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This talked is based on the paper “The Luna-Vust Theory of Spherical
Embeddings” by Friedrich Knop that can be found at www.math.rutgers.
edu/~knop/papers/LV.html, that is an expository paper about [?].

Thoughout this talk, G will be a connected reductive group over the
complex numbers, and B a Borel subgroup. Let’s remind some definitions
from the previous talk.

Definition 0.1. An homogenous space G/H is called spherical, if B acts
on it with an open orbit.

Definition 0.2. An equivariant open embedding of a spherical variety G/H —»
X with X normal is called spherical embedding.

We also found out in the previous talk that

ClG/H = P vy

A(G/H)

for A(G/H) the intersection of a lattice and a cone in A the set of weights
for G.

The aim of this talk is to describe how to classify all spherical embeddings
of a given spherical variety G/H.

1 Divisors and G-invariant valuations

Let G/H — X be a spherical embedding, and let D C X be an irreducible
G-invariant Cartier divisor; note that a divisor is G-invariant if and only
if it is contained in the boundary X \ G/H. Let us now take a function
f € C[G/H]; this can be extended uniquely to a rational function on X,
having a fixed order of zero or pole along D; this gives rise to a function

vp : C[G/H]\0— Z

that is a G-invariant valuation on G/H.
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Definition 1.1. A G-invariant valuation on G/H is a G-invariant func-
tion v : C[G/H]\ 0 — Z such that

i) v(f+g) > min{v(f),v(g)};
i) v(fg) = v(f) +v(g).

Let us now study properties of such objects. Given a G-invariant valua-
tion v, we can consider its restriction to the subring of B-semiinvariant

clg/HP = € vinP = P ch.

A(G/H) A(G/H)

Considering the values v(fy), this gives rise to a group homomorphism
ov:N—Z.

Proposition 1.2. p, determines uniquely the G-invariant valuation v.

So, we can talk about G-invariant valuation only using the combinatorial
data of the homomorphism p,,. This gives us the first ingredient of the com-
binatorial data that will classify spherical embeddings; given an embedding
G/H — X, we consider the boundary

X\G/H:Dlu...UDk

and we decompose it into irriducible components, and each such divisor D;
will give a G-invariant valuation v;, that is, an homomorphism p,, A(G/H) —
Z.

2 B-invariant divisors and orbits

Given a spherical embedding X, we can consider now the irreducible B-
invariant divisors D(X); every such divisor that is not in contained in the
boundary (i.e. it is not G-invariant), and so it is determined by its intersec-
tion with G/H; in fact, there is only a finite set of such divisors, and they
depend only on G/H; let’s call the set of such divisors D = D(G/H); note
that a B-invariant divisor D gives a valuation

vp : C[G/H]P\0— Z,

that descends to an homomorphism p,,, : A(G/H) — Z as well.
We have the following proposition, relating G-orbits of X and invariant
divisors.

Theorem 2.1. Fvery G-orbit Y C X is uniquely determined by the set of
B-invariant divisors in D(X) that contains it.



Given the orbit Y, we will call By (X) the set of G-stable divisors con-
taining it, and Fy (X) the set of B-stable (not G-stable) divisors containing
it.

Example 2.2. Let us explain the last theorem by a simple example. Let G
be PGL3, H be PO3 so that G/H is the space of smooth plane conics, and
let us consider the embedding into P the space of degree two polynomials.
In this situation, we have only one irreducible G-stable divisor, that is the
entire boundary, parametrizing not smooth plane conics, that we will call E.
Let us now find B-stable divisors in G/H; remember that B is the subgroup
fixing a complete flag composed of a point p and a line L containing p; this
means that the divisor of conics through the point p, that we will call D1 is
fixed, and also the divisor of conics tangent to L, that we will call Ds; so,
we have D = {D1, Dy}. So, by the previous theorem, every orbit in X can
be read by the divisors containing it; now in X we have three orbits: the
orbit G/H, the orbit E of the conics that split in two lines, and the orbit of
double lines Z. We have

Orbit Y By (X) .Fy (X)
G/H 0 0
E E 0
Z E Dy

This theorem, by the way, also proves the finiteness of G-orbits in a
spherical embedding.

