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On configurations of flats I:
Manifolds of points in the projective line

By Jorge L. Arocha, Javier Bracho, Luis Montejano

Abstract

The topological manifolds arising from configurations of points in the
real and complex projective lines are classified. Their topology and combi-
natorics are described for the real case. A general setting for the study of
the spaces of configurations of flats is established and a projective duality
among them is proved in its full generality.

1. Introduction

This is the first paper in a series concerned with the topology and combi-
natorics of the spaces of configurations of flats in standard geometries. Con-

figurations of vectors yield Grassmannians with a combinatorial stratification

governed by matroids or oriented matroids [3]. Also, affine configurations of

points (i.e., k-tuples of points that affinely span modulo the affine group) yield

Grassmannians but with a finer stratification governed by affine oriented ma-

troids. The motivation of this series is the fact that the topology of the space
of transversals to convex sets is governed by the strata of the space of affine

configurations of points (see [1],[4]). The main question we raise is what hap-

pens when one considers flats other than 0-dimensional: who are the spaces so

obtained and what are the combinatorics that govern their natural stratifica-

tions? The simplest new example to consider is configurations of lines in the

real affine plane A2. As we will shortly see, the case of 4 lines is interesting

enough to motivate the study of projective configurations of points.

The first example. Consider two 4-tuples of lines `1, `2, `3, `4 and `
0
1, `

0
2, `

0
3, `

0
4

in the affine plane A2 as the same affine configuration, or to be affinely equiva-

lent, if there is an affine isomorphism f which maps one 4-tuple into the other,
that is, f(`i) = `

0
i. Since all contractions are affinities, then any affine con-

figuration of lines is infinitely close to one where all the lines are concurrent;

and then, furthermore, by contracting on another line, to the one where all

coincide. So, one must rule out these degenerate configurations to obtain a

“decent” topological space (for the case of vectors or points this was achieved



2 JORGE L. AROCHA, JAVIER BRACHO, LUIS MONTEJANO

by imposing the spanning hypothesis). The natural way to detect degeneracy

is by the group action. We say that the 4-tuple of lines `1, `2, `3, `4 fixes the
affine plane A2 if the only affine isomorphism f which leaves the 4-tuple in-

variant, f(`i) = `i, is the identity. So, for example, if three of the 4 lines form

a triangle, they fix; but if all are concurrent or three of them are parallel, they

don’t. Observe that fixing is a property of the affine configuration. So, the

affine group acts freely in the set of 4-tuples of lines that fixes the plane and
the quotient map is a principal bundle.

Let L be the space of affine configurations of 4 lines in A2 that fix A2.

The space L is compact and locally homeomorphic to R2 but it is still not

Hausdorff.. Indeed, consider the sequence of 4-tuples of lines in Figure 1. It

clearly converges to the configuration Fig.1.(a) (`2 = `4); but by appropriately

expanding and contracting the two axis, it is easy to see that it is equiva-
lent to sequences that converge to the configurations Fig.1.(b) (`1 = `3) and

Fig.1.(c) (two pairs of parallel lines: `1k`3 and `2k`4). So that this sequence
of configurations has (at least) three limiting points in L, which is therefore

non-Hausdorff.

i

1/i

a) b) c)

1̀

2`

3`

4̀

i
4̀2` =

1̀ 3`=

Figure 1

If we restrict, furthermore, to the configurations with four distinct lines,

L6= say, that is, if we assume `i 6= `j for i 6= j, then the sequence of Fig. 1 will
“know” it converges to Fig.1.c, and this is enough to obtain a nice compact
Hausdorff space: the projective plane with four blow-ups, the surface of non-

oriented genus 5 in Figure 2 where the four inside circles and the boundary are

antipodally identified.

This can be argued by means of charts. Let U4 ⊂ L6= consist of those

configurations where `1, `2, `3 form a triangle; which can then be assumed

to be the standard one, so that U4 is parametrized by `4 and is therefore a

projective plane with four punctures (in Figure 2, think of the four inside

circles as punctures, making them correspond to the line at infinity, labelled 0,

and to the three other lines `i to which `4 is not allowed to be equal). The six

drawn projective lines (with two punctures) correspond to 3 parallel pencils

`4k`i (concurrent at the center), and three other pencils (forming the triangle)
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where `4 is concurrent with two of the other lines. The three (dark) vertices

that are covered by U4 are then the three configurations: `4 is parallel to `i
and passes through `j ∩ `k.

Changing the role of `4 by the other three lines, we get four charts Ui
with the same picture (which cover L6= minus the three configurations of two

pairs of parallel lines). In the new charts, we also see all the configurations in

general position, but some of the punctures of U4 appear as “nice” projective
lines. The puncture 0 (when `4 goes off to infinity) appears as the “nice” line

where `1, `2, `3 are concurrent in U1, U2 and U3 —because a 4-tuple where `4 is

far away (close to infinity) is the same configuration than a 4-tuple where `4
is nearby and `1, `2, `3 are almost concurrent. And, analougously, one can see

that, say, the puncture “`3 = `4”, labelled 3 in U4, appears as the nice line

“`1k`2” in U1 and U2.
At this point, it should be clear that our description problem is easier to

address in the real projective plane P2, where a fifth line `5 has been previously

fixed “at infinty”, and overlooked (our condition `i 6= `j allows us to let it join
the game), so that parallelism becomes just another case of three concurrent

lines. Our charts can be redefined as “four of the lines are in general position”,
so that we get a new chart U5 where our three missing vertices appear when `5
is one of the three diagonals of a projective quadrilateral. Now, the symmetry

of the combinatorial surface that arises from 4 different lines in the plane can

be seen to grow to the symmetric group on 5 letters, S5, and not only the

expected S4.

0

1

23

Figure 2

By classic duality (to which we will refer as “polarity” is section 4), we

might as well think of projective configurations of 5 different points inRP2. The



4 JORGE L. AROCHA, JAVIER BRACHO, LUIS MONTEJANO

twelve pentagonal 2-cells of Figure 2 correspond to the dihedral orders (cyclic

orders modulo orientation) that the unique conic through 5 points in general
position imposes on them; edges and vertices correspond to degeneracies in the

sense of colinearity.

