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beginabstract In this paper we study the following simple and mind-
puzzling problem: Can a model train car, which runs along an intricate track
complete a full cycle around it? In our paper a track will be represented by
a simple closed curve, and the cars of our model train by segments whose
end-points lie on the curve.

1 Introduction

Let C be a simple closed curve in the plane that can be thought of as a track.
Let us imagine a model train car with a single wheel at each end, which we
run along the track of C. We ask the following question. What lengths λ
may the car have that allow it to traverse all of C? If C is a circle, any car
whose length λ is less than or equal to the diameter of C will be able to
run around the entire length of the track. If C is an ellipse, any car with λ

greater than the length of its smallest axis will, however, get stuck.
Consider a train of n such cars linked together, traveling along the curve

C. Once again, it is interesting to ask what car lengths will allow the train
to traverse the entire curve.

We encourage the reader to try experimenting with trains of a variety
of car lengths running along different curves before proceeding to read the
remainder of the article. It is an entertaining, instructive and sometimes
surprising exercise to work out trajectories that will allow the train to com-
plete a circuit of the entire curve. For example the reader may verify by
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Figure 1:

himself that for the curve shown in Figure 1, the car represented by a line
segments with small circles at its end-points can traverse the whole curve.
In [2], Goodman, Pach and Yap studied with different methods a related
problem.

Let α : S1 → R2 be a parameterization of the simple closed curve C,
where S1 denotes the unit circle in R2. We shall require here that α be an
injective, piecewise differentiable function. Consider the function

Λ : S1 × S1 → R

given by Λ(x, y) = ‖ α(x) − α(y) ‖, for all x, y ∈ S1.

Λ−1(λ) is the space of all possible positions of cars of length λ on curve
C.

Definition 1. We shall say that a car of length λ traverses along the curve

C if the following continuous function exists:

ψ = (ψ1, ψ2): S 1→ Λ−1(λ) ⊂ S
1×S 1,

where ψ1, ψ2 : S1 → S1 are the coordinate functions of ψ. If in addition

ψ1 : S1 → S1 has degree ±1, then we say that the car of length λ traverses

the entire curve C.

Informally speaking, we say that a car of length λ can traverse entirely the
curve C if its back wheel traverses C essentially once. Since ψ is a function
defined on S1, the initial and final positions of the car before and after the
back wheel makes a complete transversal of C must be the same.
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2 Questions About Car Paths

Question 1. Can a car of length λ traverse C without repeating a position,
but in such a way that its back wheel traverses C essentially more than once?
Question 2. Let ψ : S 1→ Λ−1(λ) ⊂ S

1×S 1 be a path by which a car of
length λ traverses the entire curve C, that is, a route in which the back wheel
traverses C essentially once. Is it true that the front wheel then also traverses
the curve essentially once? More formally, is it true that if ψ1 : S1 → S1 has
degree ±1, then ψ2 : S1 → S1 also has degree ±1?

One possible reason why a car longer than the minor axis of an ellipse
could get stuck and be unable to traverse the entire ellipse, is if, as it turns,
its orientation would become parallel to the orientation of the minor axis of
the ellipse. This is not, however, possible; motivating the next question.

Question 3. If a train traverses entirely the curve C, is it true that the
orientations of its cars describe a complete revolution?
Question 4. If a car of length λ traverses entirely the curve C, and λ′ < λ,
then is there a car of length λ′ which can traverse C completely?
Question 5. Is traversing the entire curve C by a car of length λ a local or
a global problem? In other words, is it possible for a “nice subarc” of C to
exist that allows a car of length λ to traverse all of C (in which the definition
of “nice” involves only the the subarc itself)?

The last question arises from a situation such as that shown in Figure2.
Furthermore, this example suggests that an affirmative answer to Question
4 is unlikely.

Our problem has aspects that make it more intriguing, as in some cases,
the starting position of the car determines if a car traverse all of C or not.
This situation is illustrated in Figure 3.

3 Answers to Section 2

The first observation we make is that for λ > 0,

Λ−1(λ) ∩ ∆ = ∅

where ∆ = {(x, x) | x ∈ S1} = Λ−1(0) is the diagonal of S1 × S1.
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Figure 2: In this figure, C is essentially a circle in which a small portion of
the circle has been replaced by a sector of a curve which can be as intricate as
we might want. It is clear that a sufficiently long car can always traverse all
of C. A small car might have problems getting out of the ”intricate” sector
of C.