3 Simple embeddings

Definition 3.1. An embedding G/H — X is called simple if it has a
unique closed G-orbit.

Simple embeddings are simpler to classify; in fact, we have the following,
that follows from the theorem in the previous section.

Theorem 3.2. Let X be a simple spherical embedding, with Z the unique
closed G-orbit; then X is uniquely determined by the couple

(Bz(X), Fz(X)) € Homz(A(G/H),Z) x F.

Example 3.3. In the previous example of conics, the closed orbit is the
locus of double lines F; the divisors containing it are what we called E (that
is G-invariant) and Da, so this embedding is determined by the couple

({E},{D2}) € Homz(A(G/H),Z) x {D1, D2}.



This theorem still doesn’t quite complete the classification of simple
embeddings, because it doesn’t say what couples in Homgz(A(G/H),Z) x F
can occur; let’s now fill this gap, using the notion of colored cone.

All our combinatorics will live inside the lattice Hom(A(G/H),Z); inside
it we have the cone V of objects coming from G-equivariant valuations (that
is, related to boundary divisors), and we have the finite set D.

Definition 3.4. A colored cone is a pair (C, F) whereC C Hom(A(G/H),Z)
and F C D (called the colors) such that

CC1: C is a cone generated by F and finitely many elements of V;
CC2: the interior C of C intersects V;

SCC: the cone C is strictly convex, that means, it does not contain any line.

Given the data (Bz(X),Fz(X)) for a simple spherical embedding X
with closed orbit Z, the associated colored cone will be given by the cone
generated by all elements in Bz(X) and Fz(X), and the set of colors Fz(X).

Theorem 3.5 (Luna-Vust classification of simple embeddings). Isomoprhism
classes of simple spherical embeddings of G/H are in one-to-one correspon-
dence with colored cones.

Example 3.6. Let’s go back again to the case PGL3/POs; the lattice
Hom(A(G/H),Z) lies in a two dimensional vector space; the picture is the
following.

Dy

L 2

Let us look as some pictures of colored cones, that give different embeddings.
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Now, let’s look at other situation that can and cannot happen.

Dy Dy Dy D
D, Dy Dy D,
© © v @ C v

YES YES NO YES

Remark 3.7. Note that in the symmetric case V is a convex cone, so that
there is a canonical choice of colored cone, obtained choosing V itself and
no colors. In case G is adjoint, this gives the wonderful compactification of
G/H described in [?].

4 The Luna-Vust classification

Now, we want to extend the classification to any embedding, possibly having
more then one orbit. As for toric varieties, the combinatorial step we need
to take is the one from cones to fans.

Definition 4.1. A colored fan is a collection § of colored cones such that
CF1: ecvery colored face C' of a colored cone C € § belongs to § as well;
CF2: the interiors of all cones in § are disjoint;

Theorem 4.2 (Luna-Vust classification). Isomorphism classes of spherical
embeddings of G/H are in one-to-one correspondence with colored fans.

Example 4.3. In the same example as before, let us show some colored
fans.

Dy Dy Dy

Dy Da
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5 Further properties

Let us now describe briefly how combinatorial properties of colored fans
correspond to geometric properties of the embedding X.

Lemma 5.1. An embedding X is complete if and only if its colored fan
covers the whole V.



Lemma 5.2. G-orbits of X correspond to colored cones in the colored fan;
moreover, when colored cones have the same number of colors, the codimen-
ston is given by the codimension of the cones.

Lemma 5.3. Let X, X’ be two spherical embeddings, and §, §' their colored
fans; then we say § maps to § if every cone of § is contained in a cone of
§. We have a morphism between two spherical embeddings X — X' if and
only if § maps into F'.

We can check all this properties in the examples given.

Many other properties can be read from the geometry of colored cones,
such as Picard groups and sections of line bundles, intersection theory, and
much more.
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