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ABSTRACT. In this paper we “measure” the size of the set of n-transversals
of a family F of convex sets in R™T* according to its homological complexity
inside the corresponding Grassmannian manifold. Our main result states that
the “measure” p of the set of n-transversals of F' is greater or equal than k if
and only if every £ 4+ 1 members of F have a common point and also if and
only if for some integer m, 1 < m < n, and every subfamily F’' of F with
k + 2 members, the “measure” u of the set of m-transversals of F’ is greater
or equal than k.

1. INTRODUCTION.

For a family F' = {A!, ..., A%} of d convex sets in R"*%  let T}, (F) be the set of
n-transversals to F, that is, the set of all n-planes in R"** which intersect every
member of F.

If X is a set of n-planes in R"**, we say that ;(X) > r if X has “homologically”
as many n-planes as the set of n-planes through the origin in B**". Thus, i “mea-
sures” the homological complexity of X inside the corresponding Grassmannian
manifold. We will use this “measure” to prove that if subfamilies of F' with few
members have enough transversals of small dimension, then the whole family F
has many transversals of a fixed dimension. That is, after a formal definition of
1, in Section 2, we shall prove in Section 3 the equivalence of the following three
properties.

* Bvery k 4+ 1 members of I’ have a point in common;

“ u(To(F)) > ks

* Tor some integer m where 1 < m < n and every subfamily F’ of F with k 42
members (T, (F')) > k.

The first equivalence can be thought of as a homological version of Horn and
Klee’s classical results [5,6]. See also [4]. They proved that the following assertions
are equivalent.

a) Every &k + 1 members of F' have a point in common;

b) Every linear n-subspace of R™+* admits a translate which is a member of
T (F);

¢) Every (n — 1)-plane A lies in a member of T5,(F).

First note that b) is just assertion c¢), when A lies at infinity. In fact, the set of all
n-planes that contain A is a manifold embedded in the corresponding Grassmannian
manifold, which represents an element of its cohomology. So, by using the product
structure of the cohomology we shall prove that

w(h(F)) > k = b) and ¢).
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If X is a set of n-planes in R*™* and for every linear n-subspace of R"t* we can
choose a translate which is a member of X, then 1(7T,,(F)) is not necessarily greater
or equal that &, unless, of course, according with our definition of y, the choice can
be done continuously. If X = T,,(F), the existence of a member of T,,(F) parallel
to every linear n-subspace of R™1* implies that we can choose continuously this
member and hence that:

w(h(F)) > k = b) and ¢).

The spirit of the complete equivalences follows the topological study of the space
of transversals initiated in [1] and [2].

We shall consider Euclidean n-space B™ and complete it to the n-projective space
P™ by adding the hyperplane at infinity. Let G(n + k,n) be the Grassmannian
nk-manifold of all n-planes through the origin in euclidean space R"**. Although
we summarize what we need in Section 2, good references for the homology and
cohomology of Grassmannian manifolds are Milnor and Stasheff [7], Pontryagin [9]
and Chern [3]; see also [8]. In this paper, we will use reduced Cech-homology and
cohomology with Zo-coeflicients.

2. THE TOPOLOGY OF GRASSMANNIAN MANIFOLDS.

Let Aq,..., \n be a sequence of integers such that 0 < Ay < ... < A\, < k. Let us
denote by:
(2.1) {1,y M} = {H € G(n+ k,n) | dim(H N RYNTI) > 4, j = 1,..,n}. For
example, {0,\,..,\} = {H € G(n+k,n) | R C HC R""*} and {k— \,....,k —
Mk} ={H € Gn+k,n)|dim(HNR =) >n 1}