(a) (b)

Figure 3: The reader can easily verify that a car starting as shown in (a) can
traverse the whole C, whereas in (b) it is stuck!.
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A traversal of C by cars of length λ is thus a function
φ = (φ1, φ2) : S1 → Λ−1(λ) ⊂ S1 × S1 − ∆.

Functions of the unit circle S1 on the torus S1 × S1 are classified homo-
topically by pairs of whole numbers. That is, a function φ has type (n,m)
if it wraps around the meridian of the torus n times and m times around its
length. Two functions of the unit circle S1 are homotopic on the torus if and
only if they have the same type. Recall that the only curves of type (n,m)
which are not self-intersecting are those which have n and m relatively prime.
Moreover, if the image of the function φ does not intersect the diagonal ∆,
then φ has type (n, n) for some integer n ∈ Z. More details can be found in
[3].

With this in mind, a traversal of C by a car of length λ which takes on
distinct positions is an injective function φ : S1 → Λ−1(λ) ⊂ S1 × S1 of type
±(n, n) with n = 0, 1. If n = 0, the curve deforms to a point on the torus,
and φ1 : S1 → S1 is therefore of degree 0. If n = 1, then by definition, both
φ1 : S1 → S1 and φ2 : S1 → S1 are of degree ±1. This provides a negative
answer to Question 1, an answer to Question 2, and allows us to formulate
the characterization expressed in the following theorem.

Theorem 1 The function ψ = (ψ1, ψ2) : S
1→ Λ−1(λ) ⊂ S

1×S 1 represents a

car of length λ which traverses C entirely if and only if ψ : S 1→ Λ−1(λ) ⊂ S
1×S 1

is a function of type ±(1, 1); in other words, if and only if deg(ψ1) =
deg(ψ2) = ±1.

To answer Question 3, let α be differentiable, and define the function

Θ : S1 × S1 → S1

as follows: Θ(x, y) = α(x)−α(y)
‖α(x)−α(y)‖

, if x 6= y and Θ(x, x) = α′(x)
‖α′(x)‖

. Note that Θ
gives the tangent

As C is a simple closed curve, the successive directions of the tangents
to C will describe a complete revolution as C is traversed completely. That
is, the function Θδ : S1 → S1 has degree ±1 where δ : S1 → S1 × S1

is the diagonal function δ(x) = ±(x, x), for all x ∈ S1. By Theorem 1,
ψ : S 1→ Λ−1(λ) ⊂ S

1×S 1 represents the path of a car of length λ which
traverses the entire curve if and only if ψ is homotopic to δ; therefore if and
only if Θψ : S1 → S1 has degree ±1, that is, if and only if the orientations
of the car makes topologically a complete revolution. This gives rise to the
following
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Theorem 2 A car of length λ traverses the entire smooth curve C if and

only if the orientation of the car makes topologically a complete revolution.

We will now answer Question 4 by means of the following theorem.

Theorem 3 If there is a car of length λ which traverses the entire curve C

and λ′ < λ then there is a car of length λ′ which traverses C entirely.

Proof: By the hypothesis, there exists a function ψ : S 1→ Λ−1(λ) ⊂ S
1×S 1

which represents the path of a car of length λ along the entire curve. By
Theorem 1, ψ is type ±(1, 1), and therefore is homotopic to the diagonal
function δ : S1 → S1 × S1. Let the homotopy be H : S1 × I → S1 × S1,
that is H(x, 1) = ψ(x) and H(x, 0) = ±(x, x) for all x ∈ S1. We note that
H(S1 × {1}) ⊂ Λ−1(λ) and H(S1 × {0}) = Λ−1(0). Now let λ′ < λ and let
us consider H−1(Λ−1(λ′)) ⊂ S1 × I. It is clear that H−1(Λ−1(λ′)) separates
S1×{1} from S1×{0} in S1×I. As α is a piecewise differentiable function and
the function H can be chosen also piecewise differentiable, H−1(Λ−1(λ′)) ⊂
S1 × I contains a cycle in S1 × I which separates S1 × {1} from S1 × {0},
see [1]. Let ξ : S1 → S1 × I be a parameterization of this cycle, and let us
note that Hξ : S1 → S1 × S1 is type ±(1, 1) and Hξ(S1) ⊂ Λ−1(λ′). Then
by Theorem 1, Hξ : S1 → Λ−1(λ′) ⊂ S1 × S1 represents the path of a car of
length λ′ along the entire curve C.