Observe also that dihedral orders of 5 letters correspond to the general

position cells of configurations of 5 points in the projective line RP1. In fact,

Figure 2 is also the space of projective configurations of 5 points in RP1 with at
least 3 of them different (the “spanning” or “fixing” hypothesis) and with no

three of them equal (the “rule”, which we will denote 3/). Combinatorially, it is

obtained from 12 pentagons with their vertices colored to match the 12 dihedral

orders on 5 colors with two of them glued if they differ by a transposition (its

natural generalization to obtain regular polyhedra for n other than 5 is studied

in [7]).

Notation. LetKPn =
¡
KPn,PGL(Kn+1) = GL(Kn+1)/K∗¢ stand for the stan-

dard projective geometry over a field K (where we are mainly concerned with

K ∈ {R,C}). We say that a family of projective flats F1, F2, . . . , Fk ⊂ X fix if

the unique f ∈ PGL(Kn) that leaves them invariant (f (Fi) = Fi) is the iden-
tity, (the term arises because if we suppose they are fixed as subsets, then the

space is pointwise fixed). Let d = (d1, ..., dk) be a vector of natural numbers.

Then denote

KPnd = {(F1, F2, . . . , Fk) | {F1, F2, . . . , Fk} fix and dimFi = di} /PGL(Kn),

where the action of PGL(Kn) is the natural free diagonal action

g (F1, F2, . . . , Fk) = (g (F1) , g (F2) , . . . , g (Fk)) .

A PGL(Kn)-equivalence class of a k-tuple of flats is a projective configura-
tion.

For the affine geometry KAn = (KAn,Aff(Kn)) the space of affine con-

figurations KAnd is defined in the same way changing projective flats by affine
flats and the group PGL(Kn) by the affine group Aff(Kn).

We shall simplify our notation in three ways. First, we will write Pnd = RPnd
and And = RAnd. Second, if d = (d1, ..., dk) is homogeneous i.e. d1 = ... = dk =

d, then we denote KPnd = KPnk,d. Third, if d = 0 i.e. if the flats are points, then
we denote KPnk,0 = KPnk

Moreover, if R is a “rule” specifying some allowed configurations, we de-

note by KPnd(R) the subspace of configurations that satisfy that rule. So, for
example, A2

4,1 stands for L above, and A2
4,1( 6=) for 4 different lines in A2 that

fix, which we were previously calling L6=. We can restate our previous consider-
ations as A2

4,1(6=) = P2
5,1( 6=) = P2

5(6=); and we will further have P2
5 (6=) ∼= P1

5(3/)

(where 3/ stands for the rule “no three elements of the configuration are equal”),

because of a general duality among projective configurations which we will es-

tablish in Section 4.



MANIFOLDS OF POINTS IN THE PROJECTIVE LINE 5

Quirurgical manifolds. As it should be clear from the example above, con-

figuration spaces of flats can be non-Hausdorff, because we are dividing by
non compact Lie groups. However, they seem to have a beauty of their own.

We will prove that P1
k has the structure of what can be called a quirurgical

manifold.

Classic surgery arises from the fact that if r+ t = n−1, then the standard
embeddings Sr ,→ Sn and St ,→ Sn have trivial normal bundles and their
regular neighborhoods can be made to match their boundaries:

Sn = ∂
¡
Br+1 ×Bt+1

¢
= Sr ×Bt+1 ∪

Sr×St
Br+1 × St.

So that a sphere Sr with trivial normal bundle in a manifold Mn can be cut
out and replaced by a sphere of complementary dimension St. This procedure

can be thought of as taking out an open regular neighborhood of Sr and then

sewing back the regular neighborhood of St (in Sn), because the boundaries

coincide. But also, and some authors do, it can be thought of as taking only

the core Sr out and sewing in the alternative core St, because, furthermore,
their regular neighborhoods (in Sn) without their zero sections (let us call

them their punctured regular neighborhoods) are homeomorphic. If we

think of both cores simultaneously sewn in, we have a “quirurgical manifold”.

More precisely, we have a homeomorphism

h : Sr ×Bt+1 \Sr × {0}→ Br+1 × St \ {0} × St

h (x, y) =

µ
|y|x, y|y|

¶
with inverse h−1 (x, y) =

³
|x|−1 x, |x| y

´
. Let us define the quirurgical torus

to be

Hr,t = Sr ×Bt+1 ∪
h
Br+1 × St,

that is, on the disjoint union identify (x, y) ∼ h (x, y) for all (x, y) ∈ Sr ×
Bt+1 \Sr × {0}. And let us call Sr × {0} and {0} × St the nearby cores,
Sr and St, of Hr,t. At them, Hr,t fails to be Hausdorff, but from any point

of one core one can go to any point on the other through two infinitesimal

displacements in the appropriate directions.

Let
−→P 1

k be the space of oriented projective configurations of k-points

in P1 that fix (we only mod out by orientation preserving projectivities), so

that
−→P 1

k is a double cover of P1
k. Since a set of points fixes P1 if and only

if three of them are different, both spaces are “non-Hausdorff manifolds” of

dimension k − 3. We will prove that −→P 1
k is compact and has a finite family

of embedded full dimensional quirurgical tori Hr,t (r + t = k − 4) such that
the non-Hausdorff phenomena only occurs at their cores. More precisely, if x

and y are (non-Hausdorffly) attached (i.e., without disjoint neighborhoods),
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then they belong to cores which are either complementary (nearby cores of

the same quirurgical torus) or such that their complementary cores intersect.
And moreover, we will see that the orientation involution acts on each of these

quirurgical tori as the antipodal map on Sk−3. would. So that in P1
k we have

pairs of complementary projective flats Pr and Pt (with r + t = k − 4), the
nearby cores, sharing punctured regular neighborhoods (i.e., without the zero-

section) homeomorphic to, and with the bundle structure of, their standard
regular neighborhoods in Pk−3..