(2.2) Tt is known that {A\1,...,A,} C G(n+ k,n) is a closed connected A-manifold,
where \ = Z;L i, except possibly for a closed connected subset of codimension
three. Thus, H*({\1,...; My }; Z2) = Zo = HyA({\1,s M )5 Z2). Let (Ap,...,\,) €
Hy\(G(n+k,n); Z2) be the A-cycle which is induced by the inclusion {\q, ..., A\, } C
G(n+k,n). These cycles are called Schubert-cycles. A canonical basis for Hy(G(n+
k,n); Za) consists of all Schubert-cycles (£,,...,&,,) such that 0 < &, < ... <¢ <k

and > 7 & =\

(2.3) Let us denote by [Ay, ..., \n] € HM(G(n + k,n); Z2) the A-cocycle whose value
is one for (Ay, ..., A,) and zero for any other Schubert-cycle of dimension A. Thus a
canonical basis for H*(G(n + k,n); Z3) consists of all Schubert-cocycles [{1, ..., £,,]
such that 0 < ¢, <...<¢, <k and 2?51 =\

The isomorphism D : Hy(G(n + k,n); Zg) — H™ NG(n + k,n); Z2) given by:
D((A1, .-y An)) = [k — An, ..., & — A1) is the classical Poincaré Duality Isomorphism.

(2.4) By the above, if X C G(n + k,n) is such that X N {A1,...,Ax} = ¢ and
ix : X — G(n+ k,n) is the inclusion, then

P (DI, s A))) = % ([ = Ay eees b — M]) =0

(2.5) Let M(n + k,n) be the set of all n-planes in R"**. Thus, G(n + k,n) C
M(n+ k,n). We shall regard M (n + k,n) as an open subset of G(n+k+1,n+1),
making the following identifications:

Let 29 € R*"F+1 — R™F be a fixed point and, without loss of generality, let
G(n+k+1,n+ 1) be the space of all (n + 1)-planes in R"**+1 through 29 Let us
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identify H € M(n + k,n) with the unique (n + 1)-plane H' € G(n + &k + 1,n+ 1)
which contains H and passes through zp. Thus

Gn+kn)CcMn+kn) CGn+k+1,n+1),

where M(n + k,n) is an open subset of G(n + k + 1,n 4+ 1) and G(n + k,n) C
G(n+k+1,n+ 1) may be regarded as {0, k, ..., k}, the set of all (n + 1)-planes in
R"#+1 wwhich contains R'. In other words, if j : G(n+k,n) — G(n+k+1,n+1)
is the inclusion, then j({A1, ..., A\n}) = {0, A1, ..., A\n}. So, if 0 < A <k, {0, A, ..., A}
as a subset of M(n + k,n) is the set of all n-planes H through the origin in Rk
with the property that H C R* 1.

If X Cc M(n+k,n),then ix : X — G(n+k+1,n+1) will denote the inclusion.

(2.6) Let A be a subset of X, i : A — X the inclusion and let v € H*(X; Z2). We
say that vy is zero or not zero in A, provided i*(vy) is zero or not zero respectively,
in H*(A4; Z2).

Now we are ready to state our main definition which captures the basic idea of
having as many n-planes as the set of all n-planes through the origin in R**7.
Definition. Let X C M(n+k,n) C G(n+k+1,n+1). For 0 <r <k, we say
that the “measure” of X is at least r,

wX) =,

if [0,7,...,7] is not zero in X.

It is easy to verily that if @(X) > r, then, for any integer 0 < r, < r, u(X) >
7,. Furthermore, observe that for m > 0, then X is also naturally contained in
M(n+m+ k,n) and the definition of the “measure” y is independent of m.

Example 2.1. Let F'={A°, ..., A%} be a family of convex sets. We say that F has
a cycle of transversal lines if there is a transversal line that mowves continuously
until it comes back to itself with the opposite orientation. Observe thal, F' has a
cycle of transversal lines if and only if n(T1(F)) > 1

The following lemma will be very useful for our purposes

Lemma 2.1. Let X C M(n + k,n) be a collection of n-planes and let H be a r-
plane of R 1 <r < k. If u(X) > r, then there is I' € X such that 7y (T) is a
single point, where wy : R* ™% — H 1is the orthogonal projection.