To tackle Question 5, we need to define a λ subarc. Recall that we wish
to define it in terms of only a portion of the curve.

Definition 2. Let C be a smooth curve. Ω ⊂ C is a λ-subarc of C if
there is a disc D with center 0 ∈ C and radius λ, such that: i) Ω = C ∩D,
ii) C ∩ ∂D consists of precisely two points {a, b}, the endpoints of Ω, iii) if
0 < λ′ < λ and D′ is a disc with center 0 and radius λ′, then C∩∂D′ consists
of precisely two points, and iv) for all x ∈ Ω, the normal Nx to C at x is
such that Nx ∩D ∩ C = {x}.

In this definition, referring to Figure 4 the hypotheses imply that a car
[b, 0] of length λ moves along the curve C within D until it becomes [0, a]
such that both wheels move forward without stopping or backing up. This
follows immediately from the following lemma, which says that if the back
wheel is forced to move in opposite direction in order to enable the car to
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keep moving forward, then the curve C is perpendicular to the car at the back
wheel. Note also that if Ω is a λ-subarc and λ′and D′ are as in Definition 2,
then Ω ∩D′ is a λ′-subarc.

Lemma 1 Let ϑ = (ϑ1, ϑ2) : (−ǫ, ǫ) → Λ−1(λ) be a smooth function such

that dϑ
dt

(0) 6= 0. If dαϑ1

dt
(0) = 0, then the tangent to C at the point α(y) is

perpendicular to the line passing through α(x) and α(y) where ϑ(0) = (x, y).

Proof: For t ∈ (−ǫ, ǫ), let θ(t) be the angle of the unit vector in the
direction of αϑ1(t) − αϑ2(t). So, θ : (−ǫ, ǫ) → R is a smooth function such
that

αϑ1(t) + λ(cos θ(t), sin θ(t)) = αϑ2(t)

Differentiating, and assuming that dϑ
dt

(0) 6= 0 and dαϑ1

dt
(0) = 0, we have

that dαϑ2

dt
(0) = dϑ2

dt
(0)dα

dt
(ϑ2(0)) is parallel to (− sin θ(0), cos θ(0)) and there-

fore perpendicular to the segment λ(cos θ(0), sin θ(0)) = α(ϑ2(0))−α(ϑ1(0)),
which implies that at the point α(x), the curve C is perpendicular to the line
that passes through α(x) and α(y).

At this point we need some elementary notions from Morse Theory and
Degree Theory which we will use below. See [1] for example.

If C is a smooth curve, then the function

Λ : S1 × S1 → R
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given by Λ(x, y) = ‖ α(x)−α(y) ‖, for all x, y ∈ S1, is a smooth function. It
is easy to see that the critical points of Λ (the points (x, y) ∈ S1×S1 in which
the derivative of Λ is zero) are the points of the diagonal ∆ and the points in
which the tangents to C at α(x) and α(y) are both perpendicular to the line
through α(x) and α(y). Then λ ∈ R is a critical value of Λ if Λ(x, y) = λ

for (x, y) a critical point of Λ. If λ ∈ R is not a critical value of Λ, then λ

is called a regular value and Λ−1(λ) is a finite collection of cycles Σ1, ...,Σρ.
Moreover, if the interval [λ′, λ] contains only regular values, then Λ−1([λ′, λ])
is homeomorphic to the disjoint union Σi × [λ′, λ], since the behavior of the
function Λ changes only at the critical values.

Finally, we recall that if f : S1 → S1 is a smooth function, then the degree
of f can be calculated on a regular point x of the image in the following way.
As f−1(x) = {a1, ..., aτ} consists of a finite set of points, then each point ai

contributes a +1 or a −1 depending on whether the function f preserves or
does not preserve orientation locally around ai. The degree of f is the sum
of all these +1’s and −1’s.

The following theorem shows that the problem of traversing the entire
curve with a car of length λ is not a local problem, that is, using just infor-
mation that comes from a piece of the curve C, it is impossible to conclude
that a car of length λ can not traverse the entire curve C.

Theorem 4 If C is a simple smooth curve which contains a λ-subarc, then

for all λ′ < λ, there is a car of length λ′ which traverses the entire curve C.

Proof: We begin by noting that without loss of generality λ can be assumed
to be a regular value of Λ. Thus Λ−1(λ) consists of a disjoint set of cycles
Σ1, ...,Σρ, each of which is in S1 ×S1 −∆. That is, the type of Σi ⊂ S1 ×S1

is either ±(1, 1) or (0, 0). If some of the cycles Σi have type ±(1, 1), then by
Theorem 1, the theorem is proved.

