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This talked is based on the minicourse “Introduction to spherical vari-
eties over the complex numbers” given by Michel Brion in Kloster Heiligkreuz-
tal on March 17-25, 2014. References can be found at

a) Nicolas Perrin: Introduction to spherical varieties,
http://relaunch.hcm.uni-bonn.de/fileadmin/perrin/spherical.pdf

b) Nicolas Perrin: On the geometry of spherical varieties,
http://reh.math.uni-duesseldorf.de/ perrin/survey.pdf

c¢) Michel Brion: Spherical varieties,
http://www-fourier.ujf-grenoble.fr/ “mbrion/notes_bremen.pdf

1 Introduction and examples

Thoughout this talk, G will be a connected reductive group over the complex
numbers, and B a Borel subgroup (i. e. a maximal solvable subgroup); the
main example to think about is when G is GL,(C), and B is the subgroup
of upper triangular matrices.

Definition 1.1. Let H C G be a closed subgroup of G; an homogeneous
space is the algebraic variety G/H.

Elements of G/H will be denoted by aH = {ah | h € H} where a € G}
note that we have an action of G on G/H, such that

g-aH = (ga)H = {gah | h € H}.

Definition 1.2. An homogenous space G/H is called spherical, if B acts
on it with an open orbit.

The condition on B seems very random; we will see though that it
has many deep consequences; for instance, a spherical space can have only
finitely many B-orbits. It also has huge consequences in terms of embed-
dings.
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Definition 1.3. An equivariant open embedding of a spherical variety G/H —
X with X normal is called spherical embedding.

The main result (probably) of the theory of spherical varieties is the
complete classification in terms of coloured fans of the spherical embeddings,
given a spherical variety G/H, due to Luna and Vust [2], that will be the
main content of my next talk. Let’s now see some examples.

Example 1.4. Toric varieties are a particular case of spherical embeddings.
To see this, take G to the the complex torus (C*)"; its Borel subgroup is
G itself, so G/H is going to be spherical for every choice of H, so that we
may very well take as H the trivial subgroups; for this choice, spherical
embeddings are equivariant open embeddings

(C) > X

that are completely classified by the theory of polyhedral fans. The Luna-
Vust classification is indeed a generalization of the theory of toric varieties;
we will see how in this more general setting, the main philosophy of toric
varieties applies - that is, geometric properties of the toric varieties can be
read only from the combinatorial data of its polyhedral fan.

Example 1.5. Let P be a parabolic subgroup of G; if G is GL,(C), you can
think at P as any block-upper-triangular subgroup of matrices; homogeneous
spaces G/P are called flag varieties; these are all spherical varieties, but
their theory of embeddings is not particularly interesting because they are
already projective.

Example 1.6. Let ¢ be an involution of G, and H = G° the subgroup of
fixed elements. Then G/H is a particular kind of spherical variety called
symmetric variety, and Luna-Vust theory again classifies all its spherical
embeddings; one particular of these embeddings is going to be the main
content of the following talk, the wonderful compactification that De Concini
and Procesi describe in [1].

Example 1.7. Consider the space of all smooth quadric hypersurfaces in
P™; this is an homogeneous space by the action of PGL,11, and is in fact
PGLy,11/POy41. This is a spherical variety; in fact, it comes as a particular
situation of the previous example, considering the involution o on PG Ly
such that

o(A) =t AL,

This space embeds as an open subset of the space }P’(ny)*l of polynomial
of degree 2 in n + 1 variables; this is an example of spherical embeddings.
Another example is the space of complete quadrics, the wonderful compact-
ification, that will (probably) come up the last talk of the day.



Example 1.8. Consider the space of smooth twisted cubic curves in P3;
this can also be seen as an homogeneous space, PG L4/ PG Ly; this is not a
spherical variety; in fact, B has dimension 9, while G/H has dimension 12;
in this case we say the homogeneous space has complexity 3, because B has
orbits at least of codimension 3.

2 Multiplicity free property

Let us now analyze the various properties of spherical varieties. The first one
is the multiplicity free property; this follows directly from the hypothesis of
the open B-orbit. First, let us remind some notions of representation theory.

Remark 2.1. Let V be an finite dimensional irreducible representation of
G; in V we have a vector v called the highest weight vector, unique up to a
constant, such that it is semiinvariant for the action of the Borel subgroup
B . ie,

Bv C Cv, b-v=A(b).

This defines then a character of B, that is a group homomorphism A : B —
C*, such that A(b) is the only number such that b-v = A(b)v. Moreover,
the representation V is uniquely determined by the character A, and for all
dominant characters A\ we have an irreducible representation V' (\) of G; the
set of dominant characters will be denoted by A™, that is the intersection of
a lattice and a convex cone, so that it is going to have a monoid structure.

Let us consider now a representation V of (G, that splits in irreducibles

V= é V(N
=1

Let us consider now the subspace of B-semiinvariant elements V(5); this
is going to be generated by all highest weight vectors of the irreducible
components V ()\;); so, understanding V() and the characters of B induced
by its vectors, we can get the whole decomposition in irreducibles of V.

We are ready now to state and prove the first main property of spherical
varieties.

Proposition 2.2. For any spherical variety G/H, considering its coordinate
ring C[G/H| as a G representation, in its decomposition any irreducible
representation V(X) of G appears with multiplicity at most 1.

Proof. Consider now the ring of B semiinvariants

cla/H)® = Pcle/H)Y
At



and we want to prove that every component C[G/H ]E\B) is one dimensional
(remember, its dimension will tell the multiplicity of V() in C[G/H]). Sup-
pose f1 and fo belong to the same component C[G/H]g\B); then, the quotient

f1/f2 is going to be a rational function on G/H that is invariant by B, be-

cause
b-ﬁ _ABA N
fo AW fo

so it is constant on B orbits; but we have an open (dense) B orbit, so that
fi/f2 is indeed a constant and C[G/H]g\B). O

In fact, a stronger result holds.

Proposition 2.3. Let X be a normal affine variety with a G-action, then
X is a spherical embedding if and only if C[X]| is multiplicity free, i, e,

x| = v,
A(X)

where A(X) is a submonoid of AT.

3 (G-orbits and B-orbits

Another very important property of X spherical embeddings is about G-
orbits.

Proposition 3.1. Let X be a spherical embedding, then every G orbit in it
1s spherical. Furthermore, there are only finitely many G-orbits.

We will (probably) see a sketch of a proof of this result in my next talk.

Example 3.2. Let us consider again the space of twisted cubics curves in
space PGL4/PGLq, that is not spherical, and its equivariant compactifica-
tion given by the Kontsevich space of stable maps MO,O(IP>3 ,3). Considering
the most degenerate situation, that is when the stable map is a degree 3 map
onto a line, the stable map is uniquely determined by the image line and
the 4 ramification points; on such a data PGL4 acts with infinitely many
orbits.

We can dig even deeper, analyzing B-orbits.

Proposition 3.3. Every spherical variety G/H contains finitely many B-
orbits.

Example 3.4. These orbits are very important; for instance, in the case of
the flag varieties G/ P, the B orbits are called Schubert cycles.

Corollary 3.5. Let X be a spherical embedding, then it has finitely many
B-orbits.
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