)) = F(π(Ct)).
However, this association behaves badly and does not provide enough information.

Another possibility is to consider the cohomology groups H1(P3, ICt
), which nat-

urally leads to R1f∗IC(d). However this is not sufficient either as problems with
base extensions occur. For example, tensoring with OT,t does not always recover
the Rao module of Ct.

The correct notion can be stated in terms of triads. These objects have desired prop-
erties and I refer the reader to [HaDesPe97], [HaDesPe98] and [HaDesPe00]
for the technical details.
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