Geometria algebraica I
10 Junio = Penúltima clase

Ayer:
$\mathbb{R}^{2} \rightarrow \rightarrow \mathbb{P}^{4}$ aplicación

$$
\begin{aligned}
E \subseteq & \frac{\text { decconet }}{f\left(\mathbb{R}^{2} \backslash\{p\rangle\right)} \subseteq \mathbb{P}^{4} \\
& {\left[\begin{array}{l}
\text { cd }-e^{2}=0 \\
a \\
a d-b e=0 \\
a d
\end{array}\right] }
\end{aligned}
$$

Genvar el espacio de cómicat en \mathbb{P}^{2} que paran por $[0: 0: 1]=p$
Ayer: tomamos la corta $\left.A^{4}=\{e=1]\right\} \leqslant R^{4}$

E cae fuera de ella!
Remedio:

$$
\begin{aligned}
& A_{0}^{2} \\
& \begin{array}{c}
(x, y) \\
(x, y) \longmapsto
\end{array} A^{4}=\{a=1\} \\
& \longrightarrow\left(\frac{y}{x}, \frac{x^{2}}{x}, \frac{y^{2}}{x}, \frac{x^{y}}{x}\right)=\left(\frac{y}{x}, x, \frac{y^{2}}{x}, y\right)
\end{aligned}
$$

$$
\underset{\{(0, a)\}}{E} \leqslant A_{(x, a)}^{A_{1}^{2}}
$$

$$
=\left(a, x, a^{2} x, a x\right)
$$

- Línea en A^{4}.

Moraleja:
1)
\tilde{f} es morfismo
birracional
(en so simagen)

$$
\begin{aligned}
& \frac{\mathbb{P}^{2}}{\hat{p}} \xrightarrow{f} \mathbb{P}^{4} \\
& \underset{B}{ } e_{p} p^{2} / \tilde{f}
\end{aligned}
$$

Se resuelve patando a la exploscón de los puntor dounde mo extá defimido f

Teoremar: Si $f: s \rightarrow s^{\prime}$ aphicación racional entre superficies suaves, antruces $7 S^{\prime \prime} \vec{x}^{s}$ superficie tal que $\tilde{f} \rightarrow s^{\prime}$ es
 morfismo.
2)

es un encaje de $\mathbb{P}^{2} \backslash\left\langle P h \hookrightarrow \mathbb{P}^{\top}\right.$ \tilde{f} u u de $B e_{p} \mathbb{R}^{2} \subseteq \mathbb{P}^{4}$
3)

$$
\begin{array}{ll}
(x, a) \in \mathbb{A}_{(x, a)}^{2} & \leq B l_{0} A \subseteq B l_{p} \mathbb{P}^{2} \\
\pi_{*} \\
(x, a x) \in \mathbb{A}(x, y) & \geq C \longmapsto \not \longmapsto f(c)=\text { cónica }
\end{array}
$$

¿Qué pasa si c zp?
¿Quién es $f(c) \leq \mathbb{P}^{4}$?

Resp: $\quad\left\{C_{t}\right\}=$ pincel de l'neat
Proposición: $\bar{f}\left(c_{t}\right)=$ Reglas de S lnmeas $S=\tilde{f}\left(\xi l_{p}{ }^{3}\right)$ $\overline{f(E)}=$ Directriz de S

OBSERVaCión: $[x: y: z] \stackrel{f}{\longmapsto}\left[x z: y z: x y: x^{2}: y^{2}\right]$

$$
\begin{array}{ll}
\mathbb{R}^{2} \longrightarrow \mathbb{R}^{4} & g(x, y, z)=y z \\
& {[1: 02]=[2: 0: 4]} \\
g \notin \mathcal{O}_{\mathbb{R}^{2}}=\{\text { funciones } \\
\text { regulares }\{ & g(1: 0: 2) \neq g(2: 1: 4)
\end{array}
$$

Tetrema: V variedad proyectiva ioredvable

$$
\Rightarrow O_{V}=\{\text { furcioves Regulcrear }\}=\mathbb{E} .
$$