To fix ideas, we can now complete the description of P1
5 (and P2

5,1): in

Figure 2, we are only missing ten new points, P0, each of them associated

as nearby core to one of the ten dark lines, P1, and therefore sharing their

punctured regular neighborhoods. Observe that, indeed, the ten dark lines of

Figure 2 have a Möbius band as regular neighborhood, which if punctured (the
core taken out) are naturally homeomorphic to a disk minus a point. So that,

for example, thinking again in terms of 5 lines in P2, that is, in P2
5,1, the unique

configuration where two lines are the same, say `4 = `5, is the, P0, nearby core

to the line, P1, of configurations where the other three lines are concurrent,

`1∩`2∩ `3 6= ∅. Then, e.g., for the rule F4 (“free 4”) where `4 can do whatever
it pleases but three lines cannot meet at a point unless `4 is one of them, we

have that P2
5,1 (F4) ∼= P2, because the four inside (circular) lines of Figure 2

are replaced (surgered) by their corresponding P0 nearby cores.

To complete our description of 4 lines in A2, observe that A2
4,1 is obtained

by deleting from P2
5,1, four of the ten special points, corresponding to config-

urations where a line (the one chosen to be at infinity) is equal to one of the

other four. In our original description of Figure 2 as U4, and `5 at infinity,

they correspond to the P0 nearby cores of the (circular) line at the center and

the three (non diameter) lines forming a triangle; but in U5, the deleted four

points (`5 = `i) would correspond to the inside circles.

The program. After the motivating examples which should increase the intu-

ition of the reader, we finish the introduction with a brief description of the
paper.

Section 2 is the core of the paper. There, we characterize the rules for

which KP1
k(R) is a compact Hausdorff manifold (K ∈ {R,C}). Moreover, it is

proved that all such manifolds of “full” dimension contained in KP1
k arise in

this way and that there are a finite number of them.

Although some of these results can be generalized to dimensions higher
than 1, the dimension 1 case is specially interesting because the simplicity of

the object of study makes it possible to reveal facts which are not true in

higher dimensions. Therefore, in section 3 we describe the stratification of

RP1
k governed by dihedral partitions, in particular it gives the structure of a

polyhedral complex to the manifolds RP1
k(R). Moreover, all manifolds RP1

k(R)
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can be obtained from each other by projective surgery and this shows that RP1
k

is a “quirurgical manifold” in the sense above.
In section 4 we will show the existence of a natural homeomorphism

KPnd ' KPmd for any field K . It is a generalization for configurations of

projective flats of the well known (see [6]) duality between configurations of

projective points. This allow us to reveal the structure of many other spaces of

projective configurations and, in particular, to formalize the homeomorphism
P1

5 ' P2
5 used above.

2. The topology of KP1
k

In this section K ∈ {R,C} , in particular it is a metric field of characteristic
0 such that KPn is a compact manifold. We do not use the complex number i,
so we will use this letter for general purposes. By∞ we denote the point added

to R (or C) to obtain RP1 (or CP1). We use kpk to denote the distance to 0
of the projective point p. Let us emphasize that all dimensions are computed
over K. So, a complex projective line has dimension 1.

Blocks and rules. Let p = (p1, ..., pk) be a k-tuple of points in the projective

space KPn, i.e., p ∈ (KPn)k. We will denote by [p] = [p1, ..., pk] its equivalence

class modulo the projective group PGL
¡
Kn+1

¢
= GL(Kn+1)/K∗, and will call

it a projective configuration, or simply a configuration, when p1, ..., pk
fix KPn; otherwise we may call it a degenerate configuration. The space
of configurations of k points in KPn, which we have called KPnk , is then the
quotient of an open subspace of (KPn)k (the fixing k-tuples) over PGL (Kn).

Let A be a subset of indices. We will denote pA := {pi : i ∈ A}. Let
α ∈ {0, ..., n− 1}, we will say that [p], or p, has block Aα if dim hpAi ≤ α,
this is, if the dimension of the projective subspace spanned by pA is not greater

than α. Observe that p has block Aα for every α ≥ ]A− 1, but having block
Aα for small α detects some “dimensional” degeneracy of the configuration.

A rule R is a subset of all possible blocks, called the permitted ones so

that its complement are the prohibited blocks. Denote by KPnk (R) the space
of all configurations such that all its blocks are permitted (are in R).

For the projective line, n = 1, the subindex α is always zero and the fact

that a configuration [p] = [p1, ..., pk] has block A0 means that pi = pj ∀i, j ∈ A,
so we may simplify our notation to say that “[p], or p, has block A”. For a

block A we denote Ā the complement of A

Since our main interest are the spaces KP1
k (R) , we will further assume

that a rule R satisfies:

R1. The blocks {i} are permitted and the blocks {i} are prohibited.



8 JORGE L. AROCHA, JAVIER BRACHO, LUIS MONTEJANO

R2. If B ∈ R and A ⊆ B, then A ∈ R (subsets of permitted blocks are

permitted).

Because a permitted block with a prohibited subblock would have no occur-
rence, so we might as well declare it prohibited; a block {i} can not appear
in a fixing configuration so we can also declare it prohibited; and if {i} is
prohibited, then KP1

k (R) is void. So that for any rule R we now have that

KP1
k (R) contains all configurations in general position whose only blocks are

the singletons {i}.
We shall prove the following theorem, where, as usual, a manifold is as-

sumed to be Hausdorff.

Theorem 2.1. A subspace T ⊂ KP1
k is a compact closed manifold of full

dimension (dimT = dimKP1
k = k − 3) if and only if T = KP1

k (R) for a rule
R that satisfies:

R3. A ∈ R⇔ Ā /∈ R ,

where Ā denotes the complement of A.

Let us remark, before we go into the technicalities, that KP1
k is locally

homeomorphic to Kk−3. Observe that a k-tuple p = (p1, ..., pk) ∈
¡
KP1

¢k
fixes KP1 if and only if it has at least three different points. Then, a small
neighborhood of a configuration [p] in KP1

k can be obtained by keeping three

different points in p constant and moving its remaining k − 3 points in small
neighborhoods (locally homeomorphic to K) around them. The problem that

makes Theorem 2.1 interesting is that compactness is not obvious and that

KP1
k is not Hausdorff.