Proof. Let Y C M(n+k,n) be the set of all n-planes I in R"** such that 75 (T') is a
single point. Asin (2.5), weregard Y C M (n+k,n) as a subset of G(n+k+1,n+1).
Let A be the (n + k — r)-plane in R"**+! through 2o orthogonal to the (r + 1)-
plane that contains H and passes through 2. Note that I' € Y if and only if the
(n+1)-plane I' that contains I' and passes through 2g is such that dim(I"NA) > n.
Consequently, if we regard Y as a subset of G(n+k+1,n+ 1), by (2.1) and (2.5),
Y={k—r .. k—rk}

Let us regard X as a subset of G(n+ &+ 1,n+ 1) and suppose that X NY = ¢.
Then, by (2.4), i%([0,,...,7]) = 0, which means that [0,r,...,7] is zero in X, but
this is a contradiction because p(X) > 7. Then, X NY # ¢. This completes the
proof of Lemma 2.1. i

Remark 2.1. If in the above proof, k =r, and Y C M(n + k,n) is the set of all
n-planes T in R" ™% such that T C A, where A is a (n—1)-plane in PtF then we
obtain the following result. Let X C M(n+k,n) be a collection of n-planes with the
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property that w(X) > k, then: every linear n-subspace of R % admits a translate
which is a member of X; and every (n — 1)-plane A lies in a member of X.

3. THE SPACE OF TRANSVERSALS

Let F'={A°, ..., A%} be a family of convex sets in "% and let T,,(F), the space
of n-transversals of F, be the subset of the Grassmannian manifold M(n + k,n)
of n-planes that intersect all members of F.

Before stating our first result we need the following technical lemma.

Lemma 3.1. Let A A'... A" be k+ 1 conver sets in R*T* n > 0, such that
ﬂ]g A' = ¢. Then there is a k-dimensional linear subspace H of R™* with the
property that ﬂ]g TH (Ai) = ¢, where Ty : R** — H is the orthogonal projection.

Proof. The proof is by induction on k. If k£ = 1, the proof follows by the separation
theorem for disjoint convex sets. Suppose the theorem is true for k, we will prove
it for k& + 1.

Let A% A'..., A** be k + 2 convex sets in R"T*, such that ﬂ§+1 A" = ¢. Since

(ﬂ]g AN A*+L = ¢ then there is a hyperplane A that separates ﬂ]g A? from AR,
Suppose ﬂ]g At C A~ and A*T1 C AT, where AT and A~ are the closed half-spaces

determined by A. Note that ﬂ]g (AN AT) = ¢.

By induction hypothesis, there is a k-dimensional linear subspace Hg such that
ﬂ]g T (A' M AT) = ¢. Let H be a (k + 1)-dimensional linear subspace containing
Hjp and the 1-dimensional linear subspace orthogonal to A. We shall prove that

k41

ﬂ WH(Ai)

Assume the opposite and take x € ﬂ§+1 7 (AY). Since v € gy (AF) Cwy(AT),
then x € mg (A'"NAT), for i = 0, ..., k, which is a contradiction because ﬂ]g g (AN
AT) # ¢ implies (Vs Taro (T (AT N AT)) = e ma, (ATNAT) # ¢. I

¢.

Our first result characterizes families of convex sets with the (k + 1)-intersection
property.

Theorem 3.2. Let = {A' ..., A%} be a family of d convex sets in R" % d > k+1.
Every subfamily of F' with k + 1 members has a common point if and only if

(T (F)) = k.

Proof. Suppose every subfamily of F' with k + 1 members has a common point.
We start by constructing a continuous map % : G(n + k,n) — T, (F) as follows:
for every m-plane H through the origin, let 7y : R*"** — H' be the orthogonal
projection, where H' is the k-plane through the origin orthogonal to H. Let us
consider the family wy (F) = {7y (AY),...,mu(A%)} of d convex sets in H-. Note
that every subfamily of 7z (F) with k+1 members has a common point. Therefore,
by Helly’s Theorem, the convex set F(H) = ﬂf g (AY) is not empty. Note also
that F(H) C H*+ depends continuously on H € G(n + k,n). Let ¥)(H) be the n-
plane through the center of mass of F(H) and orthogonal to H*. By construction,
Y(H) € Ty (F).
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Let ¢ : T,(F) — G(n+k+1,n+1) and note that i) : G(n+k,n) — Gn+k+
1,m + 1) is homotopic to the inclusion. Therefore, by (2.1) and (2.3), [0, %, ..., k] is
not zero in T,,(F) and hence u(7T,(F)) > k.