Since C contains a λ-subarc, one can choose 0, a, b,D and Ω so that i),
ii), iii) and iv) of Definition 2 holds.

Consider (α−1(0), α−1(b)) in ∆−1(λ) and suppose that (α−1(0), α−1(b)) ∈
Σj , for some j = 1, ..., ρ. Let ψ = (ψ1, ψ2) : S1 → Σj ⊂ ∆−1(λ) ⊂ S1 × S1

be a parameterization. It will be enough to prove that the degree of ψ1

is ±1. By Lemma 1, α−1(0) is a regular value of ψ1, then we can calcu-
late the degree of ψ1 by looking at ψ−1

1 (α−1(0)). Since by ii), C ∩ ∂D =
{a, b}, either ψ−1

1 (α−1(0)) consists of a single point, that is, ψ−1
1 (α−1(0)) =

{(α−1(0), α−1(b))} and therefore the degree of ψ1 is ±1, or ψ−1
1 (α−1(0)) =
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{(α−1(0), α−1(b)), (α−1(0), α−1(a))}. If this is the case, Lemma 1 implies that
the car [0, b] moves along the curve C within D until it becomes the car [a, 0]
in such a way that both wheels move forward without stopping or backing
up. Similarly, the car [0, a] moves backwards along the curve C within D

until it becomes the car [b, 0] in such a way that both wheels move backward
without stopping. This implies that if (x, y) ∈ Σj , then (y, x) ∈ Σj . We
prove next that this implies that the type of Σj is ±(1, 1). If we identify the
point (x, y) with (y, x) in S1 × S1 − ∆ we obtain an open mobius band M

and the quotient map π : S1 × S1 − ∆ → M is a double cover. Suppose the
type of Σj is not ±(1, 1), then Σj has type (0, 0) and consequently Σj is null
homotopic in S1 × S1 − ∆, which implies that π(Σj) is null homotopy in M
and therefore π−1(π(Σj)) has two components, which is a contradiction to
the fact that (x, y) ∈ Σj if and only if (y, x) ∈ Σj . The theorem now follows
easily from Theorem 3.

4 “Model Trains”

Definition 3. A model train with n cars of lengths λ1, ..., λn running along

the track described by C consists of n+ 1 points {a1, ..., an+1} ⊂ C such that

i) for i = 1, ..., n, ‖ ai − ai+1 ‖= λi

ii) for i = 2, ..., n, the points ai+1, ai, ai−1 orient the curve C positively.

We also say that there exists a model train with n cars of lengths λ1, ..., λn

which traverses the curve C entirely if there exists a function

Ψ : S1 → S1 × ...× S1

such that for all x ∈ S1, {α(Ψ1(x)), ..., α(Ψn+1(x))} is a train running on C

with n cars having lengths λ1, ..., λn and

Ψ1 : S1 → S1

is a continuous function with degree ±1, where, of course, Ψ = (Ψ1, ...,Ψn+1).
We note that in this case, the projection of Ψ on the first two coordinates

represents the path of a car of length λ1 which traverses C entirely. Therefore
Ψ2, the projection of Ψ on the second coordinate, is a function of degree ±1.
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Proceeding inductively, we can verify that the projection of Ψ on coordinates
i, i+ 1 gives rise to the path of a car of length λi which traverses C entirely;
therefore Ψ(i+ 1) is a function of degree ±1, i = 0, . . . , n.

We will now prove the following theorem.

Theorem 5 Suppose that a car of length λ1 traverses the entire curve C.

Then, for any integer n ≥ 1 and λ1 ≥ λ2 ≥ ... ≥ λn there exists a train with

n cars having lengths λ1, . . . , λn which traverses the entire curve C.

Proof: We begin by proving the theorem for two-car trains. If λ1 = λ2

then both cars can be in the same position, just in opposite direction, so we
may assume λ1 > λ2. By Theorems 1 and 3, let ϕ = (ϕ1, ϕ2) : S1 → S1 × S1

be a function of type ±(1, 1) which represents the path of a car of length λ1.
Let

E : S1 × S1 → R

be a function defined by E(x, y) =‖ αϕ2(x) − α(y) ‖.
Then E−1(λ2) is the space of all possible positions on the curve C of

a two-car train with car lengths λ1, prescribed by ϕ, and car lengths λ2.
Intuitively we must think in an element of S1 × S1 as a pair given by a car
length λ1, prescribed by ϕ, and a point of the curve C.