The compactification of PGL
¡
K2
¢
. We will say that a sequence of projec-

tivities f i ∈ PGL ¡K2
¢
converges point to point if for any x ∈ KP1, the

sequence f i (x) has a limit in KP1; if this is the case, the sequence f i has a
limit function lim f i : x 7→ lim f i (x). Since the group PGL

¡
K2
¢
is not com-

pact, there are sequences of projectivities that converge point to point but do

not converge in PGL
¡
K2
¢
, in others words, the function lim f i need not be a

projectivity. Let PGL
¡
K2
¢
be the set of all limits of sequences of projectivi-

ties that converge point to point. We clearly have that if f ∈ PGL ¡K2
¢
and

g ∈ PGL ¡K2
¢
, then f ◦ g, g ◦ f ∈ PGL ¡K2

¢
.

For an example of a function in PGL
¡
K2
¢ \ PGL ¡K2

¢
consider the se-

quence f i (x) = ix whose limit is the function

π0,∞ : x 7→
½
0 if x = 0

∞ if x 6= 0
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which is called the projection from 0 to ∞. Another example is the sequence
f i (x) = i (x+ i) whose limit maps any point to∞; it is the constant function
π∞.

These two examples are universal in the following sense. Two functions

f, g ∈ PGL ¡K2
¢
are said to be projectively equivalent if there exist projectiv-

ities h, h0 ∈ PGL ¡K2
¢
such that f ◦ h = h0 ◦ g.

Proposition 2.2. Any function in PGL
¡
K2
¢
is projectively equivalent

either to the identity map, to π∞ or to π0,∞.

Proof. Let f = lim f i with f i ∈ PGL
¡
K2
¢
. Projectivities are 2 × 2

non singular matrices modulo non zero elements of K. Therefore PGL
¡
K2
¢

is contained in the space of 2 × 2 non zero matrices modulo K∗, that is
PGL

¡
K2
¢ ⊂ KP4. Since KP4 is compact, there must exist a 2 × 2 non zero

matrix A with entries in K such that

∀x /∈ KerA, f (x) = AxmodK∗

If A has rank 2, then f is a projectivity and is projectively equivalent to

the identity map

If rankA = 1, then the subspaces q = ImA and p = KerA are lines in
K2, i.e., points in KP1. If f (p) = q, then f is a constant function to q and is

projectively equivalent to π∞.
Suppose f (p) 6= q . Let g be any projectivity that maps 0 to p and let h

be any projectivity that maps f (p) to 0 and q to ∞. The function h ◦ f ◦ g is
equal to π0,∞.

Remark 2.3. Any sequence f i in PGL
¡
K2
¢
has a point to point con-

verging subsequence. Suppose f = lim f i is not given in the preceding proof.

The sequence of “matrices” in KP4 can still be constructed, and a converg-

ing subsequence, to A, extracted. Then, in the final step for a projection, a

subsequence such that f i(p) converges can be obtained because KP1 is compact.

Remark 2.4. Let f i be a point to point converging sequence of projec-

tivities and let xi be a converging sequence of points in KP1; denote f = lim f i

and x = limxi. Then we have that limf i
¡
xi
¢
= f(x) unless f is the projection

from p to q, f = πp,q, and x = p, because, otherwise, f is continuous at x. In

the non continuous case, f = πp,q and x = p, we have that lim f
i
¡
xi
¢
depends

on the “speeds” of convergence of f i and xi, and limf i
¡
xi
¢
can be anything

(consider the sequence xi = y/i in our definition of π0,∞).

Attached configurations. Two configurations [p] , [q] ∈ KP1
k are said to be

(non-Hausdorffly) attached if they are different and there are two projec-

tively equivalent sequences of fixing k-tuples pi,qi such that lim
i→∞

pi = p and
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lim
i→∞

qi = q. We say that [p] has a maximal block A if it has block A but does

not have block A0 for any superset A0 ⊃ A.
Proposition 2.5. The configurations [p] and [q] in KP1

k are attached if
and only if there exists a subset A of indices, such that [p] has maximal block

A and [q] has block Ā.

Proof. Let pi and qi be the projectively equivalent sequences of fixing

k-tuples whose limits are p and q respectively. Let f i be the projectivity such
that f i

¡
pi
¢
= qi. By Remark 2.3, we may assume f i converges point to point,

so let f = lim f i ∈ PGL
¡
K2
¢
. If f is a projectivity, then [p] = [q], and

if it is a constant function, then q does not fix by Remark 2.4; so it has to

be a projection and we may assume that f = π0,∞ by Proposition 2.2. Let

A = {j : pj = 0}, so that [p] has maximal block A. If j /∈ A, then, by Remark
2.4,

qj = lim f
i
¡
pij
¢
= π0,∞ (pj) =∞.

This proves that q has block Ā.

Conversely, suppose [p] = [p1, . . . , pk] , [q] = [q1, . . . , qk] ∈ KP1
k are con-

figurations such that for the subset A of indices, [p] has maximal block A and
[q] has block Ā. They must be different configurations because each has at

least three different points. Let B be the maximal block of [q] containing Ā.

We may assume that pA = {0} and qB = {∞}. Let pi =
¡
pi1, . . . , p

i
k

¢
be the

sequence

pij =


pj j ∈ Ā
1/i j ∈ A ∩B¡
1/i2

¢
qj j ∈ B̄

and let f i (x) = i2x. Observe that all (but at most one) of the pi fix. Clearly,

p = limpi and q = lim f i
¡
pi
¢
, proving that [p] and [q] are attached.

The submanifolds of KP1
k. We are now in a position to prove Theorem

2.1. First, let us prove the part that classifies the rules that yield compact

manifolds.

Proposition 2.6. Let R be a rule (satisfying R1 and R2 ). Then

KP1
k (R) is a compact closed manifold if and only if R satisfies:

R3. A ∈ R⇔ Ā /∈ R.

