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This talked is based on the minicourse “Introduction to spherical vari-
eties over the complex numbers” given by Michel Brion in Klöster Heiligkreuz-
tal on March 17-25, 2014. References can be found at

a) Nicolas Perrin: Introduction to spherical varieties,
http://relaunch.hcm.uni-bonn.de/fileadmin/perrin/spherical.pdf

b) Nicolas Perrin: On the geometry of spherical varieties,
http://reh.math.uni-duesseldorf.de/~perrin/survey.pdf

c) Michel Brion: Spherical varieties,
http://www-fourier.ujf-grenoble.fr/~mbrion/notes_bremen.pdf

1 Introduction and examples

Thoughout this talk, G will be a connected reductive group over the complex
numbers, and B a Borel subgroup (i. e. a maximal solvable subgroup); the
main example to think about is when G is GLn(C), and B is the subgroup
of upper triangular matrices.

Definition 1.1. Let H ⊆ G be a closed subgroup of G; an homogeneous
space is the algebraic variety G/H.

Elements of G/H will be denoted by aH = {ah | h ∈ H} where a ∈ G;
note that we have an action of G on G/H, such that

g · aH = (ga)H = {gah | h ∈ H}.

Definition 1.2. An homogenous space G/H is called spherical, if B acts
on it with an open orbit.

The condition on B seems very random; we will see though that it
has many deep consequences; for instance, a spherical space can have only
finitely many B-orbits. It also has huge consequences in terms of embed-
dings.
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Definition 1.3. An equivariant open embedding of a spherical variety G/H ↪→
X with X normal is called spherical embedding.

The main result (probably) of the theory of spherical varieties is the
complete classification in terms of coloured fans of the spherical embeddings,
given a spherical variety G/H, due to Luna and Vust [2], that will be the
main content of my next talk. Let’s now see some examples.

Example 1.4. Toric varieties are a particular case of spherical embeddings.
To see this, take G to the the complex torus (C∗)r; its Borel subgroup is
G itself, so G/H is going to be spherical for every choice of H, so that we
may very well take as H the trivial subgroups; for this choice, spherical
embeddings are equivariant open embeddings

(C∗)r ↪→ X

that are completely classified by the theory of polyhedral fans. The Luna-
Vust classification is indeed a generalization of the theory of toric varieties;
we will see how in this more general setting, the main philosophy of toric
varieties applies - that is, geometric properties of the toric varieties can be
read only from the combinatorial data of its polyhedral fan.

Example 1.5. Let P be a parabolic subgroup of G; if G is GLn(C), you can
think at P as any block-upper-triangular subgroup of matrices; homogeneous
spaces G/P are called flag varieties; these are all spherical varieties, but
their theory of embeddings is not particularly interesting because they are
already projective.

Example 1.6. Let σ be an involution of G, and H = Gσ the subgroup of
fixed elements. Then G/H is a particular kind of spherical variety called
symmetric variety, and Luna-Vust theory again classifies all its spherical
embeddings; one particular of these embeddings is going to be the main
content of the following talk, the wonderful compactification that De Concini
and Procesi describe in [1].

Example 1.7. Consider the space of all smooth quadric hypersurfaces in
Pn; this is an homogeneous space by the action of PGLn+1, and is in fact
PGLn+1/POn+1. This is a spherical variety; in fact, it comes as a particular
situation of the previous example, considering the involution σ on PGLn+1

such that
σ(A) =t A−1.

This space embeds as an open subset of the space P(n+2
n )−1 of polynomial

of degree 2 in n + 1 variables; this is an example of spherical embeddings.
Another example is the space of complete quadrics, the wonderful compact-
ification, that will (probably) come up the last talk of the day.
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Example 1.8. Consider the space of smooth twisted cubic curves in P3;
this can also be seen as an homogeneous space, PGL4/PGL2; this is not a
spherical variety; in fact, B has dimension 9, while G/H has dimension 12;
in this case we say the homogeneous space has complexity 3, because B has
orbits at least of codimension 3.

2 Multiplicity free property

Let us now analyze the various properties of spherical varieties. The first one
is the multiplicity free property ; this follows directly from the hypothesis of
the open B-orbit. First, let us remind some notions of representation theory.

Remark 2.1. Let V be an finite dimensional irreducible representation of
G; in V we have a vector v called the highest weight vector, unique up to a
constant, such that it is semiinvariant for the action of the Borel subgroup
B , i,e,

Bv ⊂ Cv, b · v = λ(b)v.

This defines then a character of B, that is a group homomorphism λ : B →
C∗, such that λ(b) is the only number such that b · v = λ(b)v. Moreover,
the representation V is uniquely determined by the character λ, and for all
dominant characters λ we have an irreducible representation V (λ) of G; the
set of dominant characters will be denoted by Λ+, that is the intersection of
a lattice and a convex cone, so that it is going to have a monoid structure.

Let us consider now a representation V of G, that splits in irreducibles

V =

n⊕
i=1

V (λi).

Let us consider now the subspace of B-semiinvariant elements V (B); this
is going to be generated by all highest weight vectors of the irreducible
components V (λi); so, understanding V (B) and the characters of B induced
by its vectors, we can get the whole decomposition in irreducibles of V .

We are ready now to state and prove the first main property of spherical
varieties.

Proposition 2.2. For any spherical variety G/H, considering its coordinate
ring C[G/H] as a G representation, in its decomposition any irreducible
representation V (λ) of G appears with multiplicity at most 1.

Proof. Consider now the ring of B semiinvariants

C[G/H](B) =
⊕
Λ+

C[G/H]
(B)
λ
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and we want to prove that every component C[G/H]
(B)
λ is one dimensional

(remember, its dimension will tell the multiplicity of V (λ) in C[G/H]). Sup-

pose f1 and f2 belong to the same component C[G/H]
(B)
λ ; then, the quotient

f1/f2 is going to be a rational function on G/H that is invariant by B, be-
cause

b · f1

f2
=
λ(b)f1

λ(b)f2
=
f1

f2
,

so it is constant on B orbits; but we have an open (dense) B orbit, so that

f1/f2 is indeed a constant and C[G/H]
(B)
λ .

In fact, a stronger result holds.

Proposition 2.3. Let X be a normal affine variety with a G-action, then
X is a spherical embedding if and only if C[X] is multiplicity free, i, e,

C[X] =
⊕
Λ(X)

V (λ),

where Λ(X) is a submonoid of Λ+.

3 G-orbits and B-orbits

Another very important property of X spherical embeddings is about G-
orbits.

Proposition 3.1. Let X be a spherical embedding, then every G orbit in it
is spherical. Furthermore, there are only finitely many G-orbits.

We will (probably) see a sketch of a proof of this result in my next talk.

Example 3.2. Let us consider again the space of twisted cubics curves in
space PGL4/PGL2, that is not spherical, and its equivariant compactifica-
tion given by the Kontsevich space of stable mapsM0,0(P3, 3). Considering
the most degenerate situation, that is when the stable map is a degree 3 map
onto a line, the stable map is uniquely determined by the image line and
the 4 ramification points; on such a data PGL4 acts with infinitely many
orbits.

We can dig even deeper, analyzing B-orbits.

Proposition 3.3. Every spherical variety G/H contains finitely many B-
orbits.

Example 3.4. These orbits are very important; for instance, in the case of
the flag varieties G/P , the B orbits are called Schubert cycles.

Corollary 3.5. Let X be a spherical embedding, then it has finitely many
B-orbits.
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mathematici Helvetici 58 (1983), 186-245.

5