Let us consider the curves ξi = {(x, ϕi(x)) ∈ S1 × S1 | x ∈ S1},
i = 1, 2. Clearly ξ2 ⊂ E−1(0) and ξ1 ⊂ E−1(λ1) are two cycles of type
±(1, 1) in S1 × S1 which do not intersect. In fact, Γ = {(x, y) ∈ S1 × S1 |
the points αϕ1(x), αϕ2(x), α(y) orient the curve C positively } is a band in
S1 × S1, homeomorphic to S1 × [0, λ1], whose boundary is ξ1 and ξ2. If
λ2 < λ1, since ξ2 ⊂ E−1(0) and ξ1 ⊂ E−1(λ1), then E−1(λ2) separates ξ1
from ξ2 in Γ. Since α and ϕ2 are piecewise differentiable function and E

can be chosen also in that way, then E−1(λ2) ⊂ Γ contains a cycle ξ3 which
separates ξ1 from ξ2 in Γ and is therefore of type ±1.

Let ψ : S1 → S1 × S1 be a parameterization of ξ3. We first note that
ψ = (ψ1, ψ2) is a curve of type ±(1, 1) in S1 ×S1 with the property ψ(S1) ⊂
E−1(λ2) ⊂ Γ. This implies that the function Ψ : S1 → S1×S1×S1, given by
the coordinate functions (ϕ1ψ1,ϕ2ψ1, ψ2) represents the path of a train with
two cars of lengths λ1, λ2 along the entire curve C.

For trains with three cars, we must think now in an elements of S1 × S1

as a pair given by a train of two cars, prescribed by Ψ = (Ψ1,Ψ2,Ψ3),
and a point of the curve C, where now E : S1 × S1 → R is given by
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E(x, y) =‖ αΨ3(x) − α(y) ‖ . Proceeding in the same way, we can prove
the theorem for trains with three cars and using induction we can prove the
theorem for trains of any number of cars.

Corollary 1 If C is a simple smooth closed curve which contains a λ-subarc,

then there exists for all n ≥ 1 and λ > λ1 ≥ ... ≥ λn a train with n cars of

lengths λ1, ..., λn which traverses the entire curve C.

Proof: The proof follows immediately from Theorems 4 and 5.

5 Distance Traveled

Consider a polygonal P formed by two segments l1, l2 of lengths 3 and 4
respectively, and 2n − 1 short and 2n long segments of lengths 1 + ǫ and 1,
and 3 and 3+ ǫ respectively, as shown in Figure 5(a) for n = 4. Suppose that
we want to to move a car R of length 1.5 (represented with the line segment
with endpoints labeled b and f in Figure 5(a)) from l1 to l2. It is clear that
to achieve our goal R must first pass trough a position in which b is on l1
and f on the point labeled 1, Figure 5(b). Then R must move to a position
in which f lies on point 2, Figure 6(a). However to achieve this, R must pass
trough the positions shown in Figures 5(c), and 5(d), and then move to the
position shown in Figure 6(a). A similar process has to be followed to move
f to point 3, 4, . . .. In each of our iterations, b must move from a point on l1
to point 1 and back to l1. Since this has to be done n times, it follows that
the distance traveled by b, and hence f is quadratic. Since the length of P
is 8n + 6 + 8ǫ, it follows that the distance travelled by the wheels of R can
be arbitrarily large compared to the length of P .

In a similar way we can see that if instead of a car we have a train T with
two cars (i.e. two segments of length 1.5 joined at one of their ends, making
l1 and l2 longer to allow T to move), to move T from l1 to l2, the wheels of
T must travel a distance proportional to n3. For trains with k cars, we can
easily see that the distance traveled by their wheels is O(nk+1) (for each car
we must repeat the same procedure that we did for R).

By completing P to a simple closed polygon we obtain:

Theorem 6 Let C be a simple closed curve and let B be a car that can

traverse C. Then the distance traversed by the wheels of R in a complete
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traversal of C can be arbitrarily large with respect to the length of C. More-

over if C is a polygon with n vertices, and has length O(n), to complete a

whole traversal of C the wheels of a train with k cars may have to travel a

distance of O(nk+1).

Note. Except for Theorem 2, the results given here are also valid when
α : S1 → X is a differentiable or piecewise differentiable (not necessarily
injective) function on a Riemann manifold X. Theorem 2 is the only result
in this article which depends on C being a simple curve in the plane.
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