Suppose now (1, (F)) > k and suppose that ﬂ]f+1 A" = ¢. By Lemma 3.1, there
is a k-dimensional linear subspace H of R*T* with the property that ﬂ]f+1 mg(AY) =
¢, where 7y : R*™* — H is the orthogonal projection. This is a contradiction
because, by Lemma 2.1, there is I' € T,,(F) such that 7y (') is a single point which
lies in ﬂf 7 (AY). This completes the proof of Theorem 3.2. i

Example 3.1. For k=1 and n = 2, Theorem 3.2 states that every two members
of F have a common point if and only if for every direction there is a transversal
plane to F' orthogonal to il.

Our next result characterizes families of k + 2 convex sets with the (k + 1)-
intersection property. Note that this time our transversals need not to be of dimen-
sion k.

Theorem 3.3. Let F' = {A', ..., A**2} be a family of k + 2 convex sets in R"*F
and let us consider an integer 1 < m < n. Every subfamily of F' with k+1 members
has a common point if and only if

(T (F)) = k.

Proof. Suppose every subfamily of F' with k& +1 members has a common point. For
i1=1,.,k+2,let a; € ﬂj#i{Aj € F} # ¢ and let T' be a (m + k)-plane containing
© ={ay,...,ax12}. Furthermore, for i = 1, ...,k + 2, let B® C T be the convex hull
of the set {a; € © | i # j}. Therefore, F' = {B!,..., B*¥"2} is a family of convex
sets in the (m + k)-plane I' with the property that T,,,(F") C T:(F) because for
i=1,..,k+2, Bt C A". By Theorem 3.2, for n = m, u(T,,,(F')) > k, which
immediately implies that (7, (F)) > k.

Suppose now (7, (F)) > k and suppose ﬂ]f+1 A" = ¢. By Lemma 3.1, there is a
k-dimensional linear subspace H of R"T* with the property that ﬂ]f+1 Ty (Ai) = ¢,
where 7y : R"™* — H is the orthogonal projection. Note now that T (F) C
M(m+(n—m+k),m) is a collection of m-planes in R™+("~™+%) with the property
that p(T;,(F)) > k, and H is a k-plane, 1 <k <n —m+ k. By Lemma 2.1, there
is I € T1,(F) such that 7y (') is a single point which lies in ﬂ]f+1 7 (AY). This is
a contradiction. |

Example 3.2. For k = 1 and m = 1, Theorem 3.3 states thal three convexr sets
have the property that every two of them have a common point if and only if there
is a cycle of transversal lines to them.

We conclude with our main result, whose proof follows immediately from Theo-
rems 3.2 and 3.3.

Theorem 3.4. Let ' = {A', ..., A%} be a family of d convex sets in R"T* d >
k+2, and let us consider an integer 1 < m < n. Every subfamily F' of F with k+2
members has the property that u(T,(F')) > k if and only if u(T,(F)) > k.
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Example 3.3. Following Horn and Klee’s spirit, for k = 1, n = 2, and m = 1,
Theorem 3.4 states that every 8 convex sets of F' have a cycle of transversal lines
if and only if F' has transversal planes orthogonal to every direction.

Example 3.4. For m = n, Theorem 3.4 states that if for every subfamily F' of F
with k42 members and for every linear n-subspace of R*1* there is a translate which
is a n-transversal to F', then every linear n-subspace of R*"* admits a translate
which is a n-transversal to F.

Example 3.5. Let ' = {A!, ..., A%} be a family of convex sets in R"T*. According
to [1], F has a virtual n-point, if there are (homologically) as many n-transversals
to F as if I had a common point, thatl is, as many n-transversals as there are
n-planes through the origin in R"T*. More precisely, F' has a virtual n-point and
only if (T, (F)) > k. For m = n, Theorem 3.4 states that every subfamily F' of F
with k + 2 members has a virtual n-point if and only if F' has a virtual n-point
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