Álgebra moderna II: tarea 9

Fecha de entrega: 5 de mayo, 2017

EJERCICIO 1

Si $d \equiv 1 \mod 4$, entonces

$$\mathbb{N}(a+b\sqrt{d}) = a^2 - db^2$$

es un número entero.

EJERCICIO 2

Sea R el anillo de enteros algebraicos del campo $\mathbb{Q}[\sqrt{d}]$,

$$R_D = \mathbb{Z} + \mathbb{Z} \left(\frac{D + \sqrt{D}}{2} \right).$$

Calcular las unidades de R_D , con D < 0.

EJERCICIO 3

Sea *R* el anillo de enteros algebraicos del campo $\mathbb{Q}[\sqrt{5}]$,

$$R = \mathbb{Z} + \mathbb{Z} \left(\frac{1 + \sqrt{5}}{2} \right).$$

Escribamos $\alpha=\frac{1+\sqrt{5}}{2}$ la razón áurea. ¿Es α^n , con $n\in\mathbb{Z}$, una unidad de R?

APROXIMACIÓN DIOFANTINA

Sea $\alpha \in R = \mathbb{Z} + \mathbb{Z}\left(\frac{1+\sqrt{5}}{2}\right)$ como en el ejercicio anterior. Si escribimos $\alpha^n = (a_n + b_n\sqrt{5})$, verificar que el cociente de racionales, a_n/b_n aproxima a un número irracional, a saber

$$\frac{a_n}{b_n} \approx \sqrt{5}$$
.

EJERCICIO 5

Sea $R_D \subset \mathbb{Q}[\sqrt{d}]$, con $d \equiv 3 \mod 4$ y $d \neq -1$, el anillo de enteros algebraicos. Mostrar que 2 es un elemento irreducible, pero no es un elemento primo.

EJERCICIO 6

Sea $R \subset \mathbb{Q}[\sqrt{d}]$ el anillo de enteros algebraicos. Supongamos que R es un dominio de factorización única. Mostrar que si $a \in R$ es un elemento irreducible entonces es un elemento primo.