Proof. Let [p] ∈ KP1
k (R) . Let ε be a neighborhood of [p] in KP1

k. If

pi 6= pj and ε is small enough, then pi 6= pj also holds for any configuration

in ε. Hence, ε ⊂ KP1
k (R) and therefore KP1

k (R) is locally homeomorphic to
Kk−3.
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If KP1
k (R) is not Hausdorff, then it contains two attached configurations

and by proposition 2.5, there is A such that A, Ā ∈ R. Reciprocally, suppose
there is A such that A, Ā ∈ R. Let {x1, ..., xk} be a set of k different projective
points not intersecting {0,∞}. Let pi = ¡pi1, . . . , pik¢ be the sequence

pij =

½
xj j ∈ A
ixj j ∈ Ā

all but a finite number of the pi are in general position. By R1 #Ā < k − 1
and therefore p = limpi fixes. Since p has one maximal non trivial block Ā,

we have [p] ∈ KP1
k (R) . The same arguments give that [q] =

£
limpi/i

¤
belongs

to KP1
k (R). Since [p] 6= [q] we conclude that KP1

k (R) is not Hausdorff.
We proved that KP1

k (R) is Hausdorff iff A ∈ R⇒ Ā /∈ R. So that we are
only left to worry about the proof that KP1

k (R) is compact iff A ∈ R⇐ Ā /∈ R.
Suppose there is an A such that A, Ā /∈ R. It is easy to construct a

sequence
£
pi
¤→ [p] such that all pi are in general position and p has maximal

block A. By proposition 2.5 all configurations attached to [p] have the block

Ā. Therefore
£
pi
¤
does not converge in KP1

k (R) and it is not compact
Reciprocally, suppose that A ∈ R⇐ Ā /∈ R and let

£
pi
¤ ∈ KP1

k (R) be a
sequence of configurations. Since it is easy to see that KP1

k is compact, there

is [p] = lim
£
pi
¤ ∈ KP1

k. If [p] ∈ KP1
k (R) , then we are done. If not, then [p]

has a prohibited maximal block, A say and therefore Ā ∈ R.
We may clearly assume that pA = {0}, and also that ∞ /∈ piA because

piA tends to {0}. We need a sequence qi projectively equivalent to pi with
limit q such that qĀ = {∞} and {0, 1} ⊂ qA ⊂ B1 = {x | 1 ≥ kxk} (the
closed unitary ball). This can be achieved by choosing νi = pij such that°°°pij°°° = min`∈A °°pi`°° and µi = pij at maximum distance from νi. Since pi has

all its blocks permitted, we have that ]piA ≥ 2 and hence for each i these points
are different and well defined. Let f i ∈ PGL ¡K2

¢
be the projectivity defined

by f i
¡
νi
¢
= 0, f i

¡
µi
¢
= 1 and f i (∞) =∞, and qi := f i ¡pi¢.

Since q = limqi contains 0, 1 and ∞, it fixes. If ]A = 2, then q has

maximal blocks Ā (at ∞) and singletons at 0 and 1; therefore [q] ∈ KP1
k (R)

because all of its blocks are permitted. If [q] /∈ KP1
k (R), then q has a maximal

prohibited block A0, but with A0 a strict subset of A (2 ≤ ]A0 < ]A), and we
may repeat this process (taking p = q, pi = qi and A = A0) to obtain, after a
finite number of iterations, a limiting configuration in KP1

k (R).
Now, let us complete the proof of Theorem 2.1.

Proof. Observe that the if side of the Theorem follows from the preceding

result. So, suppose T ⊂ KP1
k is a compact closed (Hausdorff) manifold of full

dimension. Let R be the set of subsets of indices A such that there exists

some [p] ∈ T with A a block of [p]. Then, since an open set in T is also
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open in KP1
k (the full dimensionality) and any neighborhood of any point in

KP1
k contains configurations in general position, R contains all the singletons

and so it satisfies R1. It obviously satisfies R2. And if it does not satisfy R3,

then there would exist [p] , [q] ∈ T such that [p] has block A and [q] has block
Ā. Since both configurations fix we have that 2 ≤ ]A ≤ k − 2. Then, by
Proposition 2.5, any two neighborhoods in T of [p] and [q] would intersect,

implying T is not Hausdorff. So R also satisfies R3.
By definition of R, it is clear that T ⊂ KP1

k (R). Since, by hypothesis and
Proposition 2.6, both are closed compact manifolds of the same dimension,

then they must be equal.

3. Combinatorial and quirurgical structure of P1
k

In this section we restrict ourself to the case of the field of real num-
bers. First, we describe a polyhedral descomposition of the manifolds P1

k (R) =
RP1

k (R) and then we study the quirurgical structure of RP1
k. A similar study

for the case of the field of complex numbers will require further research.

Dihedral partitions and polyhedral complexes. An ordered partition
of a finite set A is a m-tuple (A1, A2, ..., Am) of disjoint subsets, called the

blocks, such that A1∪̇A2∪̇...∪̇Am = A. A linear partition is an equivalence
class of ordered partitions modulo the orientation involution (there are two

possible orders or orientations for a linear partition); a cyclic partition is an

equivalence class of ordered partitions modulo the corresponding cyclic group,

and a dihedral partition is an equivalence class modulo the natural action
of the dihedral group (the two cyclic partitions which are the same dihedral

partition are its two possible orientations). One should think of a dihedral

partition as a necklace of subsets of A.

Dihedral partitions (like the other kinds) have a natural partial order.

Indeed, if in a necklace of subsets we join two consecutive blocks we obtain
another dihedral partition coarser (or smaller) than the original. The Hasse

diagram of the dihedral partitions of {1, 2, 3, 4} is shown in the figure 3.
Let us denote the poset (partially ordered set) of dihedral partitions of

{1, .., k} by Dk with partial order ¹. It has a rank function α 7→ |α|, the
number of subsets in the dihedral partition α. The maximal elements in Dk
are called dihedral orders, they are permutations modulo the action of the

dihedral group.

Each configuration [p] ∈ P1
k has naturally associated a dihedral partition

dp ∈ Dk, called the type of [p], given by the dihedral order of its maximal
blocks (which look like points) along P1 (which is a circle). Observe that since

configurations have, by the fixing hypothesis, at least three points, then all
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1|2|3|4 1|2|4|3 1|3|2|4

12|34 13|2414|23

12|3|4 13|2|414|2|3 23|1|4 24|1|334|1|2

1|2342|1343|1244|123

1234

Figure 3

their types have at least rank 3 (|dp| ≥ 3), so, abusing notation, let us denote
also by Dk the poset of dihedral orders with rank at least 3.

