Geometría algebraica: tarea 2

Fecha de entrega: 3 de marzo 2021

En todos los ejercicios asumir que el campo es algebraicamente cerrado.

EJERCICIO 1

Cosideremos el morfismo entre espacios afines $\phi: \mathbb{A}^2 \to \mathbb{A}^3$ definido como sigue:

$$(x, y) \mapsto (x + y, x - y, x + 2y).$$

Escribir la imagen de ϕ como los ceros de un polinomio. ¿Es claro que im (ϕ) es cerrado?

EJERCICIO 2

Considerar la siguiente curva en el plano afín $C \subset \mathbb{A}^2_{\mathbb{C}}$,

$$C = \{(x, y) \in \mathbb{A}_{\mathbb{C}}^2 \mid x^2 = y^2 + y^3\}.$$

Si P(t) denota el pincel de líneas en $\mathbb{A}^2_{\mathbb{C}}$ basadas en O=(0,0), calcular la intersection $P(t)\cap C=\{O,p_t\}$. Mostrar que obtenemos un morfismo $\mathbb{A}^1_{\mathbb{C}}\to C$, definido por $t\mapsto p_t$. ¿Es ϕ inyectiva?

Una carta de
$$\mathrm{BL}_p(\mathbb{A}^2)$$

Considerar el morfismo $\phi: \mathbb{A}^2 \to \mathbb{A}^2$ definido como $(x, y) \mapsto (x, xy)$. Notar que ϕ no es biyectiva. ¿Es la imagen de ϕ un conjunto cerrado o abierto? ¿Es la imagen de ϕ densa? ¿Cómo son las fibras $\phi^{-1}(p)$, donde $p \in \mathbb{A}^2$?

EJERCICIO 4

Considerar la curva $C \subset \mathbb{C}^2$ definida por y = p(x), donde $p \in \mathbb{C}[x]$ es no constante. Mostrar que existe una biyección entre esta curva y \mathbb{C}^1 y por lo tanto no es un conjunto compacto; con la topología Euclidiana de \mathbb{C}^2 . Es más, ninguna curva plana

$$C = \{(x, y) \in \mathbb{C}^2 \mid P(x, y) = 0\}$$

es un conjunto compacto de \mathbb{C}^2 .

EJERCICIO 5

Considerar en $\mathbb{A}^2_{\mathbb{C}}$ los siguientes 5 puntos

$$p_1 = (1,1), \ p_2 = (1,2), \ p_3 = (0,1), \ p_4 = (1,0), \ p_5 = (3,3).$$

Escribir los ideales $I(\cup_{i=1}^{5} p_i)$ y $I(\cup_{i=1}^{5} p_i)$.

EJERCICIO 6

Considerar la siguientes variedades afines

$$V(xy-1) \subset \mathbb{A}^2_{\mathbb{C}}$$
 y $V(x^2-y^2-1) \subset \mathbb{A}^2_{\mathbb{C}}$.

Mostrar que existe un automorfismo de \mathbb{A}^2 que manda una en la otra.

LA CÚBICA ALABEADA

Consideremos el morfismo entre espacios afines

$$\phi: \mathbb{A}^1 \to \mathbb{A}^3$$

definido como $t \mapsto (t, t^2, t^3)$. Llamaremos a la imagen $C = \operatorname{im}(\phi)$ cúbica alabeada. Mostrar que C es un conjunto cerrado. Determinar los generadores de I(C). ¿Es ϕ biyectiva?

ARGUMENTAR A FAVOR O EN CONTRA

Consideremos un par de polinomios $f,g\in\mathbb{F}[t]$ de grado positivo y el morfismo entre espacios afines

$$\phi: \mathbb{A}^1 \to \mathbb{A}^2$$

definido por $t \mapsto (f(t), g(t))$. Entonces la imagen $\text{Im}(\phi)$ es un conjunto cerrado.