Lemma 3.1. Given α ∈ Dk (with |α| ≥ 3), the set of all configurations
[p] ∈ P1

k such that dp = α is an open ball of dimension |α|− 3, which we will
denote σα and call the cell of α.

Proof. The dihedral partition α has the information about the maximal
blocks of p. Applying a projectivity we can send three consecutive maximal

blocks to 1,∞ and 0. To completely define [p], we have to choose |α|− 3 =: n
real numbers such that 0 < x1 < ... < xn < 1 and this is an open simplex in

Rn.

The cells σα ⊂ P1
k behave as in a ball complex whose partial order is Dk,

because given α,β ∈ Dk we have
α ¹ β ⇔ σα ⊆ σβ

where σβ is the closure of σβ. This follows because α ¹ β if and only if the
blocks of α are obtained by joining consecutive segments of blocks of β so

that configurations in σα are limits of configurations in σβ. And the limits

of configurations in σβ always have a coarser type. However, it is not a ball

complex in the classic sense because of the non-Hausdorff phenomena —the

closures of the cells are not closed balls.

If R is a good rule (satisfying R1, R2 and R3) we obtain a partial order
Dk (R) ⊂ Dk of the dihedral partitions all of whose blocks are permitted (in
R). We will always adjoin to Dk (R) a new element 0 which is smaller than
all others and a new element 1 which is bigger that all others. This new poset

will be denoted the same way.

Lemma 3.2. If R is a good rule, then Dk (R) is a lattice.
Proof. Let us show that any two α,β ∈ Dk (R) have a join α∨β. Suppose

that there is a dihedral partition γ such that γ º α , γ º β. We can think on
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the blocks of α and β as arcs in γ. If a block A of α intersects a block B of

β then A ∩ B is also an arc in γ since otherwise B ⊂ Ā which is prohibited.
Therefore we can construct γ0 ¹ γ by joining in a block each arc in γ which
is an intersection of a block in α with a block in β. It is easy to check that

γ0 = α ∨ β.
The proof concludes with the fact that any finite join semilattice with 0

is a lattice (see [2]).

Let θ be a dihedral order (a coatom) and θ̄ = [0, θ] ⊂ Dk (R) its closure.
Denote by Tθ the poset obtained from θ̄\0 reversing the order relation.

Lemma 3.3. Tθ is a pure simplicial complex of dimension k − 4.
Proof. Denote by E the set of pairs {i, j} such that i, j are consecutive in

the dihedral order θ. For α ∈ Tθ let us denote tα the set of all pairs {i, j} ∈ E
such that i, j are in a same block of α. Of course tθ = ∅ and observe that α ¹ β
iff tα ⊆ tβ. Moreover, if A ⊆ tβ, then there is α ∈ Tθ such that tα = A because
we can always split the blocks of β in the places defined by the elements of E.

This means that Tθ is a simplicial complex. Finally, any maximal element α

in Tθ has exactly 3 blocks and this implies that #tα = k − 3.
Now, recall (see section 4.7 in [3]) that a shelling of a pure simplicial

complex of dimension d is a linear order s1, ..., sn of its maximal simplices such

that for all 1 ≤ i < j ≤ n there exist 1 ≤ i0 < j such that dim(si0 ∩ sj) = d−1
and si ∩ sj ⊆ si0 ∩ sj. A complex is said to be shellable if it has a shelling.

Lemma 3.4. If R is a good rule, then Tθ is shellable.

Proof. The notations in the proof of the preceding lemma will be used.

Let us choose one of the two orientations of the dihedral order θ. We label

an arbitrary element of E by 1. The others elements of E are labeled 2, ..., k

by taking consecutive (in the choused orientation) elements of E. With this
labeling we have E = {1, ..., k}.

For any maximal simplex α ∈ Tθ the set E\tα has exactly 3 elements
of E which we denote α1 < α2 < α3. Now, we can identify α with the

vector (α1,α2,α3) . The set of all vectors (a, b, c) ∈ E3 are linearly ordered by

the lexicographic order and therefore the maximal simplices in Tθ are linearly

ordered. We shall to proof that it is a shelling.
Let α = (α1,α2,α3) < (β1,β2,β3) = β be two maximal simplices in Tθ.

Define γ = (γ1, γ2, γ3) as:

• If α1 < β1, then (since the complement of a prohibited block is permitted)

one of the two vectors (α1,β2,β3) , (α1,β1,β2) is a maximal simplex in

Tθ. In this case we put γ equal to this simplex.
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• If α1 = β1 and α2 < β2, then one of the two vectors (β1,α2,β3) ,

(α2,β2,β3) is a maximal simplex in Tθ. In this case we put γ equal to
this simplex.

• If α1 = β1 and α2 = β2 then γ = α.

In all cases we have:

• γ is a maximal simplex in Tθ and γ < β.
• #(E\tγ∩β) = 4 and therefore dim γ ∩ β = k − 5
• E\tγ∩β ⊂ E\tα∩β = {α1,α2,α3,β1,β2,β3} and therefore α ∩ β ⊆ γ ∩ β.

and this is all we had to prove.

Lemma 3.5. If R is a good rule, then Tθ is the boundary complex of a

convex polytope in Rk−3.

Proof. Every simplex α ∈ Tθ of dimension k−5 is contained in exactly two
maximal simplices. Since Tθ is shellable, then by [5] it is S

k−4 (triangulated

with at most k vertices). By [9] all such triangulations are realizable as a
convex polytope in Rk−3.

Since Dk (R) is a lattice, then two maximal cells in Dk (R) intersect in a
cell. Since the polars of maximal cells are convex polytopes and the polar of a

convex polytope is a convex polytope itself, then we obtain for any good rule
R the following:

Theorem 3.6. The lattice Dk (R) gives to P1
k (R) the standard structure

of a polyhedral complex.

Observe that the symmetric group Sk acts naturally on Dk, and accord-
ingly on P1

k preserving its cell structure. But it usually sends a rule into another

one, with one exception that should be remarked. If k is odd, then there is

a special rule invariant under the action of Sk, the “choose the small” rule,
S, where a set A is permitted iff #A < k/2. Then P1

k (S) with its polyhe-
dral structure has symmetries Sk; Figure 2 is the case k = 5 with its cellular

structure drawn.

Attached projective cores. Given an index set A, with 2 ≤ ]A ≤ k − 2, let
PA be the subspace of P1

k consisting of all configurations that have maximal

block A. The notation PA comes about because PA is homeomorphic to a

projective space of dimension k − a − 2, where a = ]A. To see this, observe

that a configuration [p] with maximal block A can be assumed to have its block

A at infinity, corresponding then to an affine configuration of the remaining
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indices Ā in the affine line because Aff(R) is the subgroup of PGL(R2) that

fixes infinity. That is, PA ∼= A1
(k−a), and this is homeomorphic to Pk−a−2.

Indeed, we may assume that the first point is zero, then equivalence is given

by nonzero multiplication and the fixing hypothesis is that not all the points

are zero.

Moreover, PA is a subcomplex of P1
k: it is the union of all the cells of

dihedral partitions with block A. The poset of dihedral partitions with block
A is isomorphic to the poset of linear partitions of Ā which is a simplicial

complex. Geometrically, it is the triangulation of Pn, where n = k − a − 2,
obtained by the “chopping” of Pn by the hyperplanes spanned by n+2 points
in general position (corresponding to the linear partitions

©{i} , Ā \ {i}ª). For
n = 2, collapse the four inside circles of Figure 2 to points.

By Proposition 2.5 we know that every point in PA is attached to every
point in PĀ ∼= Pa−2. We will prove that, moreover, they have a common

punctured regular neighborhood VA (= VĀ) homeomorphic to the standard

punctured regular neighborhood of a projective flat in projective space.

To see this, let us consider oriented configurations
−→P 1

k, where we only

divide by the orientation preserving projectivities. We can give an explicit
description of SA (the oriented double cover of PA, whose simplicial complex
is the ordered partitions of Ā) as

SA =
n
[p] ∈ −→P 1

k : pA = {∞} , {0, 1} ⊂ pĀ ⊂ [0, 1]
o
,

because for oriented affine configurations we have a well defined minimum and
maximum which can be assumed (via a unique orientation preserving affinity)

to be 0 and 1 respectively. ( Now, a punctured regular neighborhood of SA
can be given by the configurations [p] (and parametrized by the k-tuples p)

that satisfy the conditions

eVA :


{0, 1} ⊂ pĀ ⊂ [0, 1]
{∞} ⊂ pA ⊂ [∞,−1]

]pA ≥ 2

(where [∞,−1] is the interval from −1 to ∞ not containing 0), because a con-

figuration p close to SA but not in SA has at least 2 different points in A and

the point (in A) closest to 1 may be projectively moved to ∞. Observe that
if the third condition is deleted we obtain a (non-punctured) regular neigh-

borhood, with a natural (trivial) disk bundle structure (because the A-tuples

{∞} ⊂ pA ⊂ [∞,−1] are clearly homeomorphic to a disk Da−1).

Analogously, changing the role of A for Ā, but not of the special points

to make things explicit, we can describe SĀ and eVĀ as the configurations [p]
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that satisfy:

SĀ :

½ {∞,−1} ⊂ pA ⊂ [∞,−1]
pĀ = {0}

, eVĀ :

{∞,−1} ⊂ pA ⊂ [∞,−1]

{0} ⊂ pĀ ⊂ [0, 1]
]pĀ ≥ 2

It is easy to see that eVA = eVĀ because if p satisfies the conditions of ṼĀ then
(1/max (pĀ))p satisfies those of

eVA. Then eVA∪SA∪SĀ is homeomorphic to the
quirurgical torusH(k−a−2),(a−2), with its boundary naturally homeomorphic to

SA × SĀ parametrized by the k-tuples p that satisfy {0, 1} ⊂ pĀ ⊂ [0, 1] and
{∞,−1} ⊂ pA ⊂ [∞,−1]. Finally, observe that the orientation involution,
given by the projectivity x 7→ (1 − x)/(x + 1), acts as the product of the
antipodal maps so that when passing to the quotient, the nearby cores PA and
PĀ have the standard regular neighborhoods of complementary projective flats
in Pk−3, which coincide when punctured.

Surgery. Let us call projective surgery the replacement in a manifold

Mm of a submanifold homeomorphic to Pn with normal bundle equivalent to
the standard one (that of Pn ,→ Pm) by its complementary projective space
Pm−n−1. We will prove the following.

Theorem 3.7. The full dimensional submanifolds of P1
k can be obtained

from each other by projective surgery staying within P1
k.

Proof. By Theorem 2.1 we might as well analyze the good rules R (satis-
fying R1, R2 and R3). Suppose that R is a good rule and that A is a maximal

permitted block in R with 2 ≤ ]A ≤ k − 2. We claim that PA ⊂ P1
k (R), this

is, that all the cells whose dihedral order have A as a block are in P1
k (R). To

see this, suppose α ∈ Dk has a block A. Suppose B is another block of α,

since A Ã B̄ and A is maximal in R, then B̄ is prohibited and hence B is per-
mitted. Therefore, σα ⊂ P1

k (R), which proves that PA ⊂ P1
k (R). Performing

projective surgery along PA is replacing it by PĀ and the manifold we obtain
is P1

k (R0), where R0 = (R\ {A})∪
©
Ā
ª
, that is, A becomes prohibited and Ā

permitted.

We are left to see that we can go from any good rule to another by ex-

changes of this type. For this, let us consider the affine rule A, with permitted
blocks (in A) all singletons and subsets without k, except {k}. So, taking
pk = ∞, we have P1

k (A) = A1
k−1

∼= Pk−3 with the triangulation of linear par-

titions of {k}. Given any good rule R, denote by Ri the set of permitted
blocks in R with i elements. For each A ∈ R2 \A (permitted 2-blocks of R
containing k) we have that Ā ∈ A and can exchange it as above (in this case,
it corresponds to the blow-up at a distinguished vertex of P1

k (A)); to get a new
good rule R2 coinciding with R in blocks of order 2, so that P1

k (R2)is obtained

from P1
k (A) by projective surgery on points. Then, one can exchange all the
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blocks A ∈ R3 \A (surgery on projective lines), and so on through R4, ... to

get finally to R. This clearly completes the proof of the Theorem.

4. Duality and polarity

In this section we come back to the general case when K is any field.

Polarity. Let us first describe the polarity between projective configurations

of flats (we will reserve the term “duality” for another map). There is a natural

homeomorphism

(4.1) KPnd ←→ KPnn−d−1

that arises because each flat F in KPn has a polar F⊥. More precisely, F
corresponds to a linear subspace ξ inKn+1, consider its orthogonal complement

ξ⊥, and then its corresponding flat F⊥ in KPn is the polar of F . So that to a
k-tuple of flats F1, . . . , Fk (dimFi = di) there corresponds a polar k-tuple of

flats F⊥1 , . . . , F⊥k (dimFi = n − di − 1). We still have to consider the action
of PGL(Kn+1) on these k-tuples. It happens that the two actions correspond
to each other, so that polarity goes down to the quotients (4.1). Consider

A ∈ GL(Kn+1) and ξ a linear subspace of Kn+1, then a standard linear algebra

calculation yields

(4.2) (Aξ)⊥ =
³
A>
´−1

ξ⊥.

So that if two k-tuples of flats are projectively equivalent, by means of a
matrix A say, then their polar k-tuples are also projectively equivalent, but by

means of the inverse of the transpose of A.

Duality. What we will call “duality” follows the general idea first exposed by

Whitney [10] for duality of matroids (see also [6]). It goes, briefly, as follows.

Consider a k-tuple of points x = (x1, . . . , xk) ∈ (Kn)k that linearly span Kn.

The classes of these k-tuples modulo the diagonal action of GL(Kn) are called

vector configurations. The space of all vector configurations will be denoted
by Kn

k . Observe that we can replace Kn by any other vector space of dimension

n over K, since we are dividing by the general linear group and therefore, there
is a canonical isomorphism. Let e1, ..., ek be the canonical base of Kk. The map

Gk−n(Kk) 3 θ 7→ (e1 + θ, ...., ek + θ) ∈
³

Kk/θ
´k

induces a homeomorphism Gk−n(Kk)↔ Kn
k . Composing it with the “orthogo-

nal complement” Gk−n(Kk)↔ Gn(Kk) homeomorphism we obtain the vector

configuration duality homeomorphism Kn
k ↔ Kk−n

k .
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Now, for configurations of flats, recall thatKPn−1
d−1 is the space of all config-

urations of projective flats [F1, ..., Fk] in KPn−1 such that dimFi = di−1 where
d = (d1, ..., dk) . Let us identify Fi with its corresponding di-dimensional linear

subspace in Kn. Denote |d| = Pdi. Let E1 be the subspace of K|d| spanned
by the first d1 vectors of the canonical basis e1, ..., e|d|; E2 the subspace of K|d|

spanned by the following d2 vectors of the canonical basis and so on. Finally,

denote by Γd the subgroup of PGL(K|d|) which leaves each of the subspaces
E1, ..., Ek invariant i.e. Γd =

Q
i PGL(Ei) .

Lemma 4.1. There is an embedding KPn−1
d−1 ,→ G|d|−n(K|d|)/Γd whose

image is (modulo Γd) the open subset of G|d|−n(K|d|) where the action of Γd

is free.

Proof. For any θ ∈ G|d|−n(K|d|) such that θ ∩Ei = 0 the subspace Ei + θ
of K|d|/θ has dimension di. Observe that if these subspaces fix, then any iso-
morphism Kk/θ ↔ Kn gives the same configuration in KPn−1

d−1. So, we have a

partial map

G|d|−n(K|d|) 3 θ 7→ [E1 + θ, ...., Ek + θ] ∈ KPn−1
d−1

and two spaces θ, θ0 have the same image iff θ = θ0mod Γd.

Now, for f ∈ Γd we have f (θ) = θ iff f (Ei + θ) = Ei + θ. If

[E1 + θ, ...., Ek + θ] ∈ KPn−1
d−1

then f must be the identity (since E1 + θ, ...., Ek + θ fix K|d|/θ). Finally, if
θ ∩ Ei 6= 0 for some i, then there are non identity maps in PGL (Ei) which

leave invariant θ.

Remark 4.2. The above lemma shows that, in fact, we are studying quo-
tients of open subsets of Grassmannians by groups of block diagonal matrices.

In the case that all blocks are of dimension 1, the group Γd is a maximal torus

in GL(C|d|), the lemma is a result in [6] and the Chow quotients of Gn(C|d|)
by Γd are studied in [8].

To obtain the duality homeomorphism it only remains to observe that

the group Γd is closed by taking transposes and the equation 4.2 shows that

the stabilizer of θ by the action of Γd in G|d|−n(K|d|) is isomorphic (taking the
inverse of the transpose) to the stabilizer of θ⊥ by the action of Γd in Gn(K|d|).

Let us summarize our results changing the indices to the standard ones.

Theorem 4.3. There is a natural duality KPnd ←→ KPmd where

m =
X

(di + 1)− n− 2.
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An application. If we iterate duality and polarity we get infinite families of

equivalences. For example, the first three members of the sequence

P1
5,0 = P2

5,0 = P2
5,1 = P6

5,1 = P6
5,4 = P17

5,4 = P17
5,12 = P46

5,12 = · · ·
appeared in the introduction.

In the paper we fully described P1
k,0 and therefore we also fully described

all the spaces obtained alternating polarity and duality. For the affine case the

arguments in the introduction can be generalized to describe

Ann+2,n−1 ⊂ Pnn+3,n−1 = Pnn+3,0 = P1
n+3,0

and to prove that Ann+2,n−1( 6=) is Pn with n+ 2 blowups